首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The origin of carbonate accumulations in termite mounds is a controversial issue. This study is an attempt to elucidate the processes of carbonate precipitation in Macrotermes mounds built on Ferralsols in Upper Katanga, D.R. Congo, whereby a differentiation between pedogenic and inherited carbonates is considered. Carbonate features were investigated for a 9 m deep termite-mound profile, and for an 18 m wide cross-section through a termite mound and the adjacent soil, using field and laboratory techniques. Field evidence for a pedogenic origin includes morphological type (soft powdery materials, nodules, and coatings on ped surfaces) and distribution patterns of the carbonates. Thin-section studies reveal that the carbonates occur predominantly as impregnative orthic nodules and less commonly as coatings, both clearly pedogenic; calcareous pellets are interpreted as locally reworked pedogenic carbonates. X-ray diffraction (XRD), scanning electron microscopy/energy dispersive X-ray spectrometry (SEM-EDS) and stable isotope (δ13C) analyses show that all isolated carbonate features consist of high-Mg calcite (4.9-12.3 mol% MgCO3) with δ13C signatures ranging from − 13.2‰ to − 11.5‰. Weddellite (CaC2O4. 2H2O) is identified in a thin-section and by XRD analysis, and appears to be locally transformed into calcite. The stable isotope composition of carbon suggests that calcite precipitated in equilibrium with soil CO2 generated during decomposition of soil organic matter, and locally most likely during oxidation of oxalate. This study proves that carbonates which accumulated in Macrotermes mounds are pedogenic precipitates, whose deposition is partly related to microbial decay of organic matter, subsequently redistributed to some extent by abiotic dissolution-reprecipitation and termite activity.  相似文献   

2.
An X-ray diffraction method using CaF2 as internal standard was applied to the carbonate-rich soils of the ukurova and Göksu plains in Southern Turkey. Soil samples, freed from carbonates, were used as matrices and a separate calibration curve was prepared by known carbonate additions for each soil series. Statistical tests showed that one calibration curve was sufficient to determine calcite and dolomite contents of seven soil series. Particle orientation was an important factor for accurate analyses and a test, using the known addition method, should be carried out before using a matrix material other than carbonate-free soils.  相似文献   

3.
Comprehensive studies of ash material from buried archaeological objects of different ages and from incinerated modern plants suggest that carbonates are produced in the course of the organic matter incineration. Highly soluble potassium carbonate (K2CO3, potash) is formed together with difficulty soluble calcium carbonate (CaCO3, calcite), and, as a rule, the content of the latter in the ash is higher than the content of potash. It is important that calcium carbonate can be preserved in the buried state for a long time. The pyrogenic formation of carbonates is a phenomenon that is not taken into account by researchers studying natural and anthropogenic soils. It is particularly important for buried soils and habitation deposits, as it leads to their alkalization and to the accumulation of secondary carbonates in the layers affected by pyrogenesis. The role of this process in natural systems is discussed, and the stability of pyrogenic carbonates in soils of different geographic zones is analyzed.  相似文献   

4.
Pedogenic carbonates in arid and semi-arid regions of the world have a great significance as palaeoecological and palaeoclimatological indicators and form a major pool in the carbon cycle. We analysed the ultra-microfabric and the stable isotope composition of C and O in pedogenic carbonates in colluvial soils derived from limestone in an arid region of central Iran. Our objective was to determine the conditions for the formation of soft pedogenic carbonate nodules and their co-existence with palygorskite in the palaeo-argillic horizon. Scanning electron microscopy revealed that the calcite aggregates were matted with palygorskite. Ultra-microtome cuts, examined using transmission electron microscopy, provided more detailed information about the fundamental particle association of secondary carbonates and palygorskite. Although less abundant, other silicate clays were detected in both the acid-insoluble clay fractions and in ultra-cuts, mostly in fine clay size, suggesting the engulfing of palygorskite by growing calcite or illuviation of palygorskite during or after formation of the calcite. Coatings of illuvial clays on calcite crystals support the hypothesis that palygorskite was trapped by pedogenic carbonate when the climate was wetter than it is today to form an argillic horizon. However, electron microscopic evidence of the occurrence of fibres on the immediate pedogenic carbonate particle surfaces suggests the in situ formation of palygorskite. The δ13C and δ18O values of pedogenic carbonates suggest that these carbonates were formed in an environment with more available moisture and more C4 plants than now.  相似文献   

5.
The precipitation of calcium carbonate is obtained from a bicarbonate solution added with silica gels, silico-mangnesian gels, ferric gels and clay minerals.Two methods have been performed. The first one consists of a quick removal of CO2; the second one refers to settled solutions. Identification of various carbonates is obtained by infra-red spectroscopy. Morphology of crystalline shapes are analysed with scanning electron microscope.It is etablished:
(i) silica gels are not good inhibitors of calcite;
(ii) silico-magnesian gels reduce the time of precipitation and promote the deposition of “disordered” calcite (intermediate hydrated form between amorphous calcium carbonate and calcite) and (OH) aragonite;
(iii) ferric gels inhibit very strongly calcite; then, vaterite and aragonite are deposited;
(iv) at the least, the presence of clay minerals promote the stabilization of amorphous calcium carbonate and “disordered” calcite.
The gels and the minerals which are here tested and recognized in soils take therefore an active part in the kinetics of precipitation and in the nature of the calcium carbonates.  相似文献   

6.
Siderite (FeCO3) is an iron carbonate mineral commonly found in sediments and soils. Similarly to other carbonates, such as calcite or dolomite, it may substantially affect the quantification of organic carbon (C) as well as determination of C isotope ratio of soil organic matter. Both analyses require effective removal of siderite by pretreatment with acid. However, little is known about the siderite removal efficiency of the acid pretreatment methods which have been previously proposed in the literature. In our study, we tested three previously proposed carbonate removal methods for siderite removal in siderite‐containing soils. Furthermore, we tested whether siderite C content in a soil sample can be detected as CO2 evolved after H3PO4 addition which would allow organic C determination from the difference between total and inorganic C. None of the three tested pretreatment methods led to sufficient removal of siderite C when applied on siderite alone. Therefore, we developed a new protocol for a 4‐day treatment with 10% HCl at 25°C. At siderite content of up to 10 wt.%, the removal efficiency of our method (99–100%) was sufficient both for organic C as well as for C isotope analyses. This was further confirmed with tests on siderite‐containing soils. These showed that the method of Larson et al. ( 2008 ) developed for sediments is also suitable. However, the new protocol provides advantage in terms of less microplate manipulation, capsule overflow and oven use. We found that CO2 is not evolved 2 minutes after H3PO4 addition from siderite in contrast to calcite and dolomite. This fact can be used for separate quantification of inorganic C from calcite/dolomite and siderite, e.g., in studies of their different role in soil development. We showed that siderite‐containing soils require special pretreatment procedure before organic C and 13C/12C analyses. We recommend using our protocol if techniques such as XRD or SEM‐EDS indicate the presence of siderite in soil.  相似文献   

7.
Purpose

Soils have the ability to retain potentially toxic elements (PTEs) through different chemical processes that promote low mobility of these elements, such as the precipitation of secondary phases of Fe, which facilitate the adsorption/co-precipitation of PTEs. The main objective of this study was to evaluate the mobility of PTEs present in an acid solution in two soils with different concentrations of calcite, understanding the role of secondary iron phases in the retention of these elements.

Materials and methods

To evaluate this phenomenon, intact soil columns of two different types of soils from the Sonora River in Northwest Mexico were exposed to an acid solution with high concentration of dissolved PTEs (mainly Fe, Al, and Cu).

Results and discussion

The Tinajas soil was free of carbonates while the Bacanuchi soil had more carbonate content than the Tinajas soil. Secondary precipitates corresponding to secondary phases of iron (mainly ferrihydrite and jarosite) were identified by X-ray diffraction. Using scanning electron microscopy, the PTEs retained in the soils were identified. The presence of calcite favored the neutral pH values in the collected leachates in the Bacanuchi soil; consequently, the mobility of the PTEs present in the acid solution was nullified. Furthermore, this process facilitated the retention of the toxic elements in the Bacanuchi soil.

Conclusions

The retention of PTEs was 100% in the Bacanuchi soil where the natural acid-neutralizing capacity in this soil was associated with calcite. The formation of secondary phases of Fe, among them ferrihydrite, jarosite, and schwertmannite, mainly in Bacanuchi soil, promoted the retention of Al, As, Cd, Cu, Fe, Mn, and Pb (elements analyzed in this work). Results of this work can provide key insights to improve cleanup and conservation strategies in mining sites.

  相似文献   

8.
Soil pH and calcium carbonate contents are often hypothesized to be important factors controlling organic matter turnover in agricultural soils. The aim of this study was to differentiate the effects of soil pH from those related to carbonate equilibrium on C and N dynamics. The relative contributions of organic and inorganic carbon in the CO2 produced during laboratory incubations were assessed. Five agricultural soils were compared: calcareous (74% CaCO3), loess (0.2% CaCO3) and an acidic soil which had received different rates of lime 20 years ago (0, 18 or 50 t ha−1). Soil aggregates were incubated with or without rape residues under aerobic conditions for 91 days at 15 °C. The C and N mineralized, soil pH, O2 consumption and respiratory quotient (RQ=ΔCO2/ΔO2) were monitored, as well as the δ13C composition of the evolved CO2 to determine its origin (mineral or organic). Results showed that in non-amended soils, the cumulative CO2 produced was significantly greater in the limed soil with a pH>7 than in the same soil with less or no lime added, whereas there was no difference in N mineralization or in O2 consumption kinetics. We found an exponential relationship between RQ values and soil pH, suggesting an excess production of CO2 in alkaline soils. This CO2 excess was not related to changes in substrate utilization by the microbial biomass but rather to carbonates equilibrium. The δ13C signatures confirmed that the CO2 produced in soils with pH>7 originated from both organic and mineral sources. The contribution of soil carbonates to CO2 production led to an overestimation of organic C mineralization (up to 35%), the extent of which depended on the nature of soil carbonates but not on the amount. The actual C mineralization (derived from organic C) was similar in limed and unlimed soil. The amount of C mineralized in the residue-amended soils was ten times greater than in the basal soil, thus masking the soil carbonate contribution. Residue decomposition resulted in a significant increase in soil pH in all soils. This increase is attributed to the alkalinity and/or decarboxylation of organic anions in the plant residue and/or to the immobilization of nitrate by the microbial biomass and the corresponding release of hydroxyl ions. A theoretical composition (C, O, H, N) of residue and soil organic matter is proposed to explain the RQ measured. It emphasizes the need to take microbial biomass metabolism, O2 consumption due to nitrification and carbon assimilation yield into account when interpreting RQ data.  相似文献   

9.
Source profiles (fractional mass abundances and uncertainties) for use in chemical mass balance (CMB) source apportionment are reported for soil dust from unpaved roads and desert lands. The objectives were to add to the library of source composition profiles available for CMB studies, and to provide data on the variation in wind-blown dust composition between particle sizes and geographical locations. Samples were resuspended and sampled through PM1, PM2.5 and PM10 inlets onto filters, then chemically analyzed for 40 elements, seven ions and eight carbon fractions. Air quality management would benefit from technology that can distinguish soil dust from sites in different geographical locations and sites with different land uses. Five geographical clusters representing Ft Bliss, TX, Dona Ana County, NM, Ft Irwin, CA, the west desert and the Canyonlands, UT, were examined. Distinctive differences were found between sites within a cluster and these differences were comparable to the differences between cluster averages. Some sites showed small differences in chemical composition between particle sizes, but these differences were less than the differences observed between nearby geographical locations. Dust emissions from sites with uniform geology have distinctive source profiles that may be useful for CMB receptor modeling. Heterogeneous regions, defined by land management boundaries, will require extensive field sampling to develop representative composite source profiles.  相似文献   

10.
北京西北部山丘地区成土母质对褐土的影响   总被引:1,自引:1,他引:1  
徐礼煜 《土壤学报》1983,20(3):238-252
北京附近低山丘陵地区的土壤,曾称棕壤[7,13],至五十年代初期始更名为褐土,并沿用至今.褐土,作为一个独立的土类,是由C.A.查哈罗夫于1924年首先提出的.格拉西莫夫(1954,1979)曾对褐土的研究作了全面的总结和概述.  相似文献   

11.
Abstract

Crystalline minerals in anaerobically digested sewage sludges were determined by x‐ray diffraction analysis. Sludge samples were prepared for x‐ray analysis by either washing with H2O to remove soluble salts or oxidizing organic matter with H2O. A limited number of minerals are present as crystalline materials in sludge. Even though the sludges contained appreciable concentrations of Cu, Zn, Cd, Pb and Ni, no crystalline metal sulfides, phosphates, hydroxides, oxides or carbonates were found with the exception of a possible Cu, Zn carbonate hydroxide. All other crystalline components detected are common minerals such as quartz, feldspar, montmorillonite, chlorite, mica, dolomite and calcite.  相似文献   

12.
Although complexation with soil organic matter may improve zinc (Zn) bioavailability to plants, the effect of Zn sorbent surface on the use of complexed Zn by plants remains unknown. The objective of this research was to elucidate how Zn complexation with humic substances (HS) and phytate affects the uptake of Zn by wheat plants depending on the main sorbent surface in growth media, i.e., carbonates and Fe oxides. To this end, two pot experiments were performed, one using Fe oxide-coated siliceous as the siliceous growth medium sand and the other using a mixture of calcareous sand and siliceous sand as the calcareous growth medium. Each experiment involved three Zn sources, Zn-HS complex, Zn phytate, and ZnSO4. All sources were applied with surface irrigation at two Zn rates (0.25 and 2 mg kg-1 growth medium). The Zn-HS complex significantly increased Zn uptake by plants in both media, relative to the other two Zn sources, but no significant difference was observed between Zn phytate and ZnSO4. In the calcareous medium, Zn-HS complex and Zn phytate resulted in significantly higher dry biomass yields of wheat than ZnSO4. In the siliceous medium, spike and shoot dry biomass yields with Zn-HS complex at the low rate and Zn phytate at both rates were not significantly different from those with ZnSO4 at the high rate. After harvest, approximately 50% of the Zn applied as Zn-HS complex remained extractable by diethylenetriaminepentaacetic acid (DTPA), while this proportion was less than 20% for the other Zn sources. Thus, Zn-HS complex and Zn phytate are sources of available Zn for plants, and they are more effective than ZnSO4 in increasing plant growth, particularly when carbonates are the main Zn sorbent surface.  相似文献   

13.
Reiji Kimura  Long Bai  Jiemin Wang 《CATENA》2009,77(3):292-296
We analyzed relationships among dust outbreaks, Normalized Difference Vegetation Indices (NDVI), and surface soil water content (0 to 2 cm depth) on the Loess Plateau, a significant dust source area of East Asia. World Surface Data for wind speed and current weather, coarse-resolution data for NDVI, and a three-layer soil model for surface soil water content were used. The threshold NDVI for preventing dust outbreaks was about 0.2 when the wind speed ranged from 7 to 8 m s− 1. This threshold NDVI corresponds to a vegetation cover of 18%. The threshold ratio of surface soil water content to the field capacity (θr) was about 0.2. Conditions facilitating dust outbreaks on the Loess Plateau are when NDVI is less than 0.2 with wind speed  7 m s− 1 and θr < 0.2, and when NDVI is greater than 0.2 with wind speed  9 m s− 1 and θr < 0.2.  相似文献   

14.
Very alkaline environments exceeding calcite buffering are globally rare but conspicuous in many sedimentary plains of the World. While the deleterious effects of high alkalinity on soils are well understood, less agreement exists on its causes. We revise these causes to understand these exceptional environments and explain the pervasiveness of calcite buffering elsewhere. We argue that the injection of respired CO2 into stagnant hydrological systems subject to evaporative discharge is the key context for high alkalinization. The evolution of evaporites in nature reaches highly alkaline stages only when excess of (bi)carbonate with respect to divalent cations occurs. In most dry landscapes, evaporating groundwater solutions lose this condition as respired inorganic carbon (recharge zone supply) equilibrates with divalent cations from rocks (whole hydro‐trajectory supply). Groundwater in stagnant landscapes avoids this limitation owing to short/shallow trajectories sustaining (bi)carbonate excess until evaporative discharge zones are reached. Flat sedimentary landscapes that are (i) wet enough to develop stagnation and have shallow water tables but (ii) sufficiently dry to expose them to evaporative concentration should host very alkaline soils. This is confirmed with >9,000 soil profiles from the global WISE database, which shows that profiles with pH ≥ 9 in the top meter are 2·7% globally but 18% in areas with low slope (<0·05%, 25‐km radius, SRTM digital elevation model (SRTM DEM)) and semiarid–subhumid climate (annual precipitation to potential evapotranspiration ratio = 0·2–1, CRU database). Understanding how climate and vegetation change as well as irrigation practices influence hydrological stagnation and evaporative concentration may provide the key to manage very alkaline environments. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

15.
[目的]评价SH固化建设场地类型土的抑尘效果及其在建设场地中的适用性,为合理有效控制建设场地扬尘问题提供方法依据。[方法]以高分子材料——SH抑尘剂为研究对象,考虑建设场地扬尘来源(即建设场地类型土)、喷洒量、坡度、坡面形态、固化时间及堆土密度等因素,借助PM10及PM2.5指标评价SH抑尘剂在仅固化建设场地类型土表层条件下的抗风蚀性能及其在建设场地的适用性。[结果]SH抑尘剂可在土样颗粒间发挥联接作用,维持土体表面的完整性,有效解决洒水抑尘措施存在的缩裂问题;SH对于建设场地类型土(粉土、粉煤灰、黏性土、碎石土)均具有很好的抑尘效果,喷洒SH抑尘剂后,固化土在九级风力的吹蚀作用下不会造成PM10和PM2.5污染物;SH抑尘剂对于建筑堆土、建筑弃土及裸露地表均具有适用性,坡度、堆土密度、坡面形态不影响SH抑尘剂的渗透固化效果。从抑尘效果和施工经济角度考虑,建议施工时选取SH抑尘剂喷量1.2kg/m2,固化时间3d。[结论]SH抑尘剂可在土体表层形成抗风蚀性保护膜,实现从源头控制建设场地扬尘。  相似文献   

16.

Purpose

The volume of dust deposition on the soil surface in Moscow is big enough and make several tens of grams per square meter annually. The role of dust as a soil-forming material is especially high in places with practically no other soil parent materials. It is necessary to consider solid atmospheric precipitation as a parent soil material in urban conditions and its impact on soil properties.

Materials and methods

Samples of two soil bodies were taken near two major highways of Moscow, and airborne solid deposit samples were collected from the roadside barrier in summer and from plant leaves after snowmelt. The fallout samples were studied by methods used for soil because of its silicate matrix (Si~30 % total). Main complex characteristics of samples were obtained by chemical analysis and with a scanning electron microscope with energy-dispersive X-ray spectrometer. Bulk elemental composition, available phosphorus and potassium, carbonates, organic carbon and oil hydrocarbon contents, pH, redox potential, magnetic susceptibility, and particle-size distribution of dust and soils were determined.

Results and discussion

Near the highways, where the process of dust transfer is activated, there are possibilities of dust inclusion into soil and formation of new soil horizons on these deposits. Pedofeatures are formed during a very short period of time. The soil-forming processes are connected with both soil organic matter and mineral compound transformation. Chemical properties of the studied soils correspond to those of usual Moscow soil horizons and dust samples studied previously by Prokofyeva et al. (2011) and Prokof’eva et al. (2015). It was established that atmospheric solid aerosol imports organic carbon, carbonates, and other salts; pollutants such as oil hydrocarbons; and heavy metals into the soil. Airborne deposits influence soil physical properties by enriching the soil with clay and coarse silt fractions.

Conclusions

Investigation of dust deposit composition provides data for characterizing material being continuously deposited on the urban soil surface. The atmospheric fallouts together with construction waste and natural rocks provide the common geochemical properties of urban soils.
  相似文献   

17.
为探究南方红壤区经长期水土流失治理小流域的水沙特征,该研究收集长汀县朱溪河小流域2017—2020年降雨及洪水水沙数据,通过冗余分析、多元逐步回归方程、含沙量-流量滞回曲线等方法进行分析。结果显示:(1)流域年洪水径流深和泥沙量分别为282.30~892.50 mm和35.80~179.50 t/km2,洪水事件的产沙模数集中在0~20.0 t/km2,但总泥沙量由大于5.0 t/km2的少数事件决定;(2)降雨量、30 mim的最大雨强和降雨侵蚀力是影响洪水径流泥沙的主要降雨特征,对径流、泥沙变化的解释度分别为68.99%和49.28%,通过主要径流特征估算泥沙量、平均含沙量和最大含沙量,拟合优度达0.624~0.870;(3)洪水事件共出现6种含沙量-流量滞回关系,其中线型出现频率(55%)最高,该类事件中含沙量随流量的变化具有分阶段特征,临界含沙量约为0.1 g/L。经过长期的水土流失治理,红壤区小流域的洪水泥沙量普遍较低,且主要受径流量影响,洪水事件的滞回关系表明流域的泥沙供应通常处于持续少量的状态,研究结果有助于揭示红壤区土壤侵蚀的发展趋势。  相似文献   

18.
通过室内模拟实验对方解石、天然沸石、无机盐(NaCl和CaCl2)改性沸石、有机改性沸石覆盖层对富营养化水体沉积物中磷的固定化效果进行研究。结果表明,方解石、天然沸石对沉积物中的磷均有一定的固定效果,且方解石的固定效果好于天然沸石。无机盐改性沸石对磷的固定化效果的顺序为CaCl2改性沸石〉方解石〉NaCl改性沸石〉天然沸石。有机改性沸石对沉积物中磷的固定效果大于天然沸石和方解石,且覆盖层越厚固定效果越好。复合覆盖层对沉积物中磷的固定效果受天然沸石投加量、方解石投加量以及二者组合方式等因素的影响,随着天然沸石和方解石投加量的增加(100~300g),复合覆盖层对沉积物中磷的固定效果明显提高(67.10%~84.10%)。天然沸石和方解石混合覆盖层比单一天然沸石或方解石覆盖层能更有效地控制沉积物磷的释放。先覆盖天然沸石后覆盖方解石对沉积物磷释放的抑制率明显高于先覆盖方解石后覆盖天然沸石。  相似文献   

19.
In soils of arid and semiarid climates, dissolution of primary (lithogenic) carbonate and recrystallization with CO2 from soil air leads to precipitation of pedogenic carbonates and formation of calcic horizons. Thus, their carbon isotope composition represents the conditions prevailing during their formation. However, the widespread use of the isotopic signature (δ13C, δ18O, Δ14C) of pedogenic carbonates for reconstruction of local paleovegetation, paleoprecipitation and other environmental conditions lacks knowledge of the time frame of pedogenic carbonate formation, which depends on climatic factors. We hypothesized that temperature-dependent biotic processes like plant growth and root and rhizomicrobial respiration have stronger influence on soil CaCO3 recrystallization than abiotic temperature-dependent solubility of CO2 and CaCO3.To assess the effect of temperature on initial CaCO3 recrystallization rates, loess with primary CaCO3 was exposed to 14CO2 from root and rhizomicrobial respiration of plants labeled in 14CO2 atmosphere at 10, 20 or 30 °C. 14C recovered in recrystallized CaCO3 was quantified to calculate amounts of secondary CaCO3 and corresponding recrystallization rates, which were in the range of 10−6-10−4 day−1, meaning that 10−4-10−2% of total loess CaCO3 were recrystallized per day. Increasing rates with increasing temperature showed the major role of biological activities like enhanced water uptake by roots and respiration. The abiotic effect of lower solubility of CO2 in water by increasing temperature was completely overcompensated by biotic processes. Based on initial recrystallization rates, periods necessary for complete recrystallization were estimated for different temperatures, presuming that CaCO3 recrystallization in soil takes place mainly during the growing season. Taking into account the shortening effect of increasing temperature on the length of growing season, the contrast between low and high temperature was diminished, yielding recrystallization periods of 5740 years, 4330 years and 1060 years at 10, 20 and 30 °C, respectively. In summary, increasing CaCO3 recrystallization rates with increasing temperature demonstrated the important role of vegetation for pedogenic CaCO3 formation and the predominantly biotic effects of growing season temperature.Considering the long periods of pedogenic carbonate formation lasting to some millennia, we conclude that methodological resolution of paleoenvironmental studies based on isotope composition of pedogenic carbonates is limited not by instrumental precision but by the time frame of pedogenic carbonate formation and hence cannot be better than thousands of years.  相似文献   

20.
Cation‐exchange–capacity (CEC) results of calcareous soils and clays can be erroneous if the ammonium acetate method is used. In this study, a model is proposed to explain the process for systematic underestimation of the CEC. Seven clayey sediments from Germany with varying calcite and low organic‐C content were studied. After several exchange treatments with concentrated ammonium acetate (NH4Ac) solutions, the exchange population is assumed to be in homoionic ammonium form. Throughout the cation‐exchange experiment, calcite reacts with the NH4Ac exchange solution generating Ca2+ cations. During the necessary washing steps to remove excess salt, calcite dissolution is lower but still occurs. The permanently added Ca2+ ions compete successfully with NH , especially during the washing steps. This leads to a more or less partial biionic exchange population resulting in an underestimation of the CEC which is calculated based on NH concentration of the clay by Kjeldahl analysis. The biionic exchange population was proven using the new silver thiourea technique with presaturation of calcite, AgTU calcite . The clay with 148 g kg–1 calcite had a fraction of 16.4 cmol+ kg–1 exchangeable Ca2+. This is ca. 50% of the CEC of this clay being 31.8 cmol+ kg–1. For clays with similar mineralogical composition, this trend is proportional to the calcite content.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号