首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Soil CO2 production seasonality at a number of depths was investigated in a temperate forest in Japan and in a tropical montane forest in Thailand. The CO2 production rates were evaluated by examining differences in the estimated soil CO2 flux at adjacent depths. The temperate forest had clear temperature seasonality and only slight rainfall seasonality, whereas the tropical montane forest showed clear rainfall seasonality and only slight temperature seasonality. In the temperate forest, the pattern of seasonal variation in soil respiration was similar at all depths, except the deepest (0.65 m–), and respiration was greater in summer and less in winter. The contribution of the shallowest depth (around 0.1 m) was more than 50% of total soil-surface CO2 flux all year round, and the annual mean contribution was about 75%. CO2 production mostly appeared to increase with temperature in shallower layers. In contrast, in the tropical forest, soil CO2 production seasonality appeared to differ with depth. The CO2 production rate in the shallowest layer was high during the rainy season and low during the dry season. Soil CO2 production at greater depths (0.4 and 0.5 m–) showed the opposite seasonality to that in the shallower layer (around 0.1 m). As a result, the contribution from the shallow depth was greatest in the tropical forest during the rainy season (more than 90%), whereas it decreased during the dry season (about 50%). CO2 production appeared to be controlled by soil water at all depths, and the different ranges of water saturation seemed to cause the difference in seasonality at each depth. Our results suggest the importance of considering the vertical distribution of soil processes, particularly in areas where soil water is a dominant controller of soil respiration.  相似文献   

2.
Tropical forests, like boreal forests, are considered key ecosystems with regard to climate change. The temperature sensitivity of soil CO2 production in tropical forests is unclear, especially in eastern Asia, because of a lack of data. The year-round variation in temperature is very small in tropical forests such that it is difficult to evaluate the temperature sensitivity of soil CO2 production using field observations, unlike the conditions that occur in temperate and boreal forests. This study examined the temperature sensitivity of soil CO2 production in the tropical hill evergreen forest that covers northern Thailand, Laos, and Myanmar; this forest has small temperature seasonality. Using an undisturbed soil sample (0.2 m diameter, 0.4 m long), CO2 production rates were measured at three different temperatures. The CO2 production (SR, mg CO2 m−2 s−1) increased exponentially with temperature (T, °C); the fitted curve was SR = 0.023 e0.077T, with Q10 = 2.2. Although still limited, our result supports the possibility that even a small increase in the temperature of this region might accelerate carbon release because of the exponential sensitivity and high average temperature.  相似文献   

3.
The impacts of elevated atmospheric CO2 concentrations (500 μmol·mol−1 and 700 μmol·mol−1) on total soil respiration and the contribution of root respiration ofPinus koraiensis seedlings were investigated from May to October in 2003 at the Research Station of Changbai Mountain Forest Ecosystems, Chinese Academy of Sciences, Jilin Province, China. After four growing seasons in top-open chambers exposed to elevated CO2, the total soil respiration and roots respiration ofPinus koraiensis seedlings were measured by a Li-6400-09 soil CO2 flux chamber. Three PVC cylinders in each chamber were inserted about 30 cm into the soil instantaneously to terminate the supply of current photosynthates from the tree canopy to roots for separating the root respiration from total soil respiration. Soil respirations both inside and outside of the cylinders were measured on June 16, August 20 and October 8, respectively. The results indicated that: there was a marked diurnal change in air temperature and soil temperature at depth of 5 cm on June 16, the maximum of soil temperature at depth of 5 cm lagged behind that of air temperature, no differences in temperature between treatments were found (P>0.05). The total soil respiration and soil respiration with roots severed showed strong diurnal and seasonal patterns. There was marked difference in total soil respiration and soil respiration with roots severed between treatments (P<0.01); Mean total soil respiration and contribution of root under different treatments were 3.26, 4.78 and 1.47 μmol·m−2·s−1, 11.5%, 43.1% and 27.9% on June 16, August 20 and October 8, respectively. Foundation item: This study was supported by the Knowledge Innovation Project of the Chinese Academy of Sciences (KZCX1-SW-01) and the National Natural Science Foundation of China (30070158). Biography: LIU Ying (1976-), female, Ph. D. Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, P. R. China. Responsible editor: Song Funan  相似文献   

4.
A study was conducted to determine the effects of elevated CO2 on soil N process at Changbai Mountain in Jilin Province, northeastern China (42°24′N, 128°06′E, and 738 m elevation). A randomized complete block design of ambient and elevated CO2 was established in an open-top chamber facility in the spring of 1999. Changpai Scotch pine (Pinus sylvestris var. sylvestriformis seeds were sowed in May, 1999 and CO2 fumigation treatments began after seeds germination. In each year, the exposure started at the end of April and stopped at the end of October. Soil samples were collected in June and August 2006 and in June 2007, and soil nitrifying, denitrifying and N2-fixing enzyme activities were measured. Results show that soil nitrifying enzyme activities (NEA) in the 5–10 cm soil layer were significantly increased at elevated CO2 by 30.3% in June 2006, by 30.9% in August 2006 and by 11.3% in June 2007. Soil denitrifying enzyme activities (DEA) were significantly decreased by elevated CO2 treatment in June 2006 (P < 0.012) and August 2006 (P < 0.005) samplings in our study; no significant difference was detected in June 2007, and no significant changes in N2-fixing enzyme activity were found. This study suggests that elevated CO2 can alter soil nitrifying enzyme and denitrifying enzyme activities. Foundation project: This research was supported by the National Natural Science Foundation of China (No. 90411020) and Major State Basic Research Development Program of China (973 Program) (2002CB412502).  相似文献   

5.
Land management practices that simultaneously improve soil properties are crucial to high crop production and minimize detrimental impact on the environment. We examined the effects of crop residues on crop performance, the fluxes of soil N2O and CO2 under wheat-maize (WM) and/or faba bean-maize (FM) rotations in Amorpha fruticosa (A) and Vetiveria zizanioides (V) intercropping systems on a loamy clay soil, in subtropical China. Crop performance, soil N2O and CO2 as well as some potential factors such as soil water content, soil carbon, soil nitrogen, microbial biomass and N mineralization were recorded during 2006 maize crop cultivation. Soil N2O and CO2 fluxes are determined using a closed-based chamber. Maize yield was greater after faba bean than after wheat may be due to differences in supply of N from residues. The presence of hedgerow significantly improved maize grain yields. N2O emissions from soils with maize were considerably greater after faba bean (345 g N2O–N ha−1) than after wheat (289 g N2O–N ha−1). However, the cumulated N2O emissions did not differ significantly between WM and FM. The difference in N2O emissions between WM and FM was mostly due to the amounts of crop residues. Hedgerow alley cropping tended to emit more N2O than WM and FM, in particular A. fruticosa intercropping systems. Over the entire 118 days of measurement, the N2O fluxes represented 534 g N2O–N ha−1 (AWM) and 512 g N2O–N ha−1 (AFM) under A. fruticosa species, 403 g N2O–N ha−1 (VWM) and 423 g N2O–N ha−1 (VFM) under Vetiver grass. We observed significantly higher CO2 emission in AFM (5,335 kg CO2–C ha−1) from June to October, whereas no significant difference was observed among WM (3,480 kg CO2–C ha−1), FM (3,302 kg CO2–C ha−1), AWM (3,877 kg CO2–C ha−1), VWM (3,124 kg CO2–C ha−1) and VFM (3,309 kg CO2–C ha−1), indicating the importance of A. fruticosa along with faba bean residue on CO2 fluxes. As a result, crop residues and land conversion from agricultural to agroforestry can, in turn, influence microbial biomass, N mineralization, soil C and N content, which can further alter the magnitude of crop growth, soil N2O and CO2 emissions in the present environmental conditions.  相似文献   

6.
Soil CO2 levels reflect CO2 production and transport in soil and provide valuable information about soil CO2 dynamics. However, extracting information from soil CO2 profiles is often difficult because of the complexity of these profiles. In this study, we constructed a simple numerical model that simulated soil CO2 dynamics and performed sensitivity analyses for CO2 production rates, soil water content and temperature, and gas diffusivity at the soil surface to clarify the relationships among these parameters. Increased soil surface CO2 flux did not always coincide with higher soil CO2 concentrations; increased CO2 production at shallow depths had little effect on soil CO2 concentrations, while the opposite may be true for high levels of soil water content. Higher soil CO2 concentration did not always coincide with greater soil surface CO2 flux; under high soil water conditions, soil surface CO2 flux sometimes decreased despite increased soil CO2 concentration. Increases in soil water content did not always enhance both soil surface CO2 flux and soil CO2 concentration. Under high soil water conditions, increases in soil water content could lower soil surface CO2 flux and increase soil CO2 concentration. Increases in soil temperature resulted in greater soil surface CO2 flux and higher soil CO2 concentration in our simulation (extremely high temperatures were not assumed in this study). Gas diffusivity in very shallow layers did affect, albeit weakly, soil CO2 concentration. The findings of this study may help direct future observations and aid in the interpretation of their results.  相似文献   

7.
从1999年到2006年在中科院长白山森林生态系统定位站(42°24'N,128°28'E,海拔738m)对长期高浓度CO2熏蒸对土壤酶活性的影响进行了研究.采用开顶箱(OTC)的方式对红松和长白松进行高浓度CO2处理, CO2浓度分别受控于高浓度CO2箱(500 μmol·mol^-1)、对照箱(370 μmol·mol^-1))和裸地(370 μmol·mol^-1).经高浓度CO2(500 μmol·mol^-1)熏蒸8年后,土壤样品分别在2006年春季、夏季和秋季进行采集和分析.结果表明:在高CO2浓度(500 μmol mol^-1)条件下,转化酶活性除了红松夏季样品之外都是显著降低的;而脱氢酶活性却是增加的,但只有部分结果显著;长白松的多酚氧化酶活性都显著降低;过氧化氢酶活性在春季增加,而在其他季节均降低.总而言之,在高CO2浓度条件下,土壤酶的活性与树种有关.  相似文献   

8.
Saplings of Fagus sylvatica and Picea abies were grown under conditions of intra and interspecific competition in a 2-year phytotron study under combinations of ambient and elevated ozone (+O3 which is 2 × O3, but <150 nl l−1) as well as carbon dioxide concentrations (+CO2 which is amb. CO2 + 300 μl CO2 l−1) in a full factorial design. Saplings were analysed for various mineral nutrients in different plant organs as well as biomass production and crown development. The study was based on the assumption that nutritional parameters important for growth and competitiveness are affected by stress defence under limiting nutrient supply. The hypotheses tested were (1) that nutrient uptake-related parameters (a) as well as efficiencies in nutrient use for above-ground competition (b) of beech rather than spruce are impaired by the exposure to elevated O3 concentrations, (2) that the efficiency in nutrient uptake of spruce is enhanced by elevated CO2 concentrations in mixed culture, and (3) that the ability to occupy above-ground space at low nutrient cost is co-determinant for the competitive success in mixed culture. Clear nitrogen deficiencies were indicated for both species during the 2-year phytotron study, although foliar nitrogen-biomass relationships were not so close for spruce than for beech. O3 stress did not impair nutrient uptake-related parameters of beech; thus hypothesis (1a). was not supported. A negative effect of elevated O3 (under amb. CO2) on the N and P based efficiencies in above-ground space occupation (i.e. lower crown volume per unit of N or P invested in stems, limbs and foliage) of beech supported hypothesis (1b). It appeared that ozone stress triggered a nutrient demand for stress defence and tolerance at the expense of above-ground competition (trade-off). Crown volume of beech under O3 stress was stabilized in monoculture by increased nutrient uptake. In general, the +CO2-treatment was able to counteract the impacts of 2 × O3. Elevated CO2 caused lower N and S concentrations in current-year foliage of both tree species, slightly higher macronutrient amounts in the root biomass of spruce, but did not increase the efficiencies in nutrient uptake of spruce in mixed culture. Therefore hypothesis (2) was not supported. At the end of the experiment spruce turned out to be the stronger competitor in mixed culture as displayed by its higher total shoot biomass and crown volume. The amounts of macronutrients in the above-ground biomass of spruce individuals in mixed culture distinctly exceeded those of beech, which had been strongly reduced by interspecific competition. The superior competitiveness of spruce was related to higher N and P-based efficiencies in above-ground space occupation as suggested in hypothesis (3). This article belongs to the special issue “Growth and defence of Norway spruce and European beech in pure and mixed stands”.  相似文献   

9.
Variability of soil CO2 efflux strongly depends on soil temperature, soil moisture and plant phenology. Separating the effects of these factors is critical to understand the belowground carbon dynamics of forest ecosystem. In Ethiopia with its unreliable seasonal rainfall, variability of soil CO2 efflux may be particularly associated with seasonal variation. In this study, soil respiration was measured in nine plots under the canopies of three indigenous trees (Croton macrostachys, Podocarpus falcatus and Prunus africana) growing in an Afromontane forest of south-eastern Ethiopia. Our objectives were to investigate seasonal and diurnal variation in soil CO2 flux rate as a function of soil temperature and soil moisture, and to investigate the impact of tree species composition on soil respiration. Results showed that soil respiration displayed strong seasonal patterns, being lower during dry periods and higher during wet periods. The dependence of soil respiration on soil moisture under the three tree species explained about 50% of the seasonal variability. The relation followed a Gaussian function, and indicated a decrease in soil respiration at soil volumetric water contents exceeding a threshold of about 30%. Under more moist conditions soil respiration is tentatively limited by low oxygen supply. On a diurnal basis temperature dependency was observed, but not during dry periods when plant and soil microbial activities were restrained by moisture deficiency. Tree species influenced soil respiration, and there was a significant interaction effect of tree species and soil moisture on soil CO2 efflux variability. During wet (and cloudy) period, when shade tolerant late successional P. falcatus is having a physiological advantage, soil respiration under this tree species exceeded that under the other two species. In contrast, soil CO2 efflux rates under light demanding pioneer C. macrostachys appeared to be least sensitive to dry (but sunny) conditions. This is probably related to the relatively higher carbon assimilation rates and associated root respiration. We conclude that besides the anticipated changes in precipitation pattern in Ethiopia any anthropogenic disturbance fostering the pioneer species may alter the future ecosystem carbon balance by its impact on soil respiration.  相似文献   

10.
The two main components of soil respiration, i.e., root/rhizosphere and microbial respiration, respond differently to elevated atmospheric CO2 concentrations both in mechanism and sensitivity because they have different substrates derived from plant and soil organic matter, respectively. To model the carbon cycle and predict the carbon source/sink of forest ecosystems, we must first understand the relative contributions of root/rhizosphere and microbial respiration to total soil respiration under elevated CO2 concentrations. Root/rhizosphere and soil microbial respiration have been shown to increase, decrease and remain unchanged under elevated CO2 concentrations. A significantly positive relationship between root biomass and root/rhizosphere respiration has been found. Fine roots respond more strongly to elevated CO2 concentrations than coarse roots. Evidence suggests that soil microbial respiration is highly variable and uncertain under elevated CO2 concentrations. Microbial biomass and activity are related or unrelated to rates of microbial respiration. Because substrate availability drives microbial metabolism in soils, it is likely that much of the variability in microbial respiration results from differences in the response of root growth to elevated CO2 concentrations and subsequent changes in substrate production. Biotic and abiotic factors affecting soil respiration were found to affect both root/rhizosphere and microbial respiration. __________ Translated from Journal of Plant Ecology, 2007, 31(3): 386–393 [译自: 植物生态学报]  相似文献   

11.
3年生白桦同时接受3种外源糖溶液(蔗糖、果糖、葡萄糖)和3种高浓度CO2(700、1400、2100μL·μL-1CO2)处理.处理1个月后,测定了叶片的总糖、蔗糖、果糖和蛋白质含量.结果表明:在700μL·L-1和1400μL·L-1 CO2下,外源糖溶液增加了叶片的可溶性糖和蛋白质含量,其中外源蔗糖的效果最好:外源糖溶液与2100μL·L-1CO2结合,会抑制叶片积累总糖和蛋白质:在700μL·L-1和1400μL·L-1CO2下,喷施葡萄糖、果糖的叶片在蛋白质含量上没有明显差别:同700、1400μL·L-1CO2相比,除喷施果糖植株外,2100μL·L-1 CO2明显增加了叶片的总糖、蔗糖、果糖和蛋白质含量:在喷施同种外源糖溶液的情况下,叶片的糖含量与CO2浓度呈正相关性.图6参7.  相似文献   

12.
Because soil CO2 efflux or soil respiration (RS) is the major component of forest carbon fluxes, the effects of forest management on RS and microbial biomass carbon (C), microbial respiration (RH), microbial activity and fine root biomass were studied over two years in a loblolly pine (Pinus taeda L.) plantation located near Aiken, SC. Stands were six-years-old at the beginning of the study and were subjected to irrigation (no irrigation versus irrigation) and fertilization (no fertilization versus fertilization) treatments since planting. Soil respiration ranged from 2 to 6 μmol m−2 s−1 and was strongly and linearly related to soil temperature. Soil moisture and C inputs to the soil (coarse woody debris and litter mass) which may influence RH were significantly but only weakly related to RS. No interaction effects between irrigation and fertilization were observed for RS and microbial variables. Irrigation increased RS, fine root mass and microbial biomass C. In contrast, fertilization increased RH, microbial biomass C and microbial activity but reduced fine root biomass and had no influence on RS. Predicted annual soil C efflux ranged from 8.8 to 10.7 Mg C ha−1 year−1 and was lower than net primary productivity (NPP) in all stands except the non-fertilized treatment. The influence of forest management on RS was small or insignificant relative to biomass accumulation suggesting that NPP controls the transition between a carbon source and sink in rapidly growing pine systems.  相似文献   

13.
The soil CO2 evolution rate was measured in a virgin Korean pine forest. The results in June showed that the lowest value of evolution rate was 220 mg/(m2·h) and appeared at 6:00 a.m. The highest value was 460 mg/(m2·h) at 18:00. The rates of CO2 evolution were related with soil temperature. On the basis of the constructed regression equation and the monthly average values of temperature, the magnitude of CO2 evolution from Korean pine forest soil was 10.4 t/hm2 during a growing season. This project was funded by the Opened Research Station of Changbai Mountain Forest Ecosystem, Chinese Academy of Sciences. Responsible editor: Zhu Hong  相似文献   

14.
Forest soil is a huge reserve of carbon in the biosphere. Therefore to understand the carbon cycle in forest ecosystems, it is important to determine the dynamics of soil CO2 efflux. This study was conducted to describe temporal variations in soil CO2 efflux and identify the environmental factors that affect it. We measured soil CO2 efflux continuously in a beech secondary forest in the Appi Highlands in Iwate Prefecture for two years (except when there was snow cover) using four dynamic closed chambers that automatically open after taking measurements. Temporal changes in soil temperature and volumetric soil water content were also measured at a depth of 5 cm. The soil CO2 efflux ranged from 14 mg CO2 m−2 h−1 to 2,329 mg CO2 m−2 h−1, the peak occurring at the beginning of August. The relationship between soil temperature and soil CO2 efflux was well represented by an exponential function. Most of temporal variation in soil CO2 efflux was explained by soil temperature rather than volumetric soil water content. The Q 10 values were 3.7 ± 0.8 and estimated annual carbon emissions were 837 ± 210 g C m−2 year−1. These results provide a foundation for further development of models for prediction of soil CO2 efflux driven by environmental factors.  相似文献   

15.
土壤温度和水分对长白山3种温带森林土壤呼吸的影响   总被引:7,自引:0,他引:7  
为了研究土壤温度和土壤含水量对阔叶红松林(山地暗棕壤)、云冷杉暗针叶林(山地棕针叶林土壤)和岳桦林(生草森林土)的土壤呼吸的影响,于2001年9月在长白山进行了土壤实验。利用增加土壤样柱的含水量,将土壤含水量分为9%,、21%、30%、37%和43%5个等级,土壤样品分别在0、5、15、25和35的温度下保持24小时。阔叶红松林土壤在0~35范围内,土壤呼吸速率与温度呈正相关。在一定的含水量范围内(21%~37%),土壤呼吸随含水量的增加而升高,当含水量超出该范围,土壤呼吸速率则随含水量的变化而降低。土壤温度和水分对土壤呼吸作用存在明显的交互作用。不同森林类型土壤呼吸作用强弱存在显著差异,大小顺序为阔叶红松林>岳桦林>云冷杉暗针叶林.红松阔叶林土壤呼吸作用的最佳条件是土壤温度35,含水量37%;云冷杉暗针叶林下的山地棕色针叶土壤呼吸作用的最佳条件是25,21%;岳桦林土壤呼吸作用的最佳条件是35,含水量37%。但是,由于长白山阔叶红松林,云冷杉林和岳桦林处在不同的海拔带上,同期不同森林类型土壤温度各不相同,相差4~5,所以野外所测的同期的山地棕色针叶林土呼吸速率应低于暗棕色森林土呼吸速率,山地生草森林土呼吸速率应高于山地棕色针叶林土的呼吸速率。图2表1参25。  相似文献   

16.
Measurement of soil CO2 concentrations is important for investigating the dynamics and diffusion of CO2 in soil. In this study, we developed a small CO2 analyzer for measuring in situ-soil CO2 concentrations. The CO2 analyzer consists of a module containing an infrared CO2 gas sensor, a temperature sensor, and a relative humidity sensor. These sensors are installed in a protective box with an air vent, which is suitable for burying in the soil. The output response time of the CO2 analyzer was 349 s, as evaluated from the phase lag after input of known CO2 concentrations. This response time is short enough to measure soil CO2 concentrations, because variations in concentration are slower than the response time of the analyzer. In a field test, we used the CO2 analyzer to measure soil CO2 concentrations at five depths (0–50 cm) over 2.5 months. While the CO2 concentration generally increased with depth, the amplitude of the variation in CO2 concentration decreased with depth. The phase lag of the variations in soil CO2 concentration also increased with depth, as did soil temperature. The tests confirm that the CO2 analyzer is applicable to continuous monitoring of soil CO2 concentrations.  相似文献   

17.
温度对杉木林土壤呼吸的影响(英文)   总被引:2,自引:0,他引:2  
Soil samples collected from the surface soil (0(10 cm) in an 88-year-old Chinese fir (Cunninghamia lanceolata) forest in Nanping, Fujian, China were incubated for 90 days at the temperatures of 15°C, 25°C and 35°C in laboratory. The soil CO2 evolution rates were measured at the incubation time of 2, 5, 10, 15, 20, 25, 30, 35, 40, 50, 60, 70, 80 and 90 days. The results showed that CO2 evolution rates of soil samples varied significantly with incubation time and temperature during the incubation period. Mean CO2 evolution rate and cumulative amount of CO2 evolution from soil were highest at 35°C, followed by those at 25°C, and 15°C. Substantial differences in CO2 evolution rate were found in Q10 values calculated for the 2nd and 90th day of incubation. The Q10 value for the average CO2 evolution rate was 2.0 at the temperature range of 15-25°C, but it decreased to 1.2 at 25- 35°C. Soil CO2 evolution rates decreased with the incubation time. The cumulative mineralized C at the end of incubation period (on the 90th day) was less than 10% of the initial C amounts prior to incubation.  相似文献   

18.
After a wildfire, the management of burnt wood may determine microclimatic conditions and microbiological activity with the potential to affect soil respiration. To experimentally analyze the effect on soil respiration, we manipulated a recently burned pine forest in a Mediterranean mountain (Sierra Nevada National and Natural Park, SE Spain). Three representative treatments of post-fire burnt wood management were established at two elevations: (1) “salvage logging” (SL), where all trees were cut, trunks removed, and branches chipped; (2) “non-intervention” (NI), leaving all burnt trees standing; and (3) “cut plus lopping” (CL), a treatment where burnt trees were felled, with the main branches lopped off, but left in situ partially covering the ground surface. Seasonal measurements were carried out over the course of two years. In addition, we performed continuous diurnal campaigns and an irrigation experiment to ascertain the roles of soil temperature and moisture in determining CO2 fluxes across treatments. Soil CO2 fluxes were highest in CL (average of 3.34 ± 0.19 μmol m−2 s−1) and the lowest in SL (2.21 ± 0.11 μmol m−2 s−1). Across seasons, basal values were registered during summer (average of 1.46 ± 0.04 μmol m−2 s−1), but increased during the humid seasons (up to 10.07 ± 1.08 μmol m−2 s−1 in spring in CL). Seasonal and treatment patterns were consistent at the two elevations (1477 and 2317 m a.s.l.), although respiration was half as high at the higher altitude.Respiration was mainly controlled by soil moisture. Watering during the summer drought boosted CO2 effluxes (up to 37 ± 6 μmol m−2 s−1 just after water addition), which then decreased to basal values as the soil dried. About 64% of CO2 emissions during the first 24 h could be attributed to the degasification of soil pores, with the rest likely related to biological processes. The patterns of CO2 effluxes under experimental watering were similar to the seasonal tendencies, with the highest pulse in CL. Temperature, however, had a weak effect on soil respiration, with Q10 values of ca. 1 across seasons and soil moisture conditions. These results represent a first step towards illustrating the effects of post-fire burnt wood management on soil respiration, and eventually carbon sequestration.  相似文献   

19.
Q10 is the most important index of soil respiration, and is essential for accurate prediction of soil carbon response to global warming. The response of soil carbon storage is an issue on global and regional scales. In this study, published Q10 values of soil respiration in Japanese forests were examined (n = 44). The Q10 values ranged from 1.30 to 3.45, and the mean value was 2.18 (SD = 0.61, median = 2.02). These results were slightly lower than those of global compilations. The number of studies of Q10 values is still lacking, especially with regard to those in managed forests, those in northeast Japan, and those using modern measurement techniques such as infrared gas analysis. For accurate prediction of soil carbon dynamics and storage in Japanese forests, more such studies are required.  相似文献   

20.
CO2 concentrations in different plant communities (larch, birch, lilac, and grassland) were measured during the growing season in the Heilongjiang Forest Botanical Garden to study diurnal variation, seasonal and annual dynamics and factors that impact CO2 concentration in different spaces. CO2 concentration in different communities in green lands had an obvious diurnal variation, chronically decreasing, and temperature influenced the lilac area and the grassland. Seasonally, CO2 was lowest in the larch green land (344.03 ± 23.03 μmol/mol) and highest in the grassland (360.13 ± 22.43 μmol/mol). The overall trend in CO2 concentration was autumn > spring > summer; temperature is the main factor controlling variation in CO2 concentrations during the growing season; the CO2 concentration at the larch, birch, lilac, and grassland types of sites was negatively correlated with land surface temperature and air temperature, and the CO2 concentration at the larch and birch sites was positively correlated with atmospheric pressure. Without any obvious annual change law, further study and observation are needed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号