首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In fragmented landscapes, a species?? dispersal ability and response to habitat condition are key determinants of persistence. To understand the relative importance of dispersal and condition for survival of Nephrurus stellatus (Gekkonidae) in southern Australia, we surveyed 92 woodland remnants three times. This gecko favours early post-fire succession conditions so may be at risk of extinction in the long-unburnt agricultural landscape. Using N-mixture models, we compared the influence of four measures of isolation, patch area and two habitat variables on the abundance and occurrence of N. stellatus, while taking into account detection probability. Patch occupancy was high, despite the long-term absence of fire from most remnants. Distance to the nearest occupied site was the most informative measure of patch isolation, exhibiting a negative relationship with occupancy. Distance to a nearby conservation park had little influence, suggesting that mainland?Cisland metapopulation dynamics are not important. Abundance and occurrence were positively related to ?%-cover of spinifex (Triodia), indicating that niche-related factors may also contribute to spatial dynamics. Patterns of patch occupancy imply that N. stellatus has a sequence of spatial dynamics across an isolation gradient, with patchy populations and source-sink dynamics when patches are within 300?m, metapopulations at intermediate isolation, and declining populations when patches are separated by >1?C2?km. Considering the conservation needs of the community, habitat condition and connectivity may need to be improved before fire can be reintroduced to the landscape. We speculate that fire may interact with habitat degradation and isolation, increasing the risk of local extinctions.  相似文献   

2.
In fragmented landscapes, plant species persistence depends on functional connectivity in terms of pollen flow to maintain genetic diversity within populations, and seed dispersal to re-colonize habitat patches following local extinction. Connectivity in plants is commonly modeled as a function of the physical distance between patches, without testing alternative dispersal vectors. In addition, pre- and post-dispersal processes such as seed production and establishment are likely to affect patch colonization rates. Here, we test alternative models of potential functional connectivity with different assumptions on source patch effects (patch area and species occupancy) and dispersal (relating to distance among patches, matrix composition, and sheep grazing routes) against empirical patch colonization rates at the community level (actual functional connectivity), accounting for post-dispersal effects in terms of structural elements providing regeneration niches for establishment. Our analyses are based on two surveys in 1989 and in 2009 of 48 habitat specialist plants in 62 previously abandoned calcareous grassland patches in the Southern Franconian Alb in Bavaria, Germany. The best connectivity model S i , as identified by multi-model inference, combined distance along sheep grazing routes including consistently and intermittently grazed patches with mean species occupancy in 1989 as a proxy for pre-dispersal effects. Community-level patch colonization rates depended to equal degrees on connectivity and post-dispersal process. Our study highlights that actual functional connectivity of calcareous grassland communities cannot be approximated by structural connectivity based on physical distance alone, and modeling of functional connectivity needs to consider pre- and post-dispersal processes.  相似文献   

3.
Jansson  G.  Angelstam  P. 《Landscape Ecology》1999,14(3):283-290
We assessed the habitat patch occupancy of a deciduous-mixed forest specialist, the long-tailed tit (Aegithalos caudatus), in a 1000 km2 conifer dominated landscape in relation to two landscape parameters, namely proportion and isolation of suitable habitat. Data from five consecutive spring seasons were used and within habitat variation controlled for. The occurrence of long-tailed tits was positively related to the amount of habitat within 1 km2 (p=0.0007) and negatively related to the distance between habitat patches (p<0.0001). When combined, the two variables explained >78% of the variation in local patch occupancy. There were distinct thresholds in these landscape variables for the probability of local long-tailed tit presence. In the model the probability increased from 0.1 to 0.8 when interpatch distance decreased from 500 to 100 m with 5% total habitat coverage. With a total proportion of 15% suitable habitat, the same probability jump occurred when interpatch distance changed from 900 to 500 m. The general importance of defined measurements and quantified threshold levels for species conservation and landscape management is discussed.  相似文献   

4.
Tradable biodiversity credit systems provide flexible means to resolve conflicts between development and conservation land-use options for habitats occupied by threatened or endangered species. We describe an approach to incorporate the influence of habitat fragmentation into the conservation value of tradable credits. Habitat fragmentation decreases gene flow, increases rates of genetic drift and inbreeding, and increases probabilities of patch extinction. Importantly, tradable credit systems will change the level of fragmentation over time for small and/or declining populations. We apply landscape equivalency analysis (LEA), a generalizable, landscape-scale accounting system that assigns conservation value to habitat patches based on patch contributions to abundance and genetic variance at landscape scales. By evaluating habitat trades using two models that vary the relationship between dispersal behaviors and landscape patterns, we show that LEA provides a novel method for limiting access to habitat at the landscape-scale, recognizing that the appropriate amount of migration needed to supplement patch recruitment and to offset drift and inbreeding will vary as landscape pattern changes over time. We also found that decisions based on probabilities of persistence alone would ignore changes in migration, genetic drift, and patch extinction that result from habitat trades. The general principle of LEA is that habitat patches traded should make at least equivalent contributions to rates of recruitment and migration estimated at a landscape scale. Traditional approaches for assessing the “take” and “jeopardy” standards under the Endangered Species Act based on changes in abundance and probability of persistence may be inadequate to prevent trades that increase fragmentation.  相似文献   

5.
The understanding and prediction of the responses of animal populations to habitat fragmentation is a central issue in applied ecology. The identification of habitat variables associated to patch occupancy is particularly important when habitat quality is affected by human activities. Here, we analyze the influence of patch and landscape characteristics on patch occupancy by the subterranean herbivorous rodent Ctenomys porteousi. Patch occupancy was monitored in a network of 63 habitat patches identified by satellite imagery analysis which extends along almost the whole distributional range for C. porteousi. Suitable habitat for the occurrence of C. porteousi is highly fragmented and represents <10% of the total area in its distributional range. The distribution of C. porteousi in the patch network is affected not only by characteristics of the habitat patches, but also by those of the surrounding landscape matrix. Significant differences between occupied and empty patches were found in several environmental variables. Overall, occupied patches were larger, less vegetated, more connected, and had larger neighbor patches than empty patches. A stepwise procedure on a generalized linear model selected four habitat variables that explain patch occupancy in C. porteousi; it included the effects of habitat quality in the matrix surrounding the patch, average vegetation cover in the patch, minimum vegetation cover in the matrix surrounding the patch, and the area of the nearest neighbor patch. These results indicate that patch occupancy in C. porteousi is strongly influenced by the availability and quality of habitat both in the patch and in the surrounding landscape matrix.  相似文献   

6.
Cousins  Sara A.O.  Lavorel  Sandra  Davies  Ian 《Landscape Ecology》2003,18(3):315-332
Semi-natural grasslands in Sweden are threatened by land-use change and lack of management with attendant risk to their biodiversity. We present a model to explore the effects of grazing frequency and intensity on plant species persistence, and the relative effects of grassland size and pattern. We used a landscape modelling platform, LAMOS (LAndscape MOdelling Shell), to design a landscape model of vegetation dynamics incorporating the effects of local succession, dispersal and grazing disturbance. Five plant functional groups (PFG), representing various combinations of persistence and dispersal character, light requirements and disturbance responses, were defined to model species dynamics. Based on old cadastral maps three different landscapes were designed representing specific time-layers, i.e., a historical (17th to 18th century), a pre-modern (1940s) and a present-day landscape. Simulations showed that a threshold was crossed when grasslands decreased in area to about 10–30% of the modelled area, and as a consequence the biomass of grassland-specific PFGs was strongly reduced. These competition sensitive groups did not persist in the model even with intense grazing in the present-day landscape, where grasslands occupy 11% of the total area. However, all grassland species would have been able to persist in the historical landscape, where grasslands occupied 59% of the total area, even without grazing. Our results suggest that continuous but low-intensity grazing is more positive for grassland PFGs than discontinuous but highly intensive grazing. This effect was particularly strong when the frequency and/or intensity of grazing dropped below a threshold of 20%. Simulations using three landscape maps designed to explore effects of further fragmentation and habitat loss showed that the spatial pattern of remaining grasslands is important for the persistence of grassland-specific PFG. The model presented here is an advance towards more realistic grazing models to explore the effects of prescribed grazing and landscape fragmentation on the persistence species or plant functional groups.This revised version was published online in May 2005 with corrections to the Cover Date.  相似文献   

7.
The distribution of plant species in urban vegetation fragments   总被引:21,自引:4,他引:17  
Bastin  Lucy  Thomas  Chris D. 《Landscape Ecology》1999,14(5):493-507
(1) The presence and absence of 22 plant species of various growth forms and habitat associations were analysed in 423 habitat fragments totalling 10.4 km2 in a 268 km2 urban and suburban region, in Birmingham, UK. (2) Multivariate logistic regressions were used to assess the effects of patch geometry and quality on the species distributions. Measures of geometry were area, shape (S-factor), distance from open countryside and various measures of isolation from other patches. Potential habitat for each species was determined quantitatively, and the distribution of each species was considered within a subset of patches containing potentially suitable habitat types. There was found to be a significant positive correlation between the density of patches available to a species and the proportion of these patches which were occupied. (3) Logistic analyses and incidence functions revealed that, for many of the species, occupancy increased with site age, area, habitat number and similarity of adjacent habitats, while increasing distance to the nearest recorded population of the same species decreased the likelihood that a species would be found in a patch. (4) Patterns of occupancy are consistent with increased extinction from small sites, and colonisation of nearby habitats, coupled with an important role for site history. We conclude that spatial dynamics at the scale of the landscape are of importance to the long-term persistence of many plant species in fragmented landscapes, and must be seriously considered in conservation planning and management. These results have direct implications for the siting and connectivity of urban habitat reserves.  相似文献   

8.
Effective conservation management for species that function as metapopulations requires an understanding of population dynamics at the landscape scale. The water vole, Arvicola amphibius, is one such species. Water voles have recently undergone a significant decline in the UK, as a result of habitat loss and predation from the introduced American mink, Neovison vison. Large reed bed and grazing marsh sites can provide refuge habitats for water voles from mink predation, in which case populations within these sites could sustain metapopulations in the surrounding landscape where conditions are less favourable. We carried out a study using a stochastic patch occupancy model to determine the long term viability of water vole metapopulations in the wider landscape around a series of extensive reed bed and grazing marsh sites designated as National Key Sites for water voles. The results of our model simulations show that a large protected core site, or mainland, is essential in maintaining the long term viability of these systems. Our results also show how these metapopulations could be enhanced by increasing patch numbers through habitat creation and/or restoration and suggest what the minimum effective size of created or restored patches should be. The study shows how population modelling can provide insight into some effective practical ways of enhancing the viability of water vole metapopulations at the landscape scale. Furthermore it demonstrates that extensive wetlands are an appropriate focus for water vole conservation measures.  相似文献   

9.
Forest bird species exhibit noticeable seasonal behavioral changes that might lead to contrasting effects of landscape pattern upon species abundance and performance. We assessed if the effect of patch and habitat attributes on the landscape use of thorn-tailed rayaditos (Aphrastura spinicauda), a forest bird in a relict patchy forest in northern Chile, varied temporally in association with changes in the behavior of individuals linked to breeding vs. non-breeding conditions. We also assessed the relationship between nest success and patch and habitat attributes, as nest success might be associated to the density rayaditos during the breeding season. We found that density of rayaditos was affected by patch size and functional connectivity but not by habitat structure and that the magnitude of the effect of patch size was greater during the non-breeding season, thus supporting the existence of a temporally variable effect of landscape pattern. Similarly, the nest success of rayaditos was positively affected by functional connectivity and negatively by structural connectivity. We hypothesize that these results emerged from the interaction among territorial behavior, resource limitation and predation risk. Despite the variable intensity of the effect of patch size upon density, however, this landscape attribute, in addition to connectivity, is essential for the persistence of rayaditos at this relict patchy forest landscapes.  相似文献   

10.
Classical metapopulation models do not account for temporal changes in the suitability of habitat patches. In reality, however, the carrying capacity of most habitat types is not constant in time due to natural succession processes. In this study, we modeled plant metapopulation persistence in a successional landscape with disappearing and emerging habitat patches, based on a realistic dune slack landscape at the Belgian–French coast. We focused on the effects of the variation of different plant traits on metapopulation persistence in this changing landscape. Therefore, we used a stage based stochastic metapopulation model implemented in RAMAS/Metapop, simulating a large variation in plant traits but keeping landscape characteristics such as patch turnover rate and patch lifespan constant. The results confirm the conclusions of earlier modeling work that seed dispersal distance and seed emigration rate both have an important effect on metapopulation persistence. We also found that high population growth rate or high recruitment considerably decreased the extinction risk of the metapopulation. Additionally, a long plant life span had a strong positive effect on metapopulation persistence, irrespective of the plant's dispersal capacity and population growth rate. Plant species that invest in life span require less investment in offspring and dispersal capacity to avoid extinction, even in dynamic landscapes with deterministic changes in habitat quality. Moreover, metapopulations of long-lived plant species were found to be much less sensitive to high levels of environmental stochasticity than short-lived species.  相似文献   

11.
Biodiversity persistence in non-woody tropical farmlands is poorly explored, and multi-species assessments with robust landscape-scale designs are sparse. Modeled species occupancy in agricultural mosaics is affected by multiple factors including survey methods (convenience-based versus systematic), landscape-scale agriculture-related variables, and extent of remnant habitat. Changes in seasonal crops can additionally alter landscape and habitat conditions thereby influencing species occupancy. We investigated how these factors affect modeled occupancy of 56 resident bird species using a landscape-scale multi-season occupancy framework across 24 intensively cultivated and human-dominated districts in Uttar Pradesh state, north India. Convenience-based roadside observations provided considerable differences in occupancy estimates and associations with remnant habitat and intensity of cultivation relative to systematic transect counts, and appeared to bias results to roadside conditions. Modeled occupancy of only open-area species improved with increasing intensity of cultivation, while remnant habitat improved modeled occupancy of scrubland, wetland and woodland species. Strong seasonal differences in occupancy were apparent for most species across all habitat guilds. Further habitat loss will be most detrimental to resident scrubland, wetland and woodland species. Uttar Pradesh’s agricultural landscape has a high conservation value, but will require a landscape-level approach to maintain the observed high species richness. Obtaining ecological information from unexplored landscapes using robust landscape-scale surveys offers substantial advantages to understand factors affecting species occupancy, and is necessary for efficient conservation planning.  相似文献   

12.
Conservationists, managers, and land planners are faced with the difficult task of balancing many issues regarding humans impacts on natural systems. Many of these potential impacts arise from local-scale and landscape-scale changes, but such changes often covary, which makes it difficult to isolate and compare independent effects arising from humans. We partition multi-scale impacts on riparian forest bird distribution in 105 patches along approximately 500 km of the Madison and Missouri Rivers, Montana, USA. To do so, we coupled environmental information from local (within-patch), patch, and landscape scales reflecting potential human impacts from grazing, invasive plant species, habitat loss and fragmentation, and human development with the distribution of 28 terrestrial breeding bird species in 2004 and 2005. Variation partitioning of the influence of different spatial scales suggested that local-scale vegetation gradients explained more unique variation in bird distribution than did information from patch and landscape scales. Partitioning potential human impacts revealed, however, that riparian habitat loss and fragmentation at the patch and landscape scales explained more unique variation than did local disturbances or landscape-scale development (i.e., building density in the surrounding landscape). When distribution was correlated with human disturbance, local-scale disturbance had more consistent impacts than other scales, with species showing consistent negative correlations with grazing but positive correlations with invasives. We conclude that while local vegetation structure best explains bird distribution, managers concerned with ongoing human influences in this system need to focus more on mitigating the effects of large-scale disturbances than on more local land use issues. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

13.
Populations at the periphery of a species’ range often show reduced genetic variability within populations and increased genetic divergence among populations compared to those at the core, but the mechanisms that give rise to this core-periphery pattern in genetic structure can be multifaceted. Peripheral population characteristics may be a product of historical processes, such as founder effects or population expansion, or due to the contemporary influence of landscape context on gene flow. We sampled collared lizards (Crotaphytus collaris) at four locations within the northern Flint Hills of Kansas, which is at the northern periphery of their range, to determine the genetic variability and extent of genetic divergence among populations for ten microsatellite loci (n = 229). We found low genetic variability (average allelic richness = 3.37 ± 0.23 SE; average heterozygosity = 0.54 ± 0.05 SE) and moderate population divergence (average FST = 0.08 ± 0.01 SE) among our sample sites relative to estimates reported in the literature at the core of the species’ range in Texas. We also identified differences in dispersal rates among sampling locations. Gene flow within the Flint Hills was thus greater than for other peripheral populations of collared lizards, such as the Missouri glade system where most of the mesic grasslands have been converted to forest since the last glacial retreat, which appears to have greatly impeded gene flow among populations. Our findings signify the importance of considering landscape context when evaluating core-peripheral trends in genetic diversity and population structure.  相似文献   

14.
Landscape effects mediate breeding bird abundance in midwestern forests   总被引:1,自引:0,他引:1  
We examine the influence of both local habitat and landscape variables on avian species abundance at forested study sites situated within fragmented and contiguous landscapes. The study was conducted over a six year period (1991–1996) at 10 study sites equally divided between the heavily forested Missouri Ozarks and forest fragments in central Missouri. We found greater species richness and diversity in the fragments, but there was a higher percentage of Neotropical migrants in the Ozarks. We found significant differences in the mean number of birds detected between the central Missouri fragments and the unfragmented Ozarks for 15 (63%) of 24 focal species. We used stepwise regression to determine which of 12 local vegetation variables and 4 landscape variables (forest cover, core area, edge density, and mean patch size) accounted for the greatest amount of variation in abundance for 24 bird species. Seven species (29%) were most sensitive to local vegetation variables, while 16 species (67%) responded most strongly to one of four landscape variables. Landscape variables are significant predictors of abundance for many bird species; resource managers should consider multiple measures of landscape sensitivity when making bird population management decisions.Order of first two authors decided by coin toss  相似文献   

15.
Matrix quality affects probability of persistence in habitat patches in landscape simulation models while empirical studies show that both urban and agricultural land uses affect forest birds. However, due to the fact that forest bird abundance and species richness can be strongly influenced by local habitat factors, it is difficult to analyze matrix effects without confounding effects from such factors. Given this, our objectives were to (1) relate human-dominated land uses to forest bird abundance and species richness without confounding effects from other factors; (2) determine the scale at which forest birds respond to the matrix; and (3) identify whether certain bird migratory strategies or habitat associations vary in richness or abundance as a function of urban and agriculture land uses. Birds were surveyed at a single point count site 100 m from the edge of 23 deciduous forest patches near Ottawa, Ontario. Land uses surrounding each patch were measured within increasingly large circles from 200 to 5000 m radius around the bird survey site. Regression results suggest that effects of urban and agricultural land uses on forest birds (1) are not uniformly positive or negative, (2) can occur at different spatial scales, and (3) differentially affect certain groups of species. In general, agriculture appeared to affect species at a broad spatial scale (within 5 km), while urban land use had an impact at both a narrower spatial scale (within 1.8 km) and at the broad scale. Neotropical and short distance migrant birds seemed to be the most sensitive to land use intensification within the matrix. Limiting urban land use within approximately 200–1800 m of forest patches would be beneficial for Neotropical migrant birds, which are species of growing conservation concern in temperate North America.  相似文献   

16.
Fire and grazing are ecological processes that frequently interact to modify landscape patterns of vegetation. There is empirical and theoretical evidence that response of herbivores to heterogeneity is scale-dependent however the relationship between fire and scale of heterogeneity is not well defined. We examined the relationship between fire behavior and spatial scale (i.e., patch grain) of fuel heterogeneity. We created four heterogeneous landscapes modeled after those created by a fire–grazing interaction that differed in grain size of fuel patches. Fire spread was simulated through each model landscape from 80 independent, randomly located ignition points. Burn area, burn shape complexity and the proportion of area burnt by different fire types (headfire, backfire and flankfire) were all affected by the grain of fuel patch. The area fires burned in heterogeneous landscapes interacted with the fuel load present in the patch where ignition occurred. Burn complexity was greater in landscapes with small patch grain than in landscapes with large patch grain. The proportion of each fire type (backfire, flankfire and headfire) was similar among all landscapes regardless of patch grain but the variance of burned area within each of the three fire types differed among treatments of patch grain. Our landscape fire simulation supports the supposition that feedbacks between landscape patterns and ecological processes are scale-dependent, in this case spatial scale of fuel loading altering fire spread through the landscape.  相似文献   

17.
The response of animal communities to habitat quality and fragmentation may vary depending on microhabitat associations of species. For example, sensitivity of species to woody habitat fragmentation should increase with their degree of association with woody plants. We investigated effects of local and landscape factors on spider communities in different microhabitats within Swiss apple orchards. We expected a stronger negative effect of woody habitat fragmentation on spiders inhabiting tree canopies compared to spiders living in the meadow. The 30 orchards that we sampled varied in woody habitat amount and isolation at landscape and patch scales. Local factors included management intensity and plant diversity. Spiders associated with meadow were affected by plant diversity, but not by fragmentation. In contrast, spiders associated with canopies responded to isolation from other woody habitats. Surprisingly, we found both positive and negative effects of habitat isolation on local abundance. This indicates that differences in dispersal and/or biotic interactions shape the specific response to habitat isolation. The relative importance of local and landscape factors was in accordance with the microhabitat of the spiders. Thus, considering microhabitat associations can be important for identifying processes that would be overlooked if sampling were pooled for the whole habitat.  相似文献   

18.

Context

Species site-occupancy patterns may be influenced by habitat variables at both local and landscape scales. Although local habitat variables influence whether the site is suitable for a given species, the broader landscape context can also influence site occupancy, particularly for species that are sensitive to land-use change.

Objectives

To examine the relative importance of local versus landscape variables in explaining site occupancy of eight bat species within the Brazilian Cerrado, a Neotropical savanna that is experiencing widespread habitat loss and fragmentation.

Methods

Bats were surveyed within 16 forest patches over two years. We used a multi-model information-theoretic approach, adjusted for species detection bias, to assess whether landscape variables (percent cover and number of patches of natural vegetation within a 2- and 8-km radius of each forest site) or local site variables (canopy cover, understory height, number of trees, and number of lianas) best explained site occupancy in each species.

Results

Landscape variables were among the best models (ΔAICc or ΔQAICc < 2) for four species (top-ranked model for black myotis), whereas local variables were among the best for five species (top-ranked model for vampire bats). Neither local nor landscape variables explained site occupancy in two frugivorous species.

Conclusion

Species associated with a particular habitat type will not respond similarly to the amount, distribution or relative suitability of that habitat, or even at the same scale. This reinforces the challenge of species distribution modelling, especially in the context of forecasting species’ responses to future land-use or climate-change scenarios.
  相似文献   

19.

Context

Multiple ecological drivers generate spatial patterns in species’ distributions. Changes to natural disturbance regimes can place early successional habitat specialists at an increased risk of extinction by altering landscape patterns of habitat suitability.

Objectives

We developed a series of hypotheses to evaluate the effects of landscape structure, fire history, and site-level habitat quality on site occupancy by an early successional specialist, the eastern chestnut mouse (Pseudomys gracilicaudatus).

Methods

We obtained eight years of monitoring data from 26 sites in recently burned heathland in southeast Australia. We used generalised linear models to determine which explanatory variables were related to occupancy. We also explored predictability in patterns of small mammal species co-occurrence.

Results

Landscape structure (patch area, landscape heterogeneity) was strongly related to site occupancy. Site occupancy was associated with dead shrubs in the understory and rock cover on ground layer, but was not directly influenced by recent or historical fire. Contrary to contemporary ecological theory, we found no predictable species associations in our early successional community.

Conclusions

We recommend surveys take account of landscape configuration and proximity to suitable habitat for optimal results. Fire regimes expected to promote eastern chestnut mouse population growth should encourage the retention of critical habitat features rather than be based on temporal rates of successional stages. For management to adequately account for post-disturbance patterns in early successional communities, a species-by-species, multi-scaled approach to research is necessary.
  相似文献   

20.

Context

Beyond the recognized importance of protecting large areas of contiguous habitat, conservation efforts for many species are complicated by the fact that patch suitability may also be affected by characteristics of the landscape within which the patch is located. Currently, little is known about the spatial scales at which species respond to different aspects of the landscape surrounding an occupied patch.

Objectives

Using grassland bird point count data, we describe an approach to evaluating scale-specific effects of landscape composition on patch occupancy.

Methods

We used data from 793 point count surveys conducted in idle and grazed grasslands across Wisconsin, USA from 2012 to 2014 to evaluate scale-dependencies in the response of grassland birds to landscape composition. Patch occupancy models were used to evaluate the relationship between occupancy and landscape composition at scales from 100 to 3000 m.

Results

Bobolink (Dolichonyx oryzivorus) exhibited a pattern indicating selection for grassland habitats in the surrounding landscape at all spatial scales while selecting against other habitats. Eastern Meadowlark (Sturnella magna) displayed evidence of scale sensitivity for all habitat types. Grasshopper Sparrow (Ammodramus savannarum) showed a strong positive response to pasture and idle grass at all scales and negatively to cropland at large scales. Unlike other species, patch occupancy by Henslow’s Sparrow (A. henslowii) was primarily influenced by patch area.

Conclusions

Our results suggest that both working grasslands (pasture) and idle conservation grasslands can play an important role in grassland bird conservation but also highlight the importance of considering species-specific patch and landscape characteristics for effective conservation.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号