首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Biodegradable polymers, such as poly(lactic acid) (PLA) have attracted a lot of attention in the scientific community recently due to a rapid growth of intensive interest in the global environment for alternatives to petroleum-based polymeric materials. Fatty nitrogen compounds (FNCs), fatty amides (FA), fatty hydroxamic acids (FHA), and carbonyl difatty amides (CDFA), which were synthesized from vegetable oils, were used as one of organic compounds to modify natural clay (sodium montmorillonite). The clay modification was carried out by stirring the clay particles in an aqueous solution of FA, FHA, and CDFA, by which the clay layer thickness increased from 1.23 to 2.61, 2.84 and 3.19 nm, respectively. The modified clay was then used in the preparation of the PLA/epoxidized soybean oil (ESO) blend nanocomposites. They were prepared by incorporating 2% of CDFA-MMT and 3% of both FA-MMT and FHA-MMT. The interaction of the modifier in the clay layer was characterized by X-ray diffraction (XRD), and Fourier transform infrared (FTIR). Elemental analysis was used to estimate the presence of FNCs in the clay. The nanocomposites were synthesized by solution casting of the modified clay and a PLA/ESO blend at the weight ratio of 80/20, which has the highest elongation at break. The XRD and transmission electron microscopy (TEM) results confirmed the production of nanocomposites. PLA/ESO modified clay nanocomposites show higher thermal stability and significant improvement of mechanical properties in comparison with those of the PLA/ESO blend. The novelty of this study is use of FNCs which reduces the dependence on petroleum-based surfactants.  相似文献   

2.
We herein report the preparation and crystallization behavior of polylactide (PLA) nanocomposites reinforced with polyhedral oligomeric silsesquioxane-modified montmorillonite (POSS-MMT), which is prepared by exchanging sodium cations of pristine sodium montmorillonite (Na-MMT) with protonated aminopropylisobutyl polyhedral oligomeric silsesquioxane (POSS-NH3 +). PLA nanocomposites with 1–10 wt% POSS-MMT contents are manufactured via melt-compounding, and their structures and melt-crystallization behavior are investigated. It is characterized that POSS-MMT nanoparticles in the nanocomposites have an exfoliated structure of MMT silicates with POSS-NH3 + and partial POSS-NH2 crystals. DSC cooling thermograms suggest that the overall melt-crystallization rates of the nanocomposite with only 3 wt% POSS-MMT are remarkably enhanced in comparison with the neat PLA. From the isothermal crystallization analysis based on the Avrami model, the overall melt-crystallization of PLA/POSS-MMT nanocomposites is found to be dominated by the heterogeneous nucleation and three-dimensional spherulite growth. Isothermal melt-crystallization experiments using a polarized optical microscope show that the spherulite nucleation density of PLA/POSS-MMT nanocomposites is much higher than that of the neat PLA, whereas the spherulite growth rates of all the nanocomposites are almost identical with the rate of the neat PLA. It is concluded that the highly enhanced melt-crystallization rates of PLA/POSS-MMT nanocomposites stem from the dominant nucleation effect of POSS-MMT nanoparticles for PLA crystals.  相似文献   

3.
Although poly(lactic acid) (PLA) possesses many desirable properties such as miscible, reproducible, nontoxic, and biodegradable properties, extremely slow crystallization rate is a weak point in comparison with other commercial thermoplastics. Addition of nucleating agents can be a good method to increase the overall crystallization rate and multi-walled carbon nanotube (MWCNT) is generally known as a good nucleating agent as well as reinforcement. MWCNT reinforced PLA nanocomposites were prepared by melt blending and the unique nucleation and crystallization behaviors of pure PLA and MWCNT/PLA nanocomposites were investigated. Slow homogeneous nucleation and crystallization behavior of the pure PLA and fast heterogeneous crystallization behavior of MWCNT/PLA nanocomposites were observed. Crystallization behavior of MWCNT/PLA nanocomposites was irrespective of cooling rate and the peculiar behavior was due to fast heterogeneous crystallization caused by the nucleating effect of MWCNT and fast PLA chain mobility.  相似文献   

4.
Cellulose nanowhiskers were used to improve the performance of poly (lactic acid) (PLA). The nanocomposites mixed with three different molecular weight of poly (ethylene glycol) (PEG) were characterized by mechanical testing, thermal gravimetry and differential scanning calorimetry. The tensile test showed an increase in tensile strength and elongation at break with the addition of PEG to PLA/CNW nanocomposites, the thermal analysis results showed an increase of crystallization temperature (T c) and crystallization compatibility (larger crystallization and melting areas), which indicated that the cellulose nanowhiskers (CNW) and PEG or CNW alone should not be considered as nucleating agents for the PLA matrix; The CNW was homo-dispersed which contributed to decreasing mobility of polymer chain segments. The compatibility between hydrophobic PLA matrix and the hydrophilic CNW was improved by the addition of different molecular weight polymeric-PEG. The thermo gravimetric analysis indicated that the thermal stability of the different composites were reflected well in the region between 25 °C and 245 oC. The structure of the PLA/CNW/PEG composites was characterized by AFM, which showed that the CNW dispersed in the PLA matrix evenly.  相似文献   

5.
Biodegradable nanocomposites were prepared by mixing a polymer resin and layered silicates by the melt intercalation method. Internal structure of the nanocomposite was characterized by using the small angle X-ray scattering (SAXS) and transmission electron microscope (TEM). Nanocomposites having exfoliated and intercalated structures were obtained by employing two different organically modified nanoclays. Rheological properties in shear and extensional flows and biodegradability of nanocomposites were measured. In shear flow, shear thinning behavior and increased storage modulus were observed as the clay loading increased. In extensional flow, strain hardening behavior was observed in well dispersed system. Nanocomposites with the exfoliated structure had better biodegradability than nanocomposites with the intercalated structure or pure polymer.  相似文献   

6.
This paper focuses on the influence of temperature conditions and the clay contents on enhancement of mechanical characterization of polypropylene (PP) nanocomposites. The nanocomposites were prepared using the melt mixing technique in a co-rotating intermeshing twin screw extruder followed by injection moulding. Nanocomposites properties such as impact strength and ultimate tensile strength, yield strength, failure strain, Young’s modulus and toughness are calculated. The addition of clay to PP matrix was showed remarkable enhancement in mechanical properties at the temperature of 25 oC and 120 °C. Nearly 36 % and 160 % increase in the Young’s modulus and about 45 % and 62 % increase in the impact strength were observed at both room temperature (RT) and high temperature (HT), respectively. But, the tensile strength was not affected much. The basal spacing of clay in the composites was measured by X-ray diffraction (XRD). Scanning electron microscopy (SEM) was used to assess the surface morphology of the fractured surfaces and dispersion of the nanoclay.  相似文献   

7.
In this study, the effect of calcium carbonate (CaCO3) nanoparticles on the barrier properties and biodegradability of polylactic acid (PLA) was investigated. For this purpose, nanocomposite films with various CaCO3 nanoparticle contents (0, 3, 5, 10, and 15 wt%) were prepared by solution casting method. The gas permeability of nitrogen (N2), oxygen (O2), and carbon dioxide (CO2) was evaluated through a constant volume and variable pressure apparatus at different pressures and temperatures. According to results, barrier properties were improved by loading CaCO3 nanoparticles up to 5 wt%, and the gas permeability of CO2, O2, and N2 was decreased from 1.4, 0.31, and 0.07 Barrer to 0.48, 0.095, and 0.019 Barrer, respectively. In addition, it was also observed that the gas permeability of samples was decreased by increasing feeding pressure and increased by enhancing temperature. Furthermore, morphological results confirmed the formation of agglomerations and large clusters over 5 wt% CaCO3 nanoparticles. Finally, the thermal properties and biodegradability of PLA were increased by employing CaCO3 nanoparticles. These results suggested PLA nanocomposites as favorable candidates for food packaging applications.  相似文献   

8.
Thermal properties of copolyetherester/silica nanocomposites were examined by using DSC and TGA. The segmented block copolyetheresters with various hard segment structures and hard segment contents (HSC) were synthesized and their silica nanocomposite films were prepared by solution casting method. The nano-sized fumed silica particles were found to act as a nucleating agent of the copolyetheresters. The nanocomposites always showed reduced degree of supercooling or faster crystallization than the corresponding copolyetheresters. The nanocomposites also showed increased hard segment crystallinity except HSC 35 sample which had short hard segment length. In case of 2GT [poly(ethylene terephthalate)] copolyetheresters, which were not developed commercially because of their low crystallization rate, the hard segment crystallinity increased considerably. The copolyetherester/silica nanocomposites showed better thermal stability than copolyetheresters.  相似文献   

9.
Polystyrene/layered silicate nanocomposites were prepared by melt intercalation. To examine the distribution of the clay in polymer matrix, small angle X-ray scattering (SAXS) and transmission electron microscopy (TEM) were used. Intercalated nanocomposites were obtained and their rheological properties were investigated. Microcellular nanocomposite foams were produced by using a supercritical fluid. As clay contents increased, the cell size decreased and the cell density increased. It was found that layered silicates could operate as heterogeneous nucleation sites. As the saturation pressure increased and the saturation temperature decreased, the cell size decreased and the cell density increased. Microcellular foams have different morphology depending upon the dispersion state of nanoclays.  相似文献   

10.
The aims of this work were to evaluate the contribution of the free fatty acid (FA) pool to triacylglyceride (TAG) biosynthesis and to try to characterize the mechanism by which FA are assimilated into TAG in the green alga Dunaliella tertiolecta. A time-resolved lipidomic analysis showed that nitrogen (N) deprivation induces a redistribution of total lipidome, particularly of free FA and major polar lipid (PL), in parallel to enhanced accumulation of polyunsaturated TAG. The steady-state concentration of the FA pool, measured by prolonged 14C-bicarbonate pre-labeling, showed that N deprivation induced a 50% decrease in total FA level within the first 24 h and up to 85% after 96 h. The abundance of oleic acid increased from 50 to 70% of total free FA while polyunsaturated FA (PUFA) disappeared under N deprivation. The FA flux, measured by the rate of incorporation of 14C-palmitic acid (PlA), suggests partial suppression of phosphatidylcholine (PC) acyl editing and an enhanced turnover of the FA pool and of total digalactosyl-diacylglycerol (DGDG) during N deprivation. Taken together, these results imply that FA biosynthesis is a major rate-controlling stage in TAG biosynthesis in D. tertiolecta and that acyl transfer through PL such as PC and DGDG is the major FA assimilation pathway into TAG in that alga and possibly in other green microalgae. Increasing the availability of FA could lead to enhanced TAG biosynthesis and to improved production of high-value products from microalgae.  相似文献   

11.
12.
Natural rubber and styrene butadiene rubber (NR/SBR) reinforced with both short nylon fibers and nanoclay (Cloisite 15A) nanocomposites were prepared in an internal and a two roll-mill mixer by a three-step mixing process. The effects of fiber loading and different loading of nanoclay (1, 3 and 5 wt. %) were studied on the microstructure and mechanical properties of the nanocomposites. The adhesion between the fiber and the matrix was improved by the addition of a dry bonding system consisting of resorcinol, hexamethylene tetramine and hydrated silica (HRH). This silicate clay layers was used in place of hydrated silica in a HRH bonding system for SBR/NR-short nylon fiber composite. Nanoclay was also used as a reinforcing filler in the matrix-short fiber hybrid composite. The cure and scorch times of the composites decreased while cure rate increased when the short fiber and nanoclay were added. The mechanical properties of the composites showed improvement in both longitudinal and transverse directions with increasing short fiber and nanoclay content. The structure of the nanocomposites was characterized with X-ray diffraction (XRD), scanning electron microscopy (SEM). X-ray diffraction results of nanocomposites indicated that the interlayer distance of silicate layers increased. The mechanical properties of nanocomposites (tensile, hardness and tear strength) are examined and the outcome of these results is discussed in this paper.  相似文献   

13.
Algae from cold water (Canada) and warm water (China) were analysed for the total lipid content, and for their fatty acid (FA) composition and content. The major findings are that fatty acids (FA) from Canadian algae are generally richer in polyunsaturated FA (PUFA), with a higher n–3/n–6 FA ratio, and a higher degree of total unsaturation. The C 18:4 FA (stearidonic acid, morotic acid as synonym) was detected in greater amounts in cold water samples. The high levels of total PUFA, and especially of n–3 FA in Canadian algae, suggests possible utilization for nutritional purposes.  相似文献   

14.
The thermal treatment method was employed to achieve higher homogeneity of calcium ferrite (CaFe2O4) and Poly (vinyl alcohol) (PVA) nanocomposites. The influences of phase transformation on physical and biological properties of calcined specimens were investigated by various experimental techniques including X-ray diffraction (XRD), Transmission Electron Microscopy (TEM), high resolution Field emission scanning electron microscope (FESEM) and Fourier transform infrared spectroscopy (FT-IR). Heat treatment was conducted at temperatures between 723 and 923 K, so that a phase transformation occurred from cubic to orthorhombic spinel structure at 923 K. The chemical analysis of the PVA/CaFe2O4 nanocomposite was performed by energy dispersion X-ray analysis (EDXA), demonstrated the PVA/CaFe2O4 nanocomposites contained the elements of C, Ca, Fe, and O. The formed nanocomposites exhibited ferromagnetic behaviors which were confirmed by using a vibrating sample magnetometer (VSM). The calcined specimens were carried out to an antimicrobial or antifungal test.  相似文献   

15.
Cassava bagasse is an inexpensive and broadly available waste byproduct from cassava starch production. It contains roughly 50% cassava starch along with mostly fiber and could be a valuable feedstock for various bioproducts. Cassava bagasse and cassava starch were used in this study to make fiber-reinforced thermoplastic starch (TPSB and TPSI, respectively). In addition, blends of poly (lactic acid) and TPSI (20%) and TPSB (5, 10, 15, 20%) were prepared as a means of producing low cost composite materials with good performance. The TPS and PLA blends were prepared by extrusion and their morphological, mechanical, spectral, and thermal properties were evaluated. The results showed the feasibility of obtaining thermoplastic starches from cassava bagasse. The presence of fiber in the bagasse acted as reinforcement in the TPS matrix and increased the maximum tensile strength (0.60 MPa) and the tensile modulus (41.6 MPa) compared to cassava starch TPS (0.40 and 2.04 MPa, respectively). As expected, blending TPS with PLA reduced the tensile strength (55.4 MPa) and modulus (2.4 GPa) of neat PLA. At higher TPSB content (20%) the maximum strength (19.9 MPa) and tensile modulus (1.7 GPa) were reduced about 64% and 32%, respectively, compared to the PLA matrix. In comparison, the tensile strength (16.7) and modulus (1.2 GPa) of PLA blends made with TPSI were reduced 70% and 51% respectively. The fiber from the cassava bagasse was considered a filler since no increase in tensile strength of PLA/TPS blends was observed. The TPSI (33.1%) had higher elongation to break compared to both TPSB (4.9%) and PLA (2.6%). The elongation to break increased from 2.6% to 14.5% by blending TPSI with PLA. In contrast, elongation to break decreased slightly by blending TPSB with PLA. Thermal analysis indicated there was some low level of interaction between PLA and TPS. In PLA/TPSB blends, the TPSB increased the crystallinity of the PLA component compared to neat PLA. The fiber component of TPSB appeared to have a nucleating effect favoring PLA crystallization.  相似文献   

16.
Graphene nanoplatelet (GnP) was chemically functionalized by amine groups for improvement of compatibility in poly(methyl methacrylate) (PMMA)/poly(ethylene oxide) (PEO) blend. PMMA/PEO (90/10) nanocomposites with non-functionalized GnP and functionalized GnP (FGnP) were prepared by solution casting method. Successful grafting of amine groups on the GnP surface was confirmed by Fourier transform infrared (FT-IR) and X-ray diffraction (XRD) analysis. The Transmission electron microscopy (TEM) images showed that the dispersion state of FGnP was better than that of GnP in PMMA/PEO nanocomposites. The effects of FGnP and GnP on rheological, thermal and electrical properties of PMMA/PEO nanocomposites were investigated by various methods. The results indicated that the FGnP-based nanocomposites had higher storage modulus, glass transition temperature and thermal stability as compared to the GnP-based nanocomposites. The electrical conductivity of the nanocomposites with FGnP was better than that of GnP-based nanocomposites. The higher conductivity was attributed to homogeneous and well dispersion state of FGnP in PMMA/PEO nanocomposites.  相似文献   

17.
A simple method based on the combination of the intercalation from solution and melt-processing preparation methods was used to prepare highly exfoliated and compatible thermoplastic starch (TPS) and montmorillonite clay (MMT) nanocomposites. The effects of the MMT content on the thermal, structural, and mechanical properties of the nanocomposites were investigated. XRD diffraction was used to investigate the MMT exfoliation/intercalation degrees in the TPS matrix. Data from thermogravimetric analysis and differential scanning calorimetry revealed that the addition of MMT increased the thermal stabilities of TPS nanocomposites. Young's modulus and tensile strength increased from 8.0 to 23.8 MPa and 1.5 to 2.8 MPa with an increasing MMT content from 0 to 5 wt% without diminishing their flexibility. The improvement in such properties can be attributed to the good dispersion/exfoliation of MMT in the TPS matrix. Combining both methods, it was possible to obtain homogenous and transparent nanocomposites with excellent thermal and mechanical properties for application as packaging materials.  相似文献   

18.
Radical melt graft copolymerizations of poly (lactic acid) (PLA) with amide monomers using benzoyl peroxide as an initiator during reactive extrusion is studied. The effects of two monomer types at various concentrations, reaction temperatures and initiator concentrations on the grafting yield are investigated. The results showed that percentage of grafting was significantly enhanced by increasing benzoyl peroxide concentrations up to 12 mpm and then decreased by an increase in the initiator concentration. Furthermore, increasing each monomer concentration up to 450 mpm, improved the grafting yield significantly. Further increase brings about a marked fall in the grafting yield. Fourier Transform Infrared Spectroscopy (FTIR), back titration and nitrogen analyses confirmed that monomers of acrylamide and methacrylamide were successfully grafted onto PLA. The Gel Permeation Chromatography (GPC) data showed that the molecular weight of the grafted PLA samples under optimum conditions does not show any dramatic drop of PLA molecular weight by thermal degradation or hydrolysis of polyester chains, while the polydispersity index is poorly affected by the chemical modification of PLA. Also, the monomer structures affected the grafting yield as well as polymer chain combination. In addition under the same conditions, the grafting yield of acrylamide was more than that of methacrylamide. Thermal properties, molecular weight, density, moisture regain and tensile properties of the samples were also measured.  相似文献   

19.
Numerous efforts to prepare useful graphene-based nanocomposites have been made and important improvements achieved. In our studies, novel structured polyolefin-based thermoplastic elastomer, poly(ethylene-ter-1-hexene-ter-divinylbenzene) (PEHV) was designed and synthesized. And high quality graphene was manufactured via the exfoliation of graphite. PEHV/graphene nanocomposites were fabricated using solution casting method as the amount of graphene added. The morphologies of nanocomposites were observed using scanning electron microscopy. And density, mechanical properties and electrical properties were also measured. Electrical properties and mechanical properties were improved with the increase of graphene added in nanocomposites. It is expected that PEHV/graphene nanocomposites could be applied to lightweight EMI shielding materials.  相似文献   

20.
In this study, Polylactic Acid (PLA) nonwoven fabric and thermoplastic polyurethane (TPU) honeycomb air cushion (TPU-HAC) were employed to form an impact resistant layer for functional knee pads. PLA nonwoven fabric has low manufacture cost and flexibility of the honeycomb air cushion improved the quality of functional knee pad sold in the market. This study focused on the strength of PLA nonwovens and the impact resistance of TPU honeycomb air pads. The PLA fibers and low-melting-point (low-Tm) PLA fibers are used as raw materials to fabricate PLA nonwoven fabric. The PLA fibers and low-melting-point PLA fibers were mixed at weight ratios of 10, 20, 30, 40, and 50 %. PLA nonwoven fabric and TPU-HAC materials were combined in a sandwich structure to protect against impact. Impact resistance was evaluated using a falling-weight impact-resistance machine. Experimental findings indicate that changing various layers can improve the impact resistance of the sandwich structure of the TPU-HAC materials. A TPU-HAC layer with a thickness of 2/8/10 mm optimized the impact resistance. In 25 J falling-weight impact test, the TPU-HAC layer 2/8/10 mm provides an impact resistance of 2932 N; the PLA/TPU-HAC composite had the best impact resistance; 2516 N. PLA nonwoven fabric had the best mechanical properties with low-Tm PLA fibers at 30 % weight. The impact resistance achieved using above combination of materials met the level 2, range 3 impact values mentioned in EN 14120 standards.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号