首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
A novel cellulose-based porous adsorbent with high adsorption capacity for methylene blue (MB) was prepared by free radical polymerization methods. The obtained polymer grafting rate and dye removal efficiency are as high as 338.64 % and 97.74 %, respectively, when the dosage of monomer is 4.5 g, the polymerization condition is 3 h at 70 °C. The cellulose-based adsorbent showed high mechanical properties and good flexibility. The Langmuir isotherm model revealed that the maximum theoretical adsorption capacity of this material for methylene blue was 1734.816 mg g-1 at pH 9.0 at 313 K, which is higher than the values observed for other adsorbents. Scanning electron microscopy (SEM) showed that the cellulose-based adsorbent exhibits a typical well-defined porous and interconnected three-dimensional framework structure, which is benefits to dye adsorption. The adsorption kinetics (pseudo first-order, pseudo-second-order, and intraparticle diffusion models) was also studied, and the pseudo-second-order model fitted MB adsorption better than the pseudo-first-order and intraparticle diffusion models at different initial dye concentrations (500-3000 mg l -1). The novel polyacrylic acid-grafted quaternized cellulose (PAA-g-QC) adsorbent is thus potentially useful for the treatment of dye-contaminated wastewater.  相似文献   

2.
In this paper, poly(amido primary-secondary amine) (PAPSA) as a high capacity polymeric adsorbent was synthesized. Dye removal ability of PAPSA from single and binary systems was investigated. The functional groups of PAPSA were studied using Fourier transform infrared (FTIR). Acid Blue 92 (AB92), Direct Red 23 (DR23), and Direct Red 81 (DR81) were used as model compounds. The kinetic and isotherm of dye adsorption were studied. The effect of operational parameter such as adsorbent dosage, dye concentration, and pH on dye removal was evaluated. It was found that adsorption of dyes onto PAPSA showed Langmuir isotherm. The maximum dye adsorption capacity (Q 0) of PAPSA was 10000 mg/g, 12500 mg/g, and 10000 mg/g for AB92, DR23, and DR81, respectively. Adsorption kinetic of dyes followed pseudo-second order kinetics. Dye desorption tests showed that the dye release of 85 % for AB92, 91 % for DR23 and 89 % for DR81 were achieved in aqueous solution at pH 12. The results showed that the PAPSA as a polymeric adsorbent with high dye removal ability might be a suitable alternative to remove dyes from colored wastewater.  相似文献   

3.
A novel eco-friendly porous adsorbent of cellulose (CE)/chitosan (CS) aerogel was prepared through sol-gel process and freeze-drying to remove Congo Red (CR). A series of aerogels were prepared by adjusting the mass ratios of CE and CS. Composite aerogels were characterized by Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), and X-ray diffraction (XRD). SEM images showed that it was possible to change the structure of the aerogel by adjusting the amount of chitosan. The effects of dosage of chitosan, initial pH, temperature, adsorbent dosage, contact time, and initial dye concentration on adsorption capacities for CR were studied in detail. Batch adsorption studies showed that aerogel exhibited maximum removal efficiency to CR at a composite ratio of 1:3 and dosage of 2.5 g/l. CE/CS aerogel had excellent adsorption capacities for CR at a pH range of 3-11, which indicated stability of the aerogel in both acidic and alkaline conditions. CR adsorption on the composite aerogel fitted pseudo-second-order kinetics and Langmuir isotherm. The Langmuir isotherm model revealed that the maximum theoretical adsorption capacity of this material for CR was 381.7 mg/g at pH 7.0 at 303 K for 24 h. The adsorption mechanism included electrostatic and chemical interactions. The results indicated that the adsorption capacity of CE/CS aerogels was higher than the other chitosan composites adsorbents.  相似文献   

4.
In this study, impregnation of iron chloride was carried out on needle punched web of waste acrylic fibers, which was subsequently carbonized under layer of charcoal by physical activation in high temperature furnace to produce iron impregnated activated carbon (FeAC). For comparison purpose, one more sample of activated carbon (AC) was prepared without impregnation of iron chloride. Both the webs were carbonized at 1200 °C with no holding time, and characterization of BET surface area, SEM morphology, EDX elemental analysis, XRD crystalline structure was performed. The FeAC web was used as adsorbent for the removal of methylene blue from aqueous solution. The dye removal percentage was investigated at different experimental parameters like different dye concentrations, adsorbent dosage, stirring speed and different pH. The obtained results were analyzed using linear and non-linear forms of Langmuir and Freundlich isotherms and adsorption kinetics (i.e. pseudo first order and pseudo second order model).  相似文献   

5.
In this paper, the surface of magnetic manganese ferrite nanoparticles (MFN) was modified using cetyl trimethylammonium bromide (CTAB). The modified MFN was studied using Fourier transform infrared spectroscopy (FTIR). The adsorption capacity of surface modified MFN (MFN-CTAB) was investigated for dye removal for single and ternary systems. Three anionic dyes, C.I. Direct Red 80 (DR80), C.I. Direct Red 31 (DR31), and C.I. Acid Blue 92 (AB92), were used as model compounds. The effects of operational parameters on dye removal (i.e. adsorbent dosage, dye concentration and salt) and the kinetic and isotherm of dye adsorption were studied. The adsorption kinetic for the dyes was found to be well described by the pseudo-second order model. The maximum dye adsorption capacity (Q 0) of MFN-CTAB for DR80, DR31 and AB92 was 83 mg/g, 59 mg/g and 70 mg/g, respectively. The adsorption isotherm data were analyzed using the Langmuir, Freundlich, and Temkin equations. The results revealed that the Langmuir model fitted the adsorption data better. The results showed that the MFN-CTAB as a magnetic adsorbent might be a suitable alternative to remove dyes from colored aqueous solutions.  相似文献   

6.
In this paper, dye removal ability of sodium alginate (SA) as a biopolymer from ternary systems was investigated. Physical characteristics of SA were studied using Fourier transform infra-red (FTIR) and scanning electron microscopy (SEM). Three textile basic dyes were used as model compounds. The adsorption kinetics, isotherms and thermodynamics were studied. The effect of SA dosage, initial dye concentration and pH on dye removal was elucidated. It was found that adsorption kinetics of dyes followed with pseudo-second order kinetics. In addition, dyes followed with Langmuir, and extended Langmuir isotherm in single and ternary systems, respectively. The thermodynamic data showed that the dye adsorption onto SA was a spontaneous, endothermic and physisorption reaction. Based on the data of present investigation, one could conclude that the alginate being a biocompatible, eco-friendly and low-cost adsorbent might be a suitable alternative for elimination of dyes from colored aqueous solutions.  相似文献   

7.
In this paper, laccase enzyme was immobilized onto zinc ferrite nanoparticle and the characteristics of enzyme immobilized nanoparticle (EIN) were evaluated by Fourier transform infrared (FTIR) and scanning electronic microscope (SEM). Enzymatic decolorization of dyes using EIN from single and binary systems was studied. Direct red 31 (DR31) and Acid blue 92 (AB92) were used as model dyes. The effects of several parameters such as EIN dosage, pH, and dye concentration on decolorization of dyes from single and binary systems were evaluated. The optimized amount of EIN, reaction time, and pH for decolorization of dyes from single and binary systems were 0.2 g (for DR31) and 0.3 g (for AB92), 40 min, and 3 in single systems and 0.2 g (for DR31 and AB92), 40 min, and 3 in binary systems, respectively. Dye decolorization kinetics followed Michaelis-Menten model. The results showed that enzymatic process using EIN was effective method to decolorize dyes from single and binary systems.  相似文献   

8.
In this study, removal of Congo red (CR) from aqueous solution by 1,6-diaminohexane-functionalized glycidyl methacrylate-g-poly(ethylene terephthalate) (HMDA-GMA-g-PET) fiber was investigated. A new aminated fibrous adsorbent was prepared by a reaction between amine and epoxy group in GMA-g-PET fiber prepared by grafting GMA monomer onto poly (ethylene terephthalate) (PET) fiber. Effects of various parameters such as pH, treatment time, initial, dye concentration, and reaction temperature on the adsorption amount of dye onto reactive fiber were investigated. The adsorption rates of CR were much higher on the HMDA-GMA-g-PET fiber than on GMA-g-PET and ungrafted PET fiber. The effective pH was 2.0 for adsorption on grafted PET fiber. It was found that the sufficient time to attain equilibrium was 60 min. The maximum adsorption capacity of the reactive fiber for CR is 16.6 mg/g fiber. The rates of adsorption were found to conform to the pseudo-second order kinetics with good correlation. It was found that the adsorption isotherm of CR fitted Freundlich type isotherm.  相似文献   

9.
In this work, activated carbon (AC) web was prepared using physical activation under the layer of charcoal in high temperature furnace. The carbonization of acrylic fibrous waste was performed at different temperatures (800 °C, 1000 °C, and 1200 °C) with heating rate of 300 °C/h and at different holding time. At 1200 °C, the heating rate of 300 °C/h and no holding time provided better results of surface area as compared to carbonization at 800 °C and 1000 °C. The activated carbon web (AC) prepared at 1200 °C was used for removal of Acid Red 27 dye from aqueous media by varying different parameters like initial concentration of dye, stirring speed, adsorbent dosage, and pH. The results were evaluated using non-linear forms of Langmuir and Freundlich isotherms. The Freundlich isotherm was found to describe the results more effectively because of non-homogenous surface of activated carbon web. Further, the kinetics of adsorption was examined using linear and nonlinear forms of pseudo 1st order and pseudo 2nd order.  相似文献   

10.
复杂样品前处理极大的影响分析结果的准确度和分析过程的时效性,因此建立高效的分离分析方法提高检测的准确性和效率具有重要意义。本研究通过一步水热法,合成了碳包覆四氧化三铁磁性纳米粒子(Fe3O4@C-Magnetic nanoparticles,Fe3O4@C-MNPs),利用透射电子显微镜(transmission electron microscope,TEM)、扫描电子显微镜(scanning electron microscope,SEM)、X射线衍射(X-ray diffraction,XRD)、X射线光电子能谱(X-ray photoelectron spectroscopy,XPS)、傅立叶变换红外光谱(Fourier transform infrared spectroscopy,FTIR)、振动样品磁强计(vibrating sample magnetometer,VSM)考察材料的形貌、结构以及磁性能,并以Fe3O4@C-MNPs作为磁性吸附剂,构建磁固相萃取-气相色谱法用于黄瓜中丙溴磷的定量检测,优化了影响磁固相萃取过程农药回收率的主要因素,即磁性吸附材料用量、萃取时间和溶液pH。结果表明:合成的Fe3O4@C-MNPs表面有丰富的官能团,粒径分布均匀,分散性好,具有超顺磁性,对有机磷农药(organophosphorus pesticides,OPs)丙溴磷有较好的吸附富集效果;最优条件下,即Fe3O4@C-MNPs磁性吸附剂用量0.06 g、溶液pH 6、吸附平衡时间10 min、洗脱剂为丙酮时,检测丙溴磷农药的线性范围在0.011~1.0 µg/mL,检出限为0.0011 mg/kg;使用合成的磁性吸附剂材料Fe3O4@C-MNPs用于磁固相萃取-气相色谱法检测黄瓜实际样品中丙溴磷,回收率在95.0%~101.4%,相对标准偏差(relative standard deviation,RSD)为2.9%~8.5%。该方法有机试剂用量少,吸附剂可重复利用,降低检测成本的同时也更环保,检测效率也得到提高,检测结果准确可靠。  相似文献   

11.
In this paper, urethane polycarboxylate (UPC) as a novel adsorbent was synthesized and characterized. Dye removal ability of UPC from aqueous solution of single and binary systems was studied. Fourier transform infrared (FTIR) was used to characterize UPC. Basic Blue 41 (BB41), Basic Red 18 (BR18), and Basic Violet 16 (BV16) were used as cationic dyes. Dye removal isotherm and kinetic were evaluated. The effect of UPC dosage, initial dye concentration, and inorganic anions on dye removal was investigated. The capacity of UPC to remove BB41, BR18, and BV16 were 333 mg/g, 278 mg/g, and 222 mg/g, respectively. Dye removal kinetics and isotherm using UPC were fitted with the pseudo-second order and Langmuir model, respectively. The results showed the UPC might be used as a dye adsorbent to treat multicomponent systems containing cationic dyes.  相似文献   

12.
The extracted dye from brown dry rind of the pomegranate has been used as natural colorant for textiles from ancient times. In this study, microwave assisted extraction (MAE) has been used for extraction for dye from dried pomegranate rind. The effect of three independent parameters namely extraction time (25–90 s), pH of solution (3.5–8) and amount of pomegranate rind (0.5–1.5 g) was considered. Response surface methodology (RSM) is applied to optimize the effects of processing parameters of extraction on the yield of dye and a computer-stimulated artificial neural network (ANN) model is developed to get a good correlation between the input variables responsible for extraction and the output parameter (concentration of dye) of extraction from pomegranate rind. Considering the yield of dye extraction and the feasibility of the experiment, the optimum conditions of dye extraction are extraction time 90 s, pH 3.5, amount of sample 1.48. Application of microwave irradiation method proved to be a rapid and improved technique for dye extraction and significantly reduced the extraction time. The optimization procedure shows a close interaction between the experimental and simulated values for dye extraction.  相似文献   

13.
Adsorption of Pb(II) ions from aqueous solution onto tobacco stems has been investigated to evaluate the effects of initial lead ion concentration, adsorbent dosage, contact time, pH and temperature on the removal of Pb(II) systematically. The optimal pH value for Pb(II) adsorption onto the tobacco stems was found to be 5.0. The removal of lead ions for concentrations 10, 30 and 50 mg L−1 using 0.8 g adsorbent at contact time of 120 min and at temperature of 299 K were 94.37%, 92.10% and 90.43%, respectively. Thermodynamic parameters such as standard Gibbs free energy (ΔG°), standard enthalpy (ΔH°), and standard entropy (ΔS°) were evaluated by applying the Van’t Hoff equation, which describes the dependence of equilibrium constant on temperature. The thermodynamics of Pb(II) adsorption onto the tobacco stems indicated that the adsorption was spontaneous and endothermic. Langmuir and Freundlich isotherms were used to analyze the equilibrium data at different temperatures and the equilibrium data were found to fit Freundlich isotherm equation better than Langmuir isotherm. The adsorption was analyzed using pseudo-second-order kinetic equation.  相似文献   

14.
In this study, amide and amine groups bound to poly(ethylene terephthalate) fibers are used to remove the colored toxic Congo red dye from aqueous solution. The effects of process variables like pH, contact time, graft yield, and initial dye concentration on the adsorption were investigated. The maximum adsorption of Congo red to amide and amine groups was observed at pH 3 and 5 respectively. Equilibrium was attained at approximately 60 min for the amine group. The adsorption capacity of amine group on the poly(ethylene terephthalate) fiber was 46.5 mg g−1 at 25 °C, which was higher than that of the amide group on the poly(ethylene terephthalate) fiber. Desorption was done using 0.1 M NH3, and recovery was measured at 58.2 %. The used adsorbent was regenerated and recycled six times. The results showed that the amine-functionalized fiber could be considered as potential adsorbents for removal of Congo red from aqueous solution.  相似文献   

15.
改性花生壳和改性玉米芯吸附重金属的对比实验研究   总被引:4,自引:0,他引:4  
从吸附时间、pH值、吸附剂投加量、Cr^6+初始浓度、温度、溶液中共存离子的干扰程度几个方面,实验对比了改性玉米芯和花生壳的吸附特性。改性花生壳较玉米芯达到吸附平衡的时间相对慢一些,分别为30min和75min。pH值对改性花生壳和改性玉米芯吸附Cr^6+的影响有差别。改性花生壳和改性玉米芯对Cr^6+的去除率均随其投加量的增加呈增长趋势,但其增长曲线不同。改性花生壳对Cr^6+的去除率不受Cr^6+初始浓度的影响,但改性玉米芯对Cr^6+的去除率随Cr^6+初始浓度的增加呈下降趋势。温度对改性花生壳吸附效果的影响很小,但在不同的温度下,改性玉米芯的吸附效果有明显差异。溶液中共存离子Na^+、K^+对改性花生壳吸附Cr^6+的影响较小,可以说基本不受Na^+、K^+的影响,而对改性玉米芯而言,Na^+较K^+相对较大一些,存在竞争吸附现象。  相似文献   

16.
Polymer electrospun fibers are potential candidates for use as ionic dye adsorbents, due to its low cost and massive production provided by a simple nanofabrication method. The optimization in the processing variables for development of more efficient adsorbents revealed a strong dependence between the fiber diameter and the adsorption capacity of fibers, which was measured as a function of dye concentration, pH, adsorbent amount and contact time. The available active sites on electrospun fibers favor the efficient dye removal and easy desorption, allowing the successive reuse of electrospun fibers, preserving typical adsorption capacity of 135.37 mg·g-1 in association with fast desorption at acidic condition, allowing successive reuses of adsorbents.  相似文献   

17.
The renewable, proteinaceous, marine biopolymer spongin is yet the focus of modern research. The preparation of a magnetic three-dimensional (3D) spongin scaffold with nano-sized Fe3O4 cores is reported here for the first time. The formation of this magnetic spongin–Fe3O4 composite was characterized by X-ray diffraction (XRD), thermogravimetric analysis (TGA), differential thermal analysis (DTA) (TGA-DTA), vibrating sample magnetometer (VSM), Fourier-transform infrared spectroscopy (FTIR), and zeta potential analyses. Field emission scanning electron microscopy (FE-SEM) confirmed the formation of well-dispersed spherical nanoparticles tightly bound to the spongin scaffold. The magnetic spongin–Fe3O4 composite showed significant removal efficiency for two cationic dyes (i.e., crystal violet (CV) and methylene blue (MB)). Adsorption experiments revealed that the prepared material is a fast, high-capacity (77 mg/g), yet selective adsorbent for MB. This behavior was attributed to the creation of strong electrostatic interactions between the spongin–Fe3O4 and MB or CV, which was reflected by adsorption mechanism evaluations. The adsorption of MB and CV was found to be a function of pH, with maximum removal performance being observed over a wide pH range (pH = 5.5–11). In this work, we combined Fe3O4 nanoparticles and spongin scaffold properties into one unique composite, named magnetic spongin scaffold, in our attempt to create a sustainable absorbent for organic wastewater treatment. The appropriative mechanism of adsorption of the cationic dyes on a magnetic 3D spongin scaffold is proposed. Removal of organic dyes and other contaminants is essential to ensure healthy water and prevent various diseases. On the other hand, in many cases, dyes are used as models to demonstrate the adsorption properties of nanostructures. Due to the good absorption properties of magnetic spongin, it can be proposed as a green and uncomplicated adsorbent for the removal of different organic contaminants and, furthermore, as a carrier in drug delivery applications.  相似文献   

18.
Quantitative adsorption kinetic and equilibrium parameters for indigo carmine dyeing of silk were studied using UV-visible absorption spectroscopy. The effect of initial dye concentration, contact time, pH, material to liquor ratio (MLR), and temperature were determined to find the optimal conditions for adsorption. The mechanism of adsorption of indigo carmine dyeing onto silk was investigated using the pseudo first-order and pseudo second-order kinetic models. The adsorption kinetics was found to follow a pseudo-second-order kinetic model with an activation energy (E a) of 51.06 kJ/mol. The equilibrium adsorption data of indigo carmine dye on silk were analyzed by the Langmuir and Freundlich models. The results indicate that the Langmuir model provides the best correlation. Adsorption isotherms were also used to obtain thermodynamic parameters such as free energy (ΔG o), enthalpy (ΔH o), and entropy (ΔS o) of adsorption. The negative values of ΔG o and ΔH o indicate the overall adsorption process is a spontaneous and exothermic one.  相似文献   

19.
A novel approach to preparing multifunctional composite nanofibrous membrane was developed. Polyacrylonitrile (PAN) nanofibrous membrane was fabricated by electrospinning and then the nitrile groups in PAN copolymer was chemically modified to obtain amidoxime modified PAN (AOPAN) nanofiber membrane which was further used as a functional support for laccase immobilization. During the process of reactive dye degradation catalyzed by the AOPAN nanofiber membrane immobilized with laccase, metal ion adsorption occurred at the same time. The chemical modification was confirmed by Fourier transform spectroscopy (FTIR). Scanning electron microscope (SEM) was employed to investigate the surface morphologies of the electrospun nanofibers before and after laccase immobilization. The effects of environmental factors on laccase activity were studied in detail. It was found that the optimum pH and temperature for the activity of immobilized laccase was 3.5 and 50 °C. The relative activity retention of the immobilized laccase decreased dramatically during the initial four repeated uses. After 20 days’ storage, the activity retention of immobilized laccase was still high above 60 %. It has also proved that laccase immobilized on AOPAN nanofiber membrane performed well in dye degradation and metal ion adsorption.  相似文献   

20.
In this research, poly(vinyl alcohol) (PVA)/chitosan electrospun nanofibrous membrane (ENM) was prepared by electrospinning method in order to investigate its dye removal ability from colored wastewater. The morphology and average fiber diameter of the membranes were investigated by scanning electron microscopy (SEM), image analysis and atomic force microscopy (AFM). The chemical characterization was studied by Fourier transform infrared spectroscopy (FTIR). The permeability of the membranes was evaluated by measuring pure water flux (PWF). In order to investigate the performance of the prepared membranes they were used in the batch adsorption and membrane separation for dye removal from colored wastewater. The effect of pH, number of membranes and dye concentration on the dye removal ability of the ENM was investigated. Response surface methodology (RSM) was used to achieve multi-objective optimization and equations of adsorption capacity and breakthrough time regarding operating conditions. The results demonstrated the potential of using PVA/chitosan nanofiber membrane as a microfiltration (MF) membrane for dye removal. Moreover, the recoverability property of prepared membranes was noticeable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号