首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
细菌染色体上的毒素-抗毒素(toxin-antitoxin,TA)系统通过转录水平和转录后水平调控毒素活性,从而控制细胞的生长速度和死亡,使细菌适应各种环境胁迫。为了证明集胞藻PCC 6803染色体上relNEs TA系统的转录调控,构建了以无启动子的β-半乳糖苷酶(lacZ)基因为报告基因的重组质粒,并测定含转录融合重组质粒的大肠杆菌细胞的β-半乳糖苷酶活性。结果表明,抗毒素RelN能显著抑制relNEs启动子的转录活性,而毒素RelEs能部分减弱这种抑制作用,提示relNEs系统的编码产物对该操纵子具有反馈调控作用。  相似文献   

2.
以pMycVec1/pMycVec2载体为基础,构建了筛选和鉴定细菌sRNA调控靶标的双质粒系统。对pMycVec2载体的多克隆位点进行改造,并加入强启动子rrnBp和有效转录终止子,获得可定向克隆和转录sRNA的质粒pMycVec2-D;对pMycVec1载体的多克隆位点进行改造,并加入弱启动子Pwk和有效转录终止子,获得了分别用报告基因lacZ和GFP来检测sRNA靶标序列翻译水平的质粒pMycVec1-lacZ和pMycVec1-GFP。最后,利用2对已知的sRNA与其调控靶标MicC/ompC mRNA和MicF/ompF mRNA,通过β-半乳糖苷酶活性和菌体荧光值检测,表明双质粒系统能有效检测sRNA与调控靶标的互作。  相似文献   

3.
水稻矮缩病毒外壳蛋白P9具有体内转录激活活性   总被引:1,自引:0,他引:1  
将RDV微核心蛋白基因S9克隆到酵母表达载体pGBKT7中,转入AH109酵母细胞,转化子可以在SD/Trp^-His^-Ade^-多营养缺陷固体培养基上正常生长,证明RDVP9在酵母中具有转录激活活性,运用β-半乳糖苷酶的活性分析对重组质粒转化子的转录激活程度做了定量分析,发现与正对照相比,转化pGBK-S9的酵母菌中β-半乳糖苷酶活性可达到正对照的40%以上。构建了含有gusA报告基因的植物表达载体用来分析P9在植物中的转录激活活性,实验结果表明,融合GAL4DB的P9蛋白可以在植物体内激活报告基因的表达,Weestern印迹法分析表明了P9蛋白在酵母和植物中均可以表达。证明了在植物体内RDVP9蛋白同样能够激活基因的转录,暗示该蛋白可能在病毒的侵染和复制过程中参与调控病毒或寄主基因的转录表达。  相似文献   

4.
【目的】鉴定牛MYOZ1基因转录起始位点,确定牛MYOZ1基因核心启动子区域,为进一步研究牛MYOZ1基因的转录调控机制奠定基础。【方法】以秦川牛肌肉5′RACE准备cDNA为模板,设计5′RACE扩增试验,确定牛MYOZ1基因转录起始位点。以秦川牛外周血基因组DNA为模板,通过PCR克隆获得牛MYOZ1基因转录调控区-1 628/+61目的片段。通过生物信息学分析软件预测可能包含的转录因子结合位点,设计逐段缺失引物,获得7个亚克隆,将其分别与pGL3-Basic载体连接,得到牛MYOZ1基因启动子双荧光素酶报告基因重组质粒,通过脂质体法转染C2C12细胞系,检测7个重组质粒的荧光素酶活性,分析启动子活性。【结果】确定了牛MYOZ1基因的转录起始位点,成功克隆获得7个系列缺失的牛MYOZ1基因启动子双荧光素酶报告基因重组质粒:pMYOZ1-1 628/+61、pMYOZ1-1 430/+61、pMYOZ1-1 179/+61、pMYOZ1-932/+61、pMYOZ1-676/+61、pMYOZ1-437/+61和pMYOZ1-116/+61,其中重组质粒pMYOZ1-116/+61启动子活性极显著高于pGL3-Basic,推测牛MYOZ1基因-116/+61区域可能包含核心启动子;重组质粒pMYOZ1-1 628/+61启动子活性极显著高于pMYOZ1-1 430/+61片段活性(P0.01),表明牛MYOZ1基因启动子区域-1 628/-1 430片段可能包含启动子活性增强元件。生物信息学分析发现,牛MYOZ1基因启动子-116/+61片段可能包含SP1、GC Box、CAAT等多个重要转录因子结合位点;-1 628/-1 430片段可能包含SP1、MyoD等多个重要转录因子结合位点。【结论】成功构建了7个系列缺失的牛MYOZ1基因启动子双荧光素酶报告基因重组质粒,且初步确定了牛MYOZ1基因的核心启动子区域位于-116/+61。  相似文献   

5.
以PCR法从pGEX-6p-1-peaT1中扩增出peaT1基因片段,电泳回收后将peaT1基因定向克隆到plexA载体中。将诱饵载体plexA-peaT1经酶切和测序鉴定后,用PEG/LiAC法转化酵母EGY48[p8op-lacZ],并进行诱饵载体转录激活活性检测。结果表明,重组质粒经EcoR I和XhoⅠ双酶切后,琼脂糖凝胶电泳检测可见2条与预期相符的条带,表明诱饵载体构建成功。β-半乳糖苷酶活性分析表明,诱饵载体plexA-peat1无转录激活活性,对酵母菌株也无毒害作用。该诱饵载体可用于酵母双杂交系统中,为下一步筛选cDNA文库奠定了基础。  相似文献   

6.
NifA为固氮微生物固氮基因(nif)表达的正调控因子,序列分析显示NifA蛋白C6区的一个酪氨酸残基高度保守(对应于A1501为Y370)。β-半乳糖苷酶活性分析表Y370C突变体不能激活nifH启动子,也不能使NifA缺失突变株A1506恢复固氮酶活,而野生型NifA可以激活PnifH+lacZ的表达,并恢复A1506的固氮酶活。研究证明斯氏假单胞菌A1501 NifA蛋白的C6区的Y370氨基酸是NifA蛋白激活nif基因转录的关键位点之一,其具体作用机制值得进一步深入研究。  相似文献   

7.
不同芽叶中β-半乳糖苷酶活性存在差异,嫩芽叶>老叶>嫩茎。芽叶中的β-半乳糖苷酶活性在摊放2b后上升到最高峰,为鲜叶酶活性的1.2倍;随着摊放时间的延长,酶活性又逐渐下降,8h后酶活性降至鲜叶酶活的85%。揉捻及发酵过程中β-半乳糖苷酶活性呈大幅度下降。微波杀青处理后,β-半乳糖苷酶快速失活,摊放冷却后没有复性。  相似文献   

8.
不同耐贮性梨贮藏中果胶分解酶活性变化比较   总被引:1,自引:0,他引:1  
以南果梨、延边小香水梨和苹果梨为试材,比较分析耐贮性不同的梨果实贮藏中果胶分解酶活性变化.结果表明,耐贮性强的苹果梨贮藏中PG酶活性很低,贮藏20 d出现活性高峰;而β-半乳糖苷酶活性高,但没有明显的活性高峰.耐贮性弱的南果梨和延边小香水梨果实贮藏中PG酶活性很高,但没有明显的活性高峰;南果梨的β-半乳糖苷酶活性高于苹果梨,而延边小香水梨的则低于苹果梨,但南果梨和延边小香水梨分别于贮藏15 d和10 d时出现明显的活性高峰.说明梨的耐贮性与贮藏中PG酶活性高低有关,但与活性高峰无关;耐贮性强弱与β-半乳糖苷酶活性大小无关,而与活性高峰出现与否有关,且耐贮性越弱,活性高峰出现越早.  相似文献   

9.
茶树Mn-SOD基因在大肠杆菌中的高效表达   总被引:1,自引:0,他引:1  
聚合酶链式反应(PCR)扩增茶树嫩叶锰超氧化物歧化酶基因,并与原核表达载体pET22b( )连接,构建重组质粒pET/msod,将该质粒转化至大肠杆菌Escherichia coliBL21(DE3),获得转基因工程菌BL21-pET/msod。在1 mmol.L-1异丙基硫代-β-半乳糖苷(IPTG)诱导下,重组蛋白得到高效表达,酶活性可达2×105U.L-1。SDS-PAGE检测表达蛋白分子量为25 kD,与通过核苷酸推测的分子量一致。  相似文献   

10.
lyy@ahau.edu.cn     
 不同芽叶中β-半乳糖苷酶活性存在差异,嫩芽叶>老叶>嫩茎。芽叶中的β-半乳糖苷酶活性在摊放2h后上升到最高峰,为鲜叶酶活性的1.2倍;随着摊放时间的延长,酶活性又逐渐下降,8h后酶活性降至鲜叶酶活的85%。揉捻及发酵过程中β-半乳糖苷酶活性呈大幅度下降。微波杀青处理后,β-半乳糖苷酶快速失活,摊放冷却后没有复性。  相似文献   

11.
以α-半乳糖苷酶基因为筛选标记,构建GAL1诱导型启动子介导的酿酒酵母表达载体YGM-α-gal质粒,将枯草芽孢杆菌的β-1,3-1,4-葡聚糖酶基因克隆到此载体中,构建质粒YGMPA-α-gal,转化宿主酵母后,实现β-1,3-1,4-葡聚糖酶在酿酒酵母中的分泌表达.结果表明:在2%半乳糖诱导下,摇瓶发酵24h后分泌表达的β-葡聚糖酶活性达到411.9U爛mL-1,而在培养60h后,发酵液中α-半乳糖苷酶活性可达64.2U爛mL-1.说明α-半乳糖苷酶基因可用作酿酒酵母表达载体转化的有效筛选标记,为食品级酿酒酵母表达系统的构建提供了新选择.  相似文献   

12.
本研究旨在分析猪RELMβ基因启动子结构,初步探索RELMβ基因表达调控机制。通过PCR方法扩增RELMβ基因的系列启动子缺失片段并分别克隆到荧光素酶报告基因表达载体p GL3-Enhancer中,经酶切、测序和生物信息学分析,构建包含RELMβ启动子系列截短的荧光素酶报告基因重组质粒,脂质体转染至HT29和293T细胞,应用双荧光素酶活性检测系统检测启动子活性。试验获得了猪RELMβ基因约1 kb的启动子序列,序列比对发现猪和人物种间相似性仅34.9%,猪和小鼠的同源性是82.4%。生物信息学分析预测猪RELMβ基因转录起始位点在-556 bp处,猪和人RELMβ基因启动子存在系列保守的转录因子结合位点,包括Cdx2、SRY、NFKB、NKX-2、c-Myb、GATA-1、GATA-3、C/EBP、MZF1等。细胞检测结果显示,p GL-RELMβ(-574~+215)活性最强,推测在-574~-182 bp位点之间存在RELMβ基因启动子的关键顺式调控元件,这一区域发现SRY、Cdx2、GATA-1和MZF1等关键转录因子结合位点。  相似文献   

13.
【目的】将透明颤菌血红蛋白(VHb)基因(vgb)在枯草芽孢杆菌中进行整合表达,提高β-半乳糖苷酶的产量。【方法】用枯草芽孢杆菌整合载体pA01和启动子P43构建vgb基因的整合表达载体pA-vgb,通过双交叉整合方式,将vgb基因整合到枯草芽孢杆菌DB104:bga的染色体上,构建枯草芽孢杆菌DB104:vbga。采用PCR和Southern blot对DB104:vbga进行检测,并通过发酵摇瓶试验研究VHb对β-半乳糖苷酶产量的作用。【结果】PCR与Southern blot检测结果表明,枯草芽孢杆菌DB104:vbga中vgb基因整合位置正确,且表达的VHb蛋白具有生物学活性。摇瓶试验结果表明,在转速250 r/min条件下,枯草芽孢杆菌DB104:vbga与DB104:bga的β-半乳糖苷酶活性无显著差异;在150 r/min的限氧条件下,vgb基因的表达促使DB104:vbga的β-半乳糖苷酶活性较DB104:bga提高了14.9%。【结论】vgb基因可用于提高枯草芽孢杆菌目的蛋白的产量。  相似文献   

14.
通过家兔体内感染兔出血症病毒(RHDV)后发现体内干扰素-β(Interferon-β,IFN-β)基因表达水平明显降低。为体外研究RHDV感染宿主后IFN-β启动子的调控机制,首先以家兔肝细胞总cDNA为模板,利用PCR扩增IFN-β基因启动子区的序列,经测序确定全长为550 bp;预测软件分析,与人源IFN-β基因启动子的转录上调区域(positive regulation domain,PRD)高度同源;随后将启动子全长和一系列转录元件克隆至pGL6-Basic荧光素酶表达载体中,成功构建重组体报告基因质粒后,瞬转RK-13细胞,利用试剂盒检测荧光素酶的相对活性。结果显示,克隆的IFN-β基因启动子区和AP-1、IRF3、NF-κB和IRF7等转录元件具有显著的活性,为研究兔出血症病毒对宿主IFN-β基因的转录调控机制提供了有效的工具。  相似文献   

15.
【目的】构建牛ATP5B基因启动子双荧光素酶报告基因重组质粒,并检测其在C2C12细胞系中的表达活性。【方法】从牛外周血中提取基因组DNA,通过PCR方法从牛基因组DNA中克隆获得牛ATP5B基因的5′端转录调控区的1 898bp目的片段,通过设计引物逐段缺失后获得7个亚克隆,将其纯化后经SmaⅠ和KpnⅠ双酶切与pGL3-Basic载体连接,连接产物转化感受态细胞DH5α,得到牛ATP5B基因启动子双荧光素酶报告基因重组质粒,经脂质体基因转染法转染C2C12细胞系后,检测7个重组质粒的荧光素酶活性;运用在线软件Gen-omatix和TFSEARCH对ATP5B启动子区序列进行分析。【结果】成功克隆获得7个系列缺失的牛ATP5B基因启动子双荧光素酶报告基因重组质粒pATP5B-1898、pATP5B-1607、pATP5B-1293、pATP5B-992、pATP5B-678、pATP5B-462和pATP5B-145;通过转染细胞和荧光素酶活性分析,可知构建的重组质粒均有启动子活性,且重组质粒pATP5B-678和pATP5B-462与空载体pGL3-Basic的荧光素酶活性差异极显著。软件分析结果显示,ATP5B基因启动子区域-763~-85bp存在多个重要转录调控元件。【结论】成功构建了7个系列缺失的牛ATP5B基因启动子双荧光素酶报告基因重组质粒,且证实-763~-230bp为牛ATP5B基因的核心启动子区域。  相似文献   

16.
本试验以pAyGUS为转化质粒,该质粒为小麦高分子量麦谷蛋白亚基基因1Ay的启动子和β-葡糖苷酸酶(GUS)基因的重组质粒,利用基因枪法将该质粒导入小麦胚乳及胚中,检测其表达活性。通过X-gluc染色检测表明,GUS基因在该启动子的驱动下能在小麦种子中特异表达,可见小麦1Ay基因的启动子具有在小麦胚乳中特异表达的活性,这为小麦品种改良及转基因研究奠定了基础。  相似文献   

17.
以白介素-1β(IL-1β)诱导的人肺癌细胞A549为模型,探讨原花青素(PC)对环氧合酶-2(COX-2)启动子活性的影响.用含有完整和NF-κB结合位点突变的COX-2启动子的的荧光素酶表达载体 pGL 3质粒,转染A549细胞,加原花青素(20mg/L)培养,检测COX-2基因5'调控区相对转录活性;RT-PCR检测细胞COX-2 mRNA的表达.结果发现NF-κB结合位点突变的COX-2基因转录活性极大地降低,原花青素可以显著降低完整的COX-2启动子转录活性,降低A549细胞中COX-2 mRNA的表达.  相似文献   

18.
【目的】以临床分离的多重耐药鸡大肠埃希菌IncFⅡ质粒为研究对象,探究核蛋白H-NS调控其接合转移的分子机制,为控制IncFⅡ质粒介导的多重耐药基因水平散播提供理论依据。【方法】测定大肠埃希菌ATCC25922及4株重组菌(pBAD25922、F25922、FΔhns和FΔhns/phns)的生长曲线,比较hns对菌株的影响情况;分别以F25922、FΔhns和FΔhns/phns为供体菌,大肠埃希菌J53(耐叠氮钠)为受体菌,进行接合试验,并计算接合频率;采用实时荧光定量PCR检测各重组菌(F25922、FΔhns和FΔhns/phns)中IncFⅡ质粒接合转移相关基因(traMtraJtraY)的mRNA表达量;构建LacZ融合报告菌株F25922/PM(PJ/PY)、FΔhns/PM(PJ/PY)和FΔhns/phns/PM(PJ/PY),分别测定不同菌株中3种基因(traMtraJtraY)启动子PM、PJ和PY的β-半乳糖苷酶活性;构建H-NS蛋白原核表达载体,采用镍离子亲和层析法分离纯化H-NS核蛋白,PCR扩增并纯化3种基因启动子区的DNA序列,利用电泳迁移率变动分析试验(EMSA)探明核蛋白H-NS调控IncFⅡ质粒接合作用的调控方式,预测H-NS与不同启动子的结合位点并用EMSA进行进一步验证。【结果】重组菌F25922和pBAD25922与大肠埃希菌ATCC25922的生长状况无明显差异,说明质粒pBAD和IncFⅡ均不影响宿主菌大肠埃希菌ATCC25922的生长;但是,缺失重组菌FΔhns和缺失回补重组菌FΔhns/phns的生长速度明显低于大肠埃希菌ATCC25922,表明hns的缺失导致菌株的生长适应性变差,但不影响菌株的存活。接合试验结果显示,FΔhns中IncFⅡ质粒的接合频率较对照菌F25922升高了1 279.33倍(P<0.001),而FΔhns/phns中IncFⅡ质粒的接合频率虽未完全恢复到对照菌株的水平,但也明显低于FΔhns。实时荧光定量PCR结果显示,FΔhns中tra基因(traMtraJtraY)的mRNA表达量均极显著高于对照菌株(P<0.001),其中traJ的mRNA表达量最高,为F25922的1 510.14倍,其次为traYtraM,表达量分别为F25922的448.14倍和81.54倍,而回补株FΔhns/phns中不同基因的mRNA表达量均极显著低于FΔhns,与对照菌相类似。β-半乳糖苷酶活性测定结果显示,缺失报告菌株FΔhns/PM(PJ/PY)中PM、PJ和PY的β-半乳糖苷酶活性分别为5.66,10.45和21.91,均极显著高于对照菌F25922/PM(PJ/PY)的相应启动子(P<0.001),而回补报告菌株FΔhns/phns/PM(PJ/PY)中PM、PJ和PY的β-半乳糖苷酶活性极显著低于FΔhns/PM(PJ/PY),且均与对照菌株无明显差异。这些结果均表明hns对IncFⅡ质粒接合转移呈明显的负调控作用。EMSA结果显示,H-NS核蛋白均能明显阻滞3个tra基因启动子DNA的迁移,说明H-NS可直接与tra基因的3个启动子区结合;通过对结合位点的预测和EMSA进一步验证,证实H-NS核蛋白可与3个启动子区的AT富集区结合。【结论】H-NS核蛋白通过直接与IncFⅡ质粒的traMtraJtraY的启动子区的AT富集区结合,抑制启动子活性,从而导致启动子下游相关转移基因traMtraJtraY的表达量下降,结果明显抑制IncFⅡ质粒的接合转移。  相似文献   

19.
一个新的编码大豆DREB转录因子基因的克隆及鉴定   总被引:3,自引:0,他引:3  
DREB转录因子是一类可以调控多个与干旱、高盐及低温耐性有关的功能基因表达的转录因子家族。从大豆耐盐品种铁丰8号中克隆了一个新的DREB基因GmDREB5。该基因编码309个氨基酸,具有典型的AP2/EREBP保守结构域,属于AP2/EREBP类转录因子中的DREB亚族。同源性比较分析表明,GmDREB5基因与Genbank登录的DREB基因同源性不高,属于新基因。酵母转录激活实验证明,该基因可以与DRE顺武作用元件特异结合,并具有转录激活活性;同时采用CaMV35S启动子驱动,构建了植物表达载体pBl35S-GmDREB5,并通过冻融法将重组质粒导入根癌农杆菌EHA105中,再利用叶盘转化法将重组质粒导入烟草品种W38中。获得转基因烟草植株30株。  相似文献   

20.
牛Nramp1基因启动子的克隆及其活性分析   总被引:2,自引:0,他引:2  
 【目的】牛Nramp1基因是主要的抗病候选基因,但其转录调控的分子机制尚不清楚。本研究欲确定牛Nramp1基因的启动子区域,找到启动子核心序列和主要的调控区,探索Nramp1基因表达机制。【方法】采用基因克隆、DNA测序、半定量RT-PCR和荧光素酶报告基因系统等技术手段,构建牛Nramp1基因5′侧翼区长片段及固定3′端的不同节段的pEGFP-N1和/或pGL3重组质粒,分别转染293T和RAW264.7细胞,并进行脂多糖(LPS)诱导,对不同片段的启动子活性进行定性和定量测定。【结果】牛Nramp1基因5′侧翼区长片段具有较强的启动子活性,+58—-89区域具有基本的启动子功能,+58—-1 748启动子活性最强。进一步研究表明,-89—-205 bp区域、 -278—-1 495 bp区域存在着正调控元件,在-205—-278 bp区域内存在着负调控元件;另外,LPS能显著增强启动子活性,其诱导牛Nramp1基因的表达具有细胞特异性和剂量依赖性。【结论】成功构建了含推测的牛Nramp1基因启动子片段的重组报告基因载体, 确定了启动子核心区域和主要的调控区域。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号