首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The pharmacokinetics of enrofloxacin (ENR) was studied in crucian carp (Carassius auratus gibelio) after single administration by intramuscular (IM) injection and oral gavage (PO) at a dose of 10 mg/kg body weight and by 5 mg/L bath for 5 hr at 25°C. The plasma concentrations of ENR and ciprofloxacin (CIP) were determined by HPLC. Pharmacokinetic parameters were calculated based on mean ENR or CIP concentrations using WinNonlin 6.1 software. After IM, PO and bath administration, the maximum plasma concentration (Cmax) of 2.29, 3.24 and 0.36 μg/ml was obtained at 4.08, 0.68 and 0 hr, respectively; the elimination half‐life (T1/2β) was 80.95, 62.17 and 61.15 hr, respectively; the area under the concentration–time curve (AUC) values were 223.46, 162.72 and 14.91 μg hr/ml, respectively. CIP, an active metabolite of enrofloxacin, was detected and measured after all methods of drug administration except bath. It is possible and practical to obtain therapeutic blood concentrations of enrofloxacin in the crucian carp using IM, PO and bath immersion administration.  相似文献   

2.
The comparative pharmacokinetics of enrofloxacin (ENR) and its metabolite ciprofloxacin (CIP) were investigated in healthy and Aeromonas hydrophila‐infected crucian carp after a single oral (p.o.) administration at a dose of 10 mg/kg at 25 °C. The plasma concentrations of ENR and of CIP were determined by HPLC. Pharmacokinetic parameters were calculated based on mean ENR concentrations by noncompartmental modeling. In healthy fish, the elimination half‐life (T1/2λz), maximum plasma concentration (Cmax), time to peak (Tmax), and area under the concentration–time curve (AUC) values were 64.66 h, 3.55 μg/mL, 0.5 h, and 163.04 μg·h/mL, respectively. In infected carp, by contrast, the corresponding values were 73.70 h, 2.66 μg/mL, 0.75 h, and 137.43 μg·h/mL, and the absorption and elimination of ENR were slower following oral administration. Very low levels of CIP were detected, which indicates a low extent of deethylation of ENR in crucian carp.  相似文献   

3.
The objective of this study was to evaluate the disposition kinetics of enrofloxacin (ENR) in the plasma and its distribution in the muscle tissue of Nile tilapia (Oreochromis niloticus) after a single oral dose of 10 mg/kg body weight via medicated feed. The fish were kept at a temperature between 28 and 30 °C. The collection period was between 30 min and 120 h after administration of the drug. The samples were analyzed by high‐performance liquid chromatography with a fluorescence detector (HPLC‐FLD). The ENR was slowly absorbed and eliminated from the plasma (Cmax = 1.24 ± 0.37 μg/mL; Tmax = 8 h; T1/2Ke = 19.36 h). ENR was efficiently distributed in the muscle tissue and reached maximum values (2.17 ± 0.74 μg/g) after 8 h. Its metabolite, ciprofloxacin (CIP), was detected and quantified in the plasma (0.004 ± 0.005 μg/mL) and muscle (0.01 ± 0.011 μg/g) for up to 48 h. After oral administration, the mean concentration of ENR in the plasma was well above the minimum inhibitory concentrations (MIC50) for most bacteria already isolated from fish except for Streptococcus spp. This way the dose used in this study allowed for concentrations in the blood to treat the diseases of tilapia.  相似文献   

4.
The pharmacokinetic properties and tissue distribution of enrofloxacin (EF) were investigated after single intramuscular (i.m.) dose of 10 mg/kg body weight (b.w.) in Pacific white shrimp at 22 to 25°C. EF and its metabolite ciprofloxacin (CF) were determined by high‐performance liquid chromatography. After i.m. administration, EF was absorbed quickly, and the peak of EF concentration (Cmax) reached at first time point in hemolymph. The volume of distribution Vd(area) of EF was 3.84 L/kg, indicating that the distribution of EF was good. The area under the concentration–time curve (AUC) of EF was 90.1 and 274.2 μg hr/ml in muscle and hepatopancreas, respectively, which was higher than 75.8 μg hr/ml in hemolymph. The EF elimination was slow in muscle and hepatopancreas with the half‐life (T1/2β) of 52.3 and 75.8 hr, respectively. CF, the mainly metabolite of EF, was detected in hemolymph, muscle and hepatopancreas. The Cmax was 0.030, 0.013 and 0.218 μg/ml, respectively. Based on a minimum inhibitory concentration (MIC) of 0.006–0.032 μg/ml for susceptible strains, EF i.m. injected at a dose 10 mg/kg could be efficacious against common pathogenic bacteria of Pacific white shrimp.  相似文献   

5.
Mebendazole is approved for use in aquatic animals and is widely used in Chinese aquaculture. We developed a pharmacokinetic and residue analysis for mebendazole levels in the goldfish (Carassius auratus). Plasma and muscle samples of C. auratus were taken after oral administration of 10 mg/kg mebendazole. The maximal drug plasma concentration of 0.55 mg/L was achieved at 48 hr and then declined with the elimination half‐life (T1/2β) of 7.99 hr. Administration of 10 mg/kg by oral gavage for 5 successive days resulted in a peak mebendazole concentration of 0.70 mg/kg in muscle at 96 hr after the last dose. The drug was then eliminated at a relatively slow rate from muscle with T1/2β of 68.41 hr. There was no detectable mebendazole in any muscle samples at 24 days postadministration. The AUClast in plasma and muscle was 19.42 and 105.33 mg hr/L, respectively. These data provide information for dosage recommendations and withdrawal time determinations for mebendazole use in aquariums.  相似文献   

6.
To the best of the authors’ knowledge, pharmacokinetic information to establish suitable therapeutic plans for freshwater crocodiles is limited. Therefore, the purpose of this study was to clarify the pharmacokinetic characteristics of enrofloxacin (ENR) in freshwater crocodiles, Crocodylus siamensis, following single intravenous and intramuscular administration at a dosage of 5 mg/kg body weight (b.w.). Blood samples were collected at assigned times up to 168 hr. The plasma concentrations of ENR and its metabolite ciprofloxacin (CIP) were measured by liquid chromatography tandem–mass spectrometry. The concentrations of ENR and CIP in the plasma were quantified up to 144 hr after both the administrations. The half-life was long (43–44 hr) and similar after both administrations. The absolute i.m. bioavailability was 82.65% and the binding percentage of ENR to plasma protein ranged from 9% to 18% with an average of 10.6%. Percentage of CIP (plasma concentrations) was 15.9% and 19.9% after i.v. and i.m. administration, respectively. Based on the pharmacokinetic data, susceptibility break point and PK-PD indexes, i.m. single administration of ENR at a dosage of 5 mg/kg b.w. might be appropriate for treatment of susceptible bacteria (MIC > 1 μg/mL) in freshwater crocodiles, C. siamensis.  相似文献   

7.
The objective of this study was to investigate the pharmacokinetics of cefquinome following single intramuscular (IM) administration in six healthy male buffalo calves. Cefquinome was administered intramuscularly (2 mg/kg bodyweight) and blood samples were collected prior to drug administration and up to 24 hr after injection. No adverse effects or changes were observed after the IM injection of cefquinome. Plasma concentrations of cefquinome were determined by high‐performance liquid chromatography. The disposition of plasma cefquinome is characterized by a mono‐compartmental open model. The pharmacokinetic parameters after IM administration (mean ± SE) were Cmax 6.93 ± 0.58 μg/ml, Tmax 0.5 hr, t½kα 0.16 ± 0.05 hr, t½β 3.73 ± 0.10 hr, and AUC 28.40 ± 1.30 μg hr/ml after IM administration. A dosage regimen of 2 mg/kg bodyweight at 24‐hr interval following IM injection of cefquinome would maintain the plasma levels required to be effective against the bacterial pathogens with MIC values ≤0.39 μg/ml. The suggested dosage regimen of cefquinome has to be validated in the disease models before recommending for clinical use in buffalo calves.  相似文献   

8.
Florfenicol, a structural analog of thiamphenicol, has broad‐spectrum antibacterial activity against gram‐negative and gram‐positive bacteria. This study was conducted to investigate the epidemiological, pharmacokinetic–pharmacodynamic cutoff, and the optimal scheme of florfenicol against Escherichia coli (E. coli) with PK‐PD integrated model in the target infectious tissue. 220 E. coli strains were selected to detect the susceptibility to florfenicol, and a virulent strain P190, whose minimum inhibitory concentration (MIC) was similar to the MIC50 (8 μg/ml), was analyzed for PD study in LB and ileum fluid. The MIC of P190 in the ileum fluid was 0.25 times lower than LB. The ratios of MBC/MIC were four both in the ileum and LB. The characteristics of time‐killing curves also coincided with the MBC determination. The recommended dosages (30 mg/kg·body weight) were orally administrated in healthy pigs, and both plasma and ileum fluid were collected for PK study. The main pharmacokinetics (PK) parameters including AUC24 hr, AUC0–∞, Tmax, T1/2, Cmax, CLb, and Ke were 49.83, 52.33 μg*h/ml, 1.32, 10.58 hr, 9.12 μg/ml, 0.50 L/hr*kg, 0.24 hr?1 and 134.45, 138.71 μg*hr/ml, 2.05, 13.01 hr, 16.57 μg/ml, 0.18 L/hr*kg, 0.14 hr?1 in the serum and ileum fluid, respectively. The optimum doses for bacteriostatic, bactericidal, and elimination activities were 29.81, 34.88, and 36.52 mg/kg for 50% target and 33.95, 39.79, and 42.55 mg/kg for 90% target, respectively. The final sensitive breakpoint was defined as 16 μg/ml. The current data presented provide the optimal regimens (39.79 mg/kg) and susceptible breakpoint (16 μg/ml) for clinical use, but these predicted data should be validated in the clinical practice.  相似文献   

9.
The pharmacokinetic properties of the fluoroquinolone levofloxacin (LFX) were investigated in six dogs after single intravenous, oral and subcutaneous administration at a dose of 2.5, 5 and 5 mg/kg, respectively. After intravenous administration, distribution was rapid (T½dist 0.127 ± 0.055 hr) and wide as reflected by the volume of distribution of 1.20 ± 0.13 L/kg. Drug elimination was relatively slow with a total body clearance of 0.11 ± 0.03 L kg?1 hr?1 and a T½ for this process of 7.85 ± 2.30 hr. After oral and subcutaneous administration, absorption half‐life and Tmax were 0.35 and 0.80 hr and 1.82 and 2.82 hr, respectively. The bioavailability was significantly higher (p ? 0.05) after subcutaneous than oral administration (79.90 vs. 60.94%). No statistically significant differences were observed between other pharmacokinetic parameters. Considering the AUC24 hr/MIC and Cmax/MIC ratios obtained, it can be concluded that LFX administered intravenously (2.5 mg/kg), subcutaneously (5 mg/kg) or orally (5 mg/kg) is efficacious against Gram‐negative bacteria with MIC values of 0.1 μg/ml. For Gram‐positive bacteria with MIC values of 0.5 μg/kg, only SC and PO administration at a dosage of 5 mg/kg showed to be efficacious. MIC‐based PK/PD analysis by Monte Carlo simulation indicates that the proposed dose regimens of LFX, 5 and 7.5 mg/kg/24 hr by SC route and 10 mg/kg/24 hr by oral route, in dogs may be adequate to recommend as an empirical therapy against S. aureus strains with MIC ≤ 0.5 μg/ml and E. coli strains with MIC values ≤0.125 μg/ml.  相似文献   

10.
The pharmacokinetics and residue elimination of florfenicol (FFC) and its metabolite florfenicol amine (FFA) were studied in healthy blunt‐snout bream (Megalobrama amblycephala, 50 ± 10 g). The study was conducted with a single‐dose (25 mg/kg) oral administration at a water temperature of 18 or 28°C, while in the residue elimination study, fish were administered at 25 mg/kg daily for three consecutive days by oral gavage to determine the withdrawal period (WDT) at 28°C. The FFC and FFA levels in plasma and tissues (liver, kidneys and muscle) were analysed using high‐performance liquid chromatography (HPLC). A no‐compartment model was used to analyse the concentration versus time data of M. amblycephala. In the two groups at 18 and 28°C, the maximum plasma concentration (Cmax) of FFC was 5.89 and 6.21 μg/ml, while the time to reach Cmax (Tmax) was 5.97 and 2.84 hr, respectively. These suggested that higher temperature absorbed more drug and more quickly at M. amblycephala. And the elimination half‐life (T1/2) of FFC was calculated as 26.75 and 16.14 hr, while the total body clearance (CL) was 0.09 and 0.15 L kg?1 hr?1, and the areas under the concentration–time curves (AUCs) were 265.87 and 163.31 μg hr/ml, respectively. The difference demonstrated that the elimination rate of FFC in M. amblycephala at 28°C was more quickly than that at 18°C. The results of FFA showed the same trend in tissues of M. amblycephala. After multiple oral doses (25 mg/kg daily for 3 days), the k (eliminate rate constant) of FFA in M. amblycephala muscle was 0.017, the C0 (initial concentration) was 3.07 mg/kg, and the WDT was 10 days (water temperature 28°C).  相似文献   

11.
The pharmacokinetics of enrofloxacin (EF) was investigated after single intravenous (i.v.) and oral (p.o.) dose of 10 mg/kg body weight (b.w.) in snakehead fish at 24–26 °C. The plasma concentrations of EF and its metabolite ciprofloxacin (CF) were determined by high‐performance liquid chromatography. The plasma concentration–time data were described by an open two‐compartment model for both routes. After intravenous administration, the elimination half‐life (T1/2β), area under the concentration–time curve (AUC) and total body clearance of EF were 19.82 h, 75.79 μg h/mL and 0.13 L/h/kg, respectively. Following p.o. administration, the maximum plasma concentration (Cmax), T1/2β and AUC of EF were 1.86 μg/mL, 35.8 h and 49.98 μg h/mL, respectively. Absorption of EF was good with a bioavailability (F) of 65.82%, which was higher than that calculated in most seawater fish. CF, an active metabolite of EF, was detected occasionally in this study, which indicates a low extent of deethylation of EF in snakehead fish.  相似文献   

12.
To determine the plasma pharmacokinetics of suppository acetaminophen (APAP) in healthy dogs and clinically ill dogs. This prospective study used six healthy client‐owned and 20 clinically ill hospitalized dogs. The healthy dogs were randomized by coin flip to receive APAP orally or as a suppository in crossover study design. Blood samples were collected up to 10 hr after APAP dosing. The hospitalized dogs were administered APAP as a suppository, and blood collected at 2 and 6 hr after dosing. Plasma samples were analyzed by ultra‐performance liquid chromatography with triple quadrupole mass spectrometry. In healthy dogs, oral APAP maximal concentration (CMAX=2.69 μg/ml) was reached quickly (TMAX=1.04 hr) and eliminated rapidly (T1/2 = 1.81 hr). Suppository APAP was rapidly, but variably absorbed (CMAX=0.52 μg/ml TMAX=0.67 hr) and eliminated (T1/2 = 3.21 hr). The relative (to oral) fraction of the suppository dose absorbed was 30% (range <1%–67%). In hospitalized ill dogs, the suppository APAP mean plasma concentration at 2 hr and 6 hr was 1.317 μg/ml and 0.283 μg/ml. Nonlinear mixed‐effects modeling did not identify significant covariates affecting variability and was similar to noncompartmental results. Results supported that oral and suppository acetaminophen in healthy and clinical dogs did not reach or sustain concentrations associated with efficacy. Further studies performed on different doses are needed.  相似文献   

13.
The aim of this study was to determine the pharmacokinetics and prostaglandin E2 (PGE2) synthesis inhibiting effects of intravenous (IV) and transdermal (TD) flunixin meglumine in eight adult female Boer goats. A dose of 2.2 mg/kg was administered intravenously (IV) and 3.3 mg/kg administered TD using a cross‐over design. Plasma flunixin concentrations were measured by LC‐MS/MS. Prostaglandin E2 concentrations were determined using a commercially available ELISA. Pharmacokinetic (PK) analysis was performed using noncompartmental methods. Plasma PGE2 concentrations decreased after flunixin meglumine for both routes of administration. Mean λz‐HL after IV administration was 6.032 hr (range 4.735–9.244 hr) resulting from a mean Vz of 584.1 ml/kg (range, 357.1–1,092 ml/kg) and plasma clearance of 67.11 ml kg?1 hr?1 (range, 45.57–82.35 ml kg?1 hr?1). The mean Cmax, Tmax, and λz‐HL for flunixin following TD administration was 0.134 μg/ml (range, 0.050–0.188 μg/ml), 11.41 hr (range, 6.00–36.00 hr), and 43.12 hr (15.98–62.49 hr), respectively. The mean bioavailability for TD flunixin was calculated as 24.76%. The mean 80% inhibitory concentration (IC80) of PGE2 by flunixin meglumine was 0.28 μg/ml (range, 0.08–0.69 μg/ml) and was only achieved with IV formulation of flunixin in this study. The PK results support clinical studies to examine the efficacy of TD flunixin in goats. Determining the systemic effects of flunixin‐mediated PGE2 suppression in goats is also warranted.  相似文献   

14.
Ceftiofur (CEF), a broad‐spectrum third‐generation cephalosporin, exhibits a good activity against a broad range of gram‐negative and gram‐positive bacteria, including many that produce β‐lactamase. To design a rational dosage regimen for the drug in lactating Holstein dairy cows, the pharmacokinetic properties of ceftiofur hydrochloride injection were investigated in six cows after intravenous, intramuscular, and subcutaneous administration of single dose of 2.2 mg/kg BW (body weight). Plasma concentration–time curves and relevant parameters were best described by noncompartmental analysis through WinNonlin 6.3 software. After subcutaneous administration, the absolute bioavailability was 61.12% and the T1/2λz (elimination half‐life) was 8.67 ± 0.72 hr. The Cmax (maximum plasma concentration) was 0.88 ± 0.21 μg/ml and Tmax (the time after initial injection to when Cmax occurs) was 1.50 ± 0.55 hr. The MRT (mean residence time) was 11.00 ± 0.30 hr. Following intramuscular administration, the Cmax (1.09 ± 0.21 μg/ml) was achieved at Tmax (1.20 ± 0.26 hr) with an absolute availability of 70.52%. In this study, the detailed pharmacokinetic profiles of free and total CEF showed that this drug is widely distributed and rapidly eliminated and may contribute to a better understanding of the usage of ceftiofur hydrochloride injection in Holstein dairy cows.  相似文献   

15.
This study describes the pharmacokinetics of vitacoxib in healthy rabbits following administration of 10 mg/kg intravenous (i.v.) and 10 mg/kg oral. Twelve New Zealand white rabbits were randomly allocated to two equally sized treatment groups. Blood samples were collected at predetermined times from 0 to 36 hr after treatment. Plasma drug concentrations were determined using UPLC‐MS/MS. Pharmacokinetic analysis was completed using noncompartmental methods via WinNonlin? 6.4 software. The mean concentration area under curve (AUClast) for vitacoxib was determined to be 11.0 ± 4.37 μg hr/ml for i.v. administration and 2.82 ± 0.98 μg hr/ml for oral administration. The elimination half‐life (T1/2λz) was 6.30 ± 2.44 and 6.30 ± 1.19 hr for the i.v. and oral route, respectively. The Cmax (maximum plasma concentration) and Tmax (time to reach the observed maximum (peak) concentration at steady‐state) following oral application were 189 ± 83.1 ng/ml and 6.58 ± 3.41 hr, respectively. Mean residence time (MRTlast) following i.v. injection was 6.91 ± 3.22 and 11.7 ± 2.12 hr after oral administration. The mean bioavailability of oral administration was calculated to be 25.6%. No adverse effects were observed in any rabbit. Further studies characterizing the pharmacodynamics of vitacoxib are required to develop a formulation of vitacoxib for rabbits.  相似文献   

16.
The pharmacokinetics (PK) of cefquinome (CEQ) was studied in crucian carp (Carassius auratus gibelio) after single oral, intramuscular (i.m.), and intraperitoneal (i.p.) administration at a dose of 10 mg/kg body weight and following incubation in a 5 mg/L bath for 5 hr at 25°C. The plasma concentration of CEQ was determined using high‐performance liquid chromatography (HPLC). PK parameters were calculated based on mean CEQ concentration using WinNonlin 6.1 software. The disposition of CEQ following oral, i.m., or i.p. administration was best described by a two‐compartment open model with first‐order absorption. After oral, i.m., and i.p. administration, the maximum plasma concentration (Cmax) values were 1.52, 40.53, and 67.87 μg/ml obtained at 0.25, 0.23, and 0.35 hr, respectively, while the elimination half‐life (T1/2β) values were 4.68, 7.39, and 6.88 hr, respectively; the area under the concentration–time curve (AUC) values were 8.61, 339.11, and 495.06 μg hr/ml, respectively. No CEQ was detected in the plasma after bath incubation. Therapeutic blood concentrations of CEQ can be achieved in the crucian carp following i.m. and i.p. administration at a dosage of 10 mg/kg once every 2 days.  相似文献   

17.
The study was aimed at investigating the pharmacokinetics of amoxicillin trihydrate (AMOX) in olive flounder (Paralichthys olivaceus) following oral, intramuscular, and intravenous administration, using high‐performance liquid chromatography following. The maximum plasma concentration (Cmax), following oral administration of 40 and 80 mg/kg body weight (b.w.), AMOX was 1.14 (Tmax, 1.7 h) and 0.76 μg/mL (Tmax, 1.6 h), respectively. Intramuscular administration of 30 and 60 mg/kg of AMOX resulted in Cmax values of 4 and 4.3 μg/mL, respectively, with the corresponding Tmax values of 29 and 38 h. Intravenous administration of 6 mg/kg AMOX resulted in a Cmax of 9 μg/mL 2 h after administration. Following oral administration of 40 and 80 mg/kg AMOX, area under the curve (AUC) values were 52.257 and 41.219 μg/mL·h, respectively. Intramuscular 30 and 60 mg/kg doses resulted in AUC values of 370.274 and 453.655 μg/mL·h, respectively, while the AUC following intravenous administration was 86.274 μg/mL·h. AMOX bioavailability was calculated to be 9% and 3.6% following oral administration of 40 and 80 mg/kg, respectively, and the corresponding values following intramuscular administration were 86% and 53%. In conclusion, this study demonstrated high bioavailability of AMOX following oral administration in olive flounder.  相似文献   

18.
The penetration of oxytetracycline (OTC) into the oral fluid and plasma of pigs and correlation between oral fluid and plasma were evaluated after a single intramuscular (i.m.) dose of 20 mg/kg body weight of long‐acting formulation. The OTC was detectable both in oral fluid and plasma from 1 hr up to 21 day after drug administration. The maximum concentrations (Cmax) of drug with values of 4021 ± 836 ng/ml in oral fluid and 4447 ± 735 ng/ml in plasma were reached (Tmax) at 2 and 1 hr after drug administration respectively. The area under concentration–time curve (AUC), mean residence time (MRT) and the elimination half‐life (t1/2β) were, respectively, 75613 ng × hr/ml, 62.8 hr and 117 hr in oral fluid and 115314 ng × hr/ml, 31.4 hr and 59.2 hr in plasma. The OTC concentrations were remained higher in plasma for 48 hr. After this time, OTC reached greater level in oral fluid. The strong correlation (= .92) between oral fluid and plasma OTC concentrations was observed. Concentrations of OTC were within the therapeutic levels for most sensitive micro‐organism in pigs (above MIC values) for 48 hr after drug administration, both in the plasma and in oral fluid.  相似文献   

19.
Thiamphenicol (TP) pharmacokinetics were studied in Japanese quails (Coturnix japonica) following a single intravenous (IV) and oral (PO) administration at 30 mg/kg BW. Concentrations of TP were determined with HPLC and were analyzed by a noncompartmental method. After IV injection, elimination half-life (t1/2λz), total body clearance (Cltot) volume of distribution at steady state (Vdss), and mean residence time (MRT) of TP were 3.83 hr, 0.19 L/hr/kg, 0.84 L/kg, and 4.37 hr, respectively. After oral administration of TP, the peak plasma concentration (Cmax) was 19.81 μg/ml and was obtained at 2.00 hr (tmax) postadministration. Elimination half-life (t1/2λz) and mean absorption time (MAT) were 4.01 hr and 1.56 hr, respectively. The systemic bioavailability following oral administration of TP was 78.10%. TP therapy with an oral dosage of 30 mg/kg BW is suggested for a beneficial clinical effect in quails.  相似文献   

20.
The purpose of this study was to determine the pharmacokinetic interaction between ivermectin (0.4 mg/kg) and praziquantel (10 mg/kg) administered either alone or co‐administered to dogs after oral treatment. Twelve healthy cross‐bred dogs (weighing 18–21 kg, aged 1–3 years) were allocated randomly into two groups of six dogs (four females, two males) each. In first group, the tablet forms of praziquantel and ivermectin were administered using a crossover design with a 15‐day washout period, respectively. Second group received tablet form of ivermectin plus praziquantel. The plasma concentrations of ivermectin and praziquantel were determined by high‐performance liquid chromatography using a fluorescence and ultraviolet detector, respectively. The pharmacokinetic parameters of ivermectin following oral alone‐administration were as follows: elimination half‐life (t1/2λz) 110 ± 11.06 hr, area under the plasma concentration–time curve (AUC0–∞) 7,805 ± 1,768 hr.ng/ml, maximum concentration (Cmax) 137 ± 48.09 ng/ml, and time to reach Cmax (Tmax) 14.0 ± 4.90 hr. The pharmacokinetic parameters of praziquantel following oral alone‐administration were as follows: t1/2λz 7.39 ± 3.86 hr, AUC0–∞ 4,301 ± 1,253 hr.ng/ml, Cmax 897 ± 245 ng/ml, and Tmax 5.33 ± 0.82 hr. The pharmacokinetics of ivermectin and praziquantel were not changed, except Tmax of praziquantel in the combined group. In conclusion, the combined formulation of ivermectin and praziquantel can be preferred in the treatment and prevention of diseases caused by susceptible parasites in dogs because no pharmacokinetic interaction was determined between them.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号