首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Although incorporating proteases into sperm medium is considered the most effective procedure to eliminate camel semen viscosity, it drastically affects viability, morpho-functional properties and, hence, fertilization potential of spermatozoa. The present work aimed at evaluating adequacy of employing magnetic nanoparticles-based sperm purification technique for eluting impaired and apoptotic camel spermatozoa from cryopreserved semen doses following protease-based semen liquefaction. Thirty cryopreserved semen doses (50 x 106 sperm/straw) representing the following liquefaction treatments: control (untreated), 0.1 mg/ml papain or 5 U/ml bromelain were used (n = 10 straws per treatment). Immediately after thawing (38°C for 40 s), sperm concentration of each straw within treatment was readjusted to 15 x 106 sperm/mL by dilution in PBS (37°C). Sperm physical and cytological properties were then assessed (non-purified semen). Thereafter, each specimen was subjected to lectin-functionalized DNA-defrag magnetic nanoparticles sperm purification, and the same sperm traits were re-evaluated after undergoing purification (purified semen). Sperm DNA fragmentation level within each group, prior to and after magnetic nano-purification, was also determined by fluorescent imaging. The results showed a dramatic improvement (p < .05) in post-thaw motility (%), viability (%), normal sperm (%), intact acrosome (%) and HOST-reacted (%) spermatozoa in protease-liquefied semen following sperm magnetic nano-purification. Additionally, the highest (p < .05) DNA fragmentation level was recorded in all cryopreserved semen groups prior to purification, whereas the lowest (p < .05) was observed in the protease-treated specimens after magnetic nano-purification. These results indicate that protease-based semen liquefaction prior to cryopreservation in conjunction with magnetic nano-purification post-thawing holds potential for reducing the proportion of damaged and dead spermatozoa, hence improving camel sperm fertilization competence.  相似文献   

2.
Melatonin is known to protect sperm against freezing-inflicted damage in different domestic species. The aim of the study was to evaluate the effect of supplementation of semen extender with melatonin on the quality and DNA integrity of cooled and frozen/thawed rabbit spermatozoa. We also investigated whether the addition of melatonin to the semen extender could improve the fertility of rabbit does artificially inseminated with frozen/thawed semen. Semen samples collected from eight rabbit bucks were pooled and then diluted in INRA-82 supplemented either with (0.5, 1.0 or 1.5 mM) or without (0.0 mM) melatonin. Diluted semen was cooled at 5°C for 24 hr. For cryopreservation and based on the first experiment's best result, semen samples were diluted in INRA-82 in the presence or absence of 1.0 mM melatonin and then frozen in 0.25 ml straws. Following cooling or thawing, sperm quality and DNA integrity were evaluated. Furthermore, the fertility of frozen/thawed semen was investigated after artificial insemination. Supplementation of semen extender with 1.0 mM melatonin improved (p < .05) motility, viability, membrane and acrosome integrities in cooled semen compared with other groups. Sperm quality and DNA integrity were higher (p < .05) in frozen/thawed semen diluted in 1.0 mM melatonin-supplemented extender than in the control group. Conception and birth rates were higher in does inseminated with 1.0 mM melatonin treated semen compared with the controls. In conclusion, supplementation of semen extender with 1.0 mM melatonin improved the quality of cooled and frozen/thawed rabbit spermatozoa. Melatonin can preserve DNA integrity and enhance the fertility of frozen/thawed rabbit spermatozoa.  相似文献   

3.
Mammalian sperm undergo a series of biochemical transformations in the female reproductive tract that are collectively known as capacitation. Cyclodextrins added to the sperm culture medium have been described to induce in vitro sperm capacitation, enabling its use in protein‐free media. However, the additive capacitating effect of methyl‐β‐cyclodextrin (MβCD) in the medium containing bovine serum albumin (BSA) is unknown in the bovine species. In this study, we evaluated the effects of incubating frozen–thawed bovine spermatozoa in a BSA‐containing medium supplemented with MβCD on different sperm quality and functional parameters. Sperm viability decreased with the addition of MβCD in a dose‐dependent manner (p < 0.05), and DNA damage could be observed but only with the highest concentration of MβCD. However, pre‐incubation of spermatozoa in MβCD‐supplemented medium improved the capacitation status as assessed by the increase in plasma membrane fluidity, intracellular calcium concentration, induced acrosome reactivity and zona pellucida (ZP)‐binding ability (p < 0.05). Thus, we conclude that MβCD supplementation is able to enhance the capacitation status of frozen–thawed bovine spermatozoa cultured in capacitation medium containing BSA and could result in a valid strategy for its application on artificial reproductive technologies such as in vitro fertilization or intracytoplasmic sperm injection.  相似文献   

4.
This study investigated the effect of pentoxifylline (PTX) and Basal Medium Eagle (BME) on frozen–thawed goat spermatozoa. Immediately after initial examination of ejaculated semen, samples were pooled and reexamined for quality. Then, samples were divided into eight equal aliquots and diluted with a basic tris-extender containing PTX (3, 6, 9 mM) and BME (5 mM) to reach a final concentration of 25 × 109 and frozen. After 24 hr, the samples were individually thawed at 37°C for 30 s and evaluated for different characteristics. Obtained post-thaw results from Computer-Assisted Sperm Analysis indicate using of 3 and 6 mM PTX led significantly to an improvement in total motility, progressive motility and velocity characteristics of spermatozoa, except the beat/cross frequency (BCF) which indicated statistically no differences (p > .05) among control and treatments. Diluents prepared with BME (5 mM) and PTX alone (3 and 6 mM) improved significantly the membrane integrity–functionality, acrosome integrity and also hyaluronidase activity. Regarding recovery rate, the results showed significantly (p < .05) higher values for diluents containing 3 and 6 mM PTX compared to other groups. Malondialdehyde concentration exhibited also a significant difference (p < .05) in diluents supplemented with 5 mM BME, 3, 6 and 9 mM PTX, and mixture of 3 mM PTX and 5 mM BME which illustrate a similarity for active mitochondria, apoptotic-like and dead spermatozoa. Finally, the ratio of sperm chromatin dispersion stained spermatozoa presented significant differences (p < .05) among treatments in which the diluents added PTX alone demonstrated significantly lower values than control and extenders containing the mixtures of BME and PTX. In conclusion, the observation in this study indicates using of 3 and 6 mM PTX and BME alone may improve significantly (p < .05) the quality of cryopreserved goat spermatozoa.  相似文献   

5.
Attempting to contribute to the development of a more objective morphological evaluation of dog spermatozoa, in this study the indices of multiple sperm defects (multiple abnormalities index [MAI]; teratozoospermic index [TZI]; sperm deformity index [SDI]) were calculated following the World Health Organization (WHO) guidelines. In Experiment I, the concordance of MAI, TZI and SDI with the proportions of morphologically normal spermatozoa (MNS) was evaluated in fresh ejaculated spermatozoa (dogs = 47). In Experiment II, the potential role of indices as prognostic values was assessed in spermatozoa of different origin and treatment (fresh ejaculated: n = 6; fresh epididymal: n = 6; frozen‐thawed ejaculated: n = 6) by their correlation with different semen parameters (motility, membrane integrity and acrosome status) and with an in vitro sperm function test. Samples with different proportions of MNS showed different values of SDI, the index that better represented the decline of sperm morphology in both fresh and frozen‐thawed samples (Exp. I and II; p < 0.05). No correlations between indices and semen parameters were observed (Exp. II), but when samples were evaluated collectively, negative correlations (SDI‐motility, p = 0.01; SDI‐acrosome integrity, p = 0.002) were found. Including all the defects of each spermatozoon, SDI might be a useful index during morphological analysis and better discriminates the increase in multiple defects. A more objective morphological evaluation for dog spermatozoa was achieved by the WHO method, and in vitro tests allowed to elucidate the validity of SDI as prognostic indicator of in vitro fertilizing potential.  相似文献   

6.
A study was conducted to determine the optimum dosage of the exogenous cholesterol-loaded cyclodextrins (CLC) to get maximum cryoprotection for bubaline spermatozoa. In the present study, 120 × 106 spermatozoa were incubated in 2, 3 and 4 mg of CLC as grouped as Gr II, III and IV, respectively, and sperm progressive motility, intracellular Ca2+, capacitation status by protein tyrosine phosphorylation (PTP) assay and zona binding per cent (ZBP) and cleavage rate (CR) of the cryopreserved buffalo spermatozoa by in vitro fertility assay were assessed in comparison with an untreated control group (Gr I). Results revealed that there was a significant (p < .05) linear decrease in percentage of sperm population with higher intracellular Ca2+ and percentage of sperm population with medium or high capacitated by PTP in CLC treated from 2 to 3 mg and then increased to 4 mg/120 × 106 spermatozoa whereas sperm progressive motility, percentage of sperm population with low capacitated, ZBP and CR were increased significantly (p < .05) in sperm population treated from 2 to 3 mg CLC and then decreased to 4 mg/120 × 106 spermatozoa. The study has clearly indicated that CLC at 3 mg/120 × 106 spermatozoa has maximum beneficial effects in protection of sperm progressive motility, membrane fluidity (low intracellular Ca2+); prevention of cryocapacitation (low capacitation pattern in immunolocalization) and enhancement of in vitro ZBP and CR. Post-thaw motility of the CLC-treated sperm has shown positively significant (p < .05) correlation with sperm population with low intracellular Ca2+, low capacitated sperm population, ZBP and CR, whereas it was negatively (p < .05) correlated with sperm population with high intracellular Ca2+, medium or high capacitated sperm. The present study has revealed for the first time that incubation of spermatozoa with CLC of higher dose (>3 mg/120 × 106 spermatozoa) had adverse effects on sperm cryopreservation, although incubation of sperm with 3 mg/120 million prior to processing had minimised the freezing–thawing-associated damages in bubaline species.  相似文献   

7.
The purpose of the present experiment was to investigate the protective effects of palmitoleate on the quality of ram semen during low temperature liquid storage. Ejaculates were collected using the artificial vagina from four Qezel rams twice a week. Ejaculates were pooled, diluted with Tris–egg yolk extender without palmitoleate (control) or supplemented with 0.125 (P 0.125), 0.25 (P 0.25), 0.5 (P 0.5) and 1 (P 1) mM palmitoleate at a final concentration of 500 × 106 spermatozoa/ml. Total motility and forward progressive motility (FPM) as well as other spermatozoa kinematics were evaluated by computer‐assisted sperm analysis. Moreover, viability and membrane functionality were determined in the spermatozoa. Additionally, amounts of malondialdehyde (MDA), total antioxidant activity (AOA), nitric oxide (NO) and superoxide dismutase (SOD) activities were evaluated in the medium and spermatozoa at 0, 24, 48 and 72 hr of storage. The palmitoleate supplementation resulted in a significant (p < .05) increase in total motility and FPM with the highest increase at 0.5 mM concentration for 72 hr. P 0.5 group also resulted in the highest percentage of membrane‐intact spermatozoa (76.60 ± 1.95%) and viability (75.81 ± 1.34%) at 72 hr (p < .05). The amounts of MDA and NO were lower in P 0.125, P 0.25 and P 0.5 groups compared to control at 48 hr and 72 hr (p < .05). Higher amounts of AOA were obtained in palmitoleate‐treated groups in medium and spermatozoa during storage time (p < .05). Furthermore, palmitoleate supplementation increased the SOD activities in spermatozoa compared to the control (p < .05). The results of the present experiment reveal that supplementation with 0.5 mM palmitoleate improves ram spermatozoa motion characteristics, AOA levels and SOD activities during liquid storage. Then, palmitoleate could be used as an antioxidant source during liquid storage of ram semen.  相似文献   

8.
Oxidative stress is a major factor explaining sperm dysfunction of spermatozoa surviving freezing and thawing and is also considered a major inducer of a special form of apoptosis, visible after thawing, in cryopreserved spermatozoa. To obtain further insights into the link between oxidative stress and the induction of apoptotic changes, stallion spermatozoa were induced to oxidative stress through redox cycling after exposure to 2‐methyl‐1,4‐naphthoquinone (menadione), or hydroxyl radical formation after FeSO4 exposure. Either exposure induced significant increases (p < 0.05) in two markers of lipid peroxidation: 8‐iso‐PGF and 4‐hydroxynonenal (4‐HNE). While both treatments induced changes indicative of spermptosis (caspase‐3 activation and decreased mitochondrial membrane potential) (p < 0.01), menadione induced sperm necrosis and a dramatic reduction in motility and thiol content in stallion spermatozoa. Thus, we provided evidence that oxidative stress underlies spermptosis, and thiol content is a key factor for stallion sperm function.  相似文献   

9.
Addition of Glutathione to an Extender for Frozen Equine Semen   总被引:1,自引:0,他引:1  
The manipulation of equine semen during cryopreservation reduces sperm viability and fertility because of, among other factors, membrane lipid peroxidation that makes cells highly susceptible to free radicals and reactive oxygen species (ROS). The oxidative effect caused by the generation of ROS can be reduced by the addition of antioxidants to the seminal plasma or to the extenders used for freezing. The current study was performed to test the in vitro effect of exogenous glutathione added in five different concentrations (control, 2.5 mM, 5.0 mM, 7.5 mM, and 10 mM [treatments 1-5, respectively]) to the extender for 12 stallions. Analyzed parameters were sperm motility, viability, and acrosome and plasmatic membrane integrity. Total motility was higher in treatments 1 and 2 (P < .05); viability, progressive motility, and plasmatic membrane integrity were higher in treatment 2 (P < .001). As for acrosome membrane integrity, treatment 3 showed the best results (P < .05). The addition of 2.5 mM glutathione to the freezing extender preserves total motility and increases sperm viability, progressive motility, and plasmatic membrane integrity. Concentrations above 2.5 mM were deleterious to spermatozoa.  相似文献   

10.
Development of new semen cryopreservation techniques improving sperm survival and ensuring availability of viable spermatozoa for a prolonged time‐period after AI is promising tools to reduce sensitivity of timing of AI and enhance overall fertility. The SpermVital® technology utilizes immobilization of bull spermatozoa in a solid network of alginate gel prior to freezing, which will provide a gradual release of spermatozoa after AI. The objective of this study was to compare post‐thaw sperm quality and in vitro sperm survival over time of Norwegian Red bull semen processed by the SpermVital® (SV) technology, the first commercialized production line of SpermVital® (C) and by conventional procedure applying Biladyl® extender (B). Post‐thaw sperm motility was not significantly different between SV, C and B semen (p > .05). However, sperm viability and acrosome intactness were higher for SV than C and B semen (p < .05). Small differences in DNA quality were observed (p < .05). Sperm viability after storage in uterus ex vivo was higher for SV than for C semen (p < .05). Furthermore, sperm survival in vitro over time at physiological temperature was significantly higher for SV semen than C semen as well as B semen during the incubation period of 48 hr (p < .05). In conclusion, the SpermVital® technology is improved and is more efficient in conserving post‐thaw sperm quality and results in higher sperm viability over time in vitro for SV than for C and B semen.  相似文献   

11.
The aim of this study was to evaluate the treatment of bovine semen with the pan-caspase inhibitor benzyloxycarbonyl-Val-Ala-Asp-fluoromethyl ketone (Z-VAD-FMK), before or after freezing on semen quality. After the initial assessment, sperm from 4 bulls were pooled (Experiment 1) and cryopreserved in BioXcell containing 0, 20 and 100 μM Z-VAD-FMK. After thawing semen viability, motility, membrane integrity, as well as DNA fragmentation and ΔΨm were evaluated. In Experiment 2, bovine frozen/thawed sperm were incubated for 1 hr with 0, 20 and 100 µM Z-VAD-FMK before assessing the semen quality. The treatment with Z -VAD-FMK before cryopreservation improved post-thawing sperm motility compared to the control group (p < .05), while no differences were recorded in sperm viability and membrane integrity among groups (on average 86.8 ± 1.5 and 69.1 ± 1.4, respectively). Interestingly, at the highest concentration, DNA fragmentation decreased (p < .05), while the percentage of spermatozoa with high ΔΨm increased (p < .05). The results of Experiment 2 showed that 1-hr treatment with Z-VAD-FMK did not affect sperm motility and viability (on average 63.4 ± 5.8 and 83.7.1 ± 1.2, respectively). However, Z-VAD-FMK improved sperm membrane integrity (p < .05) and at the highest concentration tested decreased the proportion of sperm showing DNA fragmentation (p < .05). No differences were recorded in the percentage of spermatozoa with high ΔΨm (on average 57.0 ± 11.4). In conclusion, the treatment with 100 µM of the caspase inhibitor Z-VAD-FMK before freezing increased bovine sperm mass motility and ΔΨm, while decreasing sperm DNA fragmentation. Treatment of semen after thawing with 100 µM Z-VAD-FMK improved sperm membrane integrity and reduced DNA fragmentation.  相似文献   

12.
This study aimed to study the characteristics and subpopulations of spermatozoa from bulls with low and high reproductive performance based on pregnancy rates. Based on historical records of pregnancy rate from four farms, 24 bulls were selected. Two groups were established, with low pregnancy rates (n = 12; LOW), including bulls that presented pregnancy rates <52.27% (33.33% to 51.81%); and a group with high pregnancy rates (n = 12; HIGH), with pregnancy rates >52.27% (52.27% to 69.64%), after fixed-time artificial insemination (FTAI). The thawed sperm straws were analysed to sperm kinetics, morphology, plasma membrane integrity and sperm subpopulations. The LOW group exhibited a higher proportion of static cells (p < .05). In contrast, the HIGH group showed greater percentages for membrane integrity and total and progressive motility, and cells with fast and medium velocity (p < .05). In the cluster procedures, four sperm subpopulations were established. The low-fertility bulls presented the highest percentage of subpopulation 2 (41.46%), characterized by slow and progressive spermatozoa. The high-fertility bulls exhibited the highest percentage of subpopulation 3 (37.17%), characterized by fast and nonlinear spermatozoa. Results from this study indicated that bulls with greater percentages of fast and nonlinear spermatozoa seem to have greater fertilization capacity and the subpopulations analysis can be considered a tool to identify ejaculates with high fertility.  相似文献   

13.
Glycerol is used as a bovine semen osmotic cryoprotectant that greatly improves the quality of frozen and thawed bovine sperm. However, high glycerol concentrations can have a toxic effect on frozen and thawed bovine sperm. Therefore, this experiment investigated the effect of replacing a portion of the glycerol in a cryoprotectant solution with crocin on the sperm apoptosis, protamine deficiency and membrane lipid oxidation of frozen and thawed Yanbian yellow cattle sperm. The experiment included a control group (6% glycerol) and four treatment groups: I (3% glycerol), II (3% glycerol +0.5 mM crocin), III (3% glycerol + 1 mM crocin) and IV (3% glycerol + 2 mM crocin). Computer assisted semen analysis was used to detect sperm motility, Hoechst 33,342, propidium iodide, and JC-1 staining were used to analyse sperm viability and mitochondrial membrane potential, chromomycin A3 staining was used to detect protamine deficiency and DNA damage, flow cytometry was used for sperm membrane lipid disorder detection and analysis, and real-time quantitative RT-qPCR was used to detect the mRNA expression levels of protamine-related genes (PRM2, PRM3), sperm acrosome-associated genes (SPACA3), oxidative stress-related genes (ROMO1) and apoptosis-related genes (BCL2, BAX). Compared to the control group, replacing a portion of glycerol with 1 mM crocin significantly improved sperm motility, plasma membrane integrity, membrane lipid disorders (p < .05) and viability, mitochondrial membrane potential, protamine deficiency (p < .01). The expression level of PRM2, PRM3, SPACA3 and BCL2 significantly increased (p < .05), while the expression levels of ROMO1 and BAX significantly decreased (p < .05). Accordingly, the BCL2/BAX ratio significantly increased (p < .05). In summary, the substitution of a portion of glycerol with crocin in cryoprotective solution improved the quality of Yanbian yellow cattle sperm after freezing and thawing.  相似文献   

14.
In the present study, we aimed to evaluate the possible protective effects of the nicotinic acid (NA) at three concentrations (10, 20, and 40 mM) on the equine cooled and frozen-thawed spermatozoa quality markers including viability, plasma membrane or acrosome integrity, DNA fragmentation, lipid peroxidation, and total oxidant levels. We also evaluated the effects of NA on preservation of the post-thaw sperm quality after 6 hours of cold storage before freezing. Five stallions were used for semen collections. The current experiment was repeated six times using pooled semen samples from two stallions, each time. We showed that NA at 20 and 40 mM concentrations could significantly improve the stallion sperm quality markers during cold storage. However, the protective effects were not different between 20 mM and 40 mM concentrations in most measures. Nicotinic acid could also improve the post-thaw stallion sperm quality at 10, 20, and 40 mM concentrations. However, the 40 mM concentration showed a negative impact on some post-thaw kinematic sperm parameters. Nicotinic acid at 10 and 20 mM concentrations could preserve the sperm cryo-tolerance to be frozen up to 8 hours after collection without a significant decline in most of the post-thaw sperm quality measures. Nicotinic acid could also decrease the level of the lipid peroxidation and total reactive oxygen/nitrogen species in the cooled and frozen-thawed spermatozoa, in a dose-dependent manner. Therefore, NA at 20 mM concentration could preserve most of the stallion sperm quality measures during cold storage (42 hours, 5°C) and enabled storage of cooled stallion semen for 6 hours before freezing without significant deterioration of the post-thaw sperm quality.  相似文献   

15.
This study was aimed to investigate whether and how Rutin protects boar sperm against cryoinjury during cryopreservation. Five concentrations of Rutin with 0.2, 0.4, 0.6, 1.0, and 2.0 mM were added to the freezing extender of boar sperm, respectively, and the effects on quality and function of boar sperm after freezing‐thawing were assessed. The results showed that the sperm motility, mitochondrial activity, plasma membrane integrity, and acrosomal integrity were significantly improved in 0.4 mM and 0.6 mM Rutin groups (p < .05). Compared with ganoderma lucidum polysaccharide (GLP) or Tanshinone IIA, Rutin exhibited higher rates of mitochondrial activity and acrosome integrity (p < .05). Mechanistically, the addition of Rutin at the concentration of 0.6, 0.8, and 1.0 mM significantly attenuated ROS accumulation and MDA production by improving antioxidant enzymatic activity, including SOD, CAT, and GSH‐Px (p < .05). Functionally, a higher penetration rate and the increased total efficiency of fertilization were observed in the 0.4, 0.6, and 1.0 mM Rutin groups than in the control group (p < .05). Moreover, the addition of Rutin (0.6 mM) significantly induced an increase in both the cleavage and blastocyst rates (p < .05). In summary, supplementation with Rutin in cryopreservation medium protects boar sperm against ROS attack by enhancing the antioxidative defense.  相似文献   

16.
This study was conducted to determine the optimum level of glycerol and cholesterol‐loaded cyclodextrin (CLC) in a Tris‐based diluent for cryopreservation of ram spermatozoa. Ram semen was treated with 0, 1.5, 3 or 4.5 mg CLC/120 × 106 cells in Tris‐based diluents containing 3, 5 or 7% glycerol in a factorial arrangement 3 × 4 and frozen in liquid nitrogen vapour. Sperm motility, viability (eosin–nigrosin staining) and functional membrane integrity (hypo‐osmotic swelling test) were assessed immediately after thawing (0 h) and subsequently after 3 and 6 h at 37°C. There was an interaction between CLC and glycerol on the functional membrane integrity (p < 0.05). In the presence of 3% glycerol, the highest functional membrane integrity (32.2%) was found in the spermatozoa treated with 1.5 mg CLC/120 × 106 sperm. Post‐thaw sperm motility was highest in 1.5 mg CLC immediately after thawing (40.5%) and after 3‐h (30.6%) incubation at 37°C (p < 0.05). Viability of spermatozoa was higher in all CLC treatments than in the untreated samples, and it was highest (33.9%) in the spermatozoa treated with 1.5 mg CLC (p < 0.05). These data indicate that the addition of cholesterol to sperm membranes by 1.5 mg CLC/120 × 106 cells may allow the use of a lower concentration of glycerol (3%), which is sufficient to mitigate the detrimental effects of freezing and thawing.  相似文献   

17.
Centrifugation of boar semen through one layer of 40% colloid (Porcicoll) was previously shown to separate spermatozoa from bacteria without having a detrimental effect on sperm quality. However, some spermatozoa were lost. The purpose of the present study was to determine whether 20% or 30% Porcicoll could be used to recover most of the spermatozoa without impacting on sperm quality. Insemination doses (n = 10) from a commercial boar station were sent to the laboratory at the Swedish University of Agricultural Sciences and processed by Single Layer Centrifugation with 20% and 30% Porcicoll approximately 7 hr after semen collection. The resulting sperm samples and controls were evaluated for sperm quality immediately and again after storage at 16–18°C for 4 and 7 days. Sperm recovery was 94 ± 18% and 87 ± 15% for 20% and 30% Porcicoll, respectively (p > .05). Sperm mitochondrial membrane potential and chromatin integrity were unaffected (p > .05). The proportion of live spermatozoa producing superoxide (9 ± 8%, 7 ± 6% and 3 ± 1%; p < .05), and the proportion of spermatozoa with high stainability DNA (0.68 ± 19%, 0.61 ± 0.22% and 0.96 ± 0.23%; p < .05- <0.01), were marginally increased whereas membrane integrity, although high, was lower in the centrifuged samples than in the controls (82 ± 8%, 83 ± 5% versus 92 ± 4%; p < .05). In conclusion, centrifugation through 20% or 30% Porcicoll enables most spermatozoa to be recovered, without having a major effect on sperm quality. These results are encouraging for further studies involving microbiological investigation of the processed samples, and scaling-up to process larger volumes of boar ejaculates.  相似文献   

18.
The differential proteins associated with plasma membrane of spermatozoa are less known, identification of which shall help overcome limitations of currently used methods of sperm sexing, considered as a high priority for livestock sector of many countries. This study has reported plasma membrane proteomics of unsorted spermatozoa and differential expression of plasma membrane-associated proteins between X- and Y-chromosome bearing spermatozoa of indicus cattle (Bos indicus). Isolation of plasma membrane fraction using percoll gradient, relatively a rapid method, from bovine spermatozoa has been reported to enrich isolation of plasma membrane proteins. Significant enrichment for plasma membrane-associated proteins was observed in plasma membrane fraction (p < .05) as compared to the total cell lysate using LC-MS/MS. Furthermore, these experiments were conducted in flow cytometry sorted, sexed-semen samples. Thirteen proteins were identified as differentially abundant between X- and Y-sorted spermatozoa. Among these, two proteins were downregulated in Y-sorted spermatozoa compared to the X-sorted spermatozoa (p < .05), while four and seven proteins could be noted in X- and Y-sorted spermatozoa, respectively. Proteins that are presumed to support sperm capacitation and sperm migration velocity were found to be abundant in Y-sorted spermatozoa while those associated with structural molecule activity were identified as abundant in X-sorted spermatozoa in the present study. Our study provides better insight into the plasma membrane proteomics of spermatozoa of indicus cattle and furnishes data that might aid in design and development of alternate and open technology for sex-sorting of semen.  相似文献   

19.
The SpermVital® technology comprises embedding of spermatozoa within an alginate gel to facilitate release of sperm cells over a prolonged period in utero after AI. The aim of this study was to examine whether the survival time of spermatozoa is extended when applying this immobilization technology in combination with cryopreservation. Sperm cell survival (acrosome and plasma membrane integrity) was studied in vitro for 48 hr at physiological temperature. One dose of SpermVital® (SV) semen was compared with single doses of Biladyl® (B) processed semen as well as double doses of B (B double). B double was obtained by adding a second B dose the following day, thereby mimicking double AI. Furthermore, reproductive performance applying single early timed AI (TAI) with SV following oestrus synchronization was studied in a field trial. Double insemination (TAI on two consecutive days) with B semen served as control. Number of acrosome‐intact live sperm cells decreased over time in vitro for all treatments (p < .05). There was no difference between SV sperm cell survival and B double after 24 hr (p > .05). However, after 48 hr, SV sperm cell survival was higher than B double (p < .05). Moreover, multivariate analysis showed that the outcome of single early TAI with SV was not significantly different from B double (p > .05). Likelihood of pregnancy and calving in the heifer group was higher than in the cow group (p < .05). These results imply that spermatozoa immobilized in alginate gel have prolonged survival.  相似文献   

20.
The objective of this study was to design a protocol to separate spermatozoa from seminal plasma of raw llama semen without prior enzymatic treatment using a single-layer centrifugation with Androcoll-E (AE). Two experiments were performed: (a) samples were divided into three aliquots (1 ml) that were deposited on the top of 4, 5 or 6 ml of AE and were centrifuged at 800g for 20 min and (b) samples were divided into two aliquots (1 ml) that were deposited on the top of 4 ml of AE and were centrifuged at 600g or 1,000g for 20 min. Columns of 5 and 6 ml of AE showed a total sperm motility (TM) significantly lower, while in the 4 ml column, this parameter was not different from the TM of samples before the AE treatment. The percentage of spermatozoa with intact and functional membranes, normal morphology and intact acrosomes, as well as the percentages of sperm with highly condensed chromatin, was conserved (p ˃ .05) in the three column heights and in the two centrifugation speeds evaluated. In conclusion, the different column heights of AE (4, 5 and 6 ml) and the different centrifugation speeds used (600, 800 and 1,000g) allow separating spermatozoa of raw llama semen without enzymatic treatment, preserving the evaluated sperm characteristics. However, of all the studied treatments, centrifugation in the 4 ml column of AE at 800g would be the method of choice to process raw llama semen samples destined for reproductive biotechnologies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号