首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The fabric used for intimate apparel is widely required to have excellent antibacterial and comfort performances. In order to improve its antibacterial ability, this paper studied chitosan-silver finishing on the cotton knitted fabric. The study indicates that the chitosan-silver attached to the fabric exhibits excellent antibacterial action against the typical bacteria of Escherichia coli (E. coli) and Staphylococcus aureus (S. aureu). The anti-bacterial mechanism of chitosan-silver against E. coli and S. aureu were investigated. To guarantee its prominent comfort performance, measurements were made on the finished fabric of its air permeability, water vapor transmission, hydrophily, surface friction and bending ability against the control fabric, which is currently used for intimate apparel. The antibacterial and comfort performances were compared between the tested fabrics. The results show that the air permeability and the hydrophily of the finished cotton fabric are significantly better than the control one, while the water vapor transmission, the surface friction and the adjustable rate remain similar to each other. The bending rigidity of the finished fabric is slightly better due to the attachment of chitosan within accepted threshold. The dual compounding theory of chitosan-silver proves to be useful for a higher synergistic effect of anti-bacteria, lower whiteness degradation and overall optimization of comfort performance. This dual compounding theory of chitosan-silver is valuable for improving antibacterial and comfort performances of intimate apparel.  相似文献   

2.
The use of natural dyes and natural finishes on textiles has become a matter of significant importance because of the increased environmental awareness to avoid some hazardous synthetic dyes and synthetic chemicals. The Delonix regia stem shells were extracted in distilled water methanol and ethanol solvents. Phytochemical analysis was carried out for the presence of bioactive chemical constituents such as saponin, terpenoid, flavonoid, glycoside, phenol and tannin using the standard procedure. All the tests showed positive for the presence of components except saponin in methanol and ethanol extract. The qualitative antibacterial analysis was done by AATCC 147 method with excerpts from three different solvents both against S. aureus (gram-positive) and E. coli (gram-negative) bacteria. Delonix regia stem shell extract (DSE) in distil water was used for natural dyeing of mulberry silk fabric. Pre-mordanting and post-mordanting of silk fabric were carried out using alum and myrobalan mordants. Treated fabrics showed a substantial increase in colour depth (K/S) and adequate wash, light and rubbing fastness properties without and with mordanted and dyed silk fabrics. Quantitative antibacterial analysis by AATCC 100 method was done on dyed silk fabric which showed very good resistance both against bacteria S. aureus and E. coli bacteria. Dyed silk fabric also showed good to very good ultraviolet (UV) protection property. The physicochemical composition of the untreated and without mordant treated silk fabrics were analysed by attenuated total reflection (ATR) Fourier transforms infrared (FTIR) spectroscopy, scanning electron microscope (SEM), energy dispersive spectrometry (EDS) and atomic absorption spectrophotometer (AAS). In addition to that wash, durability was also measured of dyed silk fabric for antibacterial and ultraviolet protection (UPF) properties according to AATCC 61 2A washing method.  相似文献   

3.
There has been growing interest in the use of bioresource waste for natural dyeing and finishing. This paper discusses dye extraction from the novel source fruit shell waste of Sterculia foetida and its application on mulberry silk fabric to confer aesthetic coloration and wellness properties such as ultra-violet (UV) protection and antibacterial properties. Treated fabrics showed a substantial increase in color depth and adequate wash, light, and rubbing fastness properties for dyed silk fabrics with and without mordanting. Pre-and post-mordanting of silk fabrics were carried out using mordants such as alum, harda (myrobalan), and copper sulfate. UV-visible spectrophotometric analysis of fruit shell extract (FSE) at different pHs and FSE with three different mordants at neutral pH was used to understand the phenomena of dye-fiber interaction. The treated fabrics characterised by ATR-FTIR, SEM-EDS, and XRD analysis indicate the nature of dye fiber interaction justifying the multifunctional properties. The treated fabric also showed very good ultraviolet protection property and antibacterial properties both against S. aureus and E. coli bacteria even after ten washes. The results indicate that Sterculia foetida fruit shell extract offers an excellent potential as coloration, antibacterial, and ultraviolet protective agent for mulberry silk fabric.  相似文献   

4.
This article focuses on the functional finishing of textiles using silver nanoparticles (AgNPs) and chitosan derivative binder, which was synthesized by a modification of chitosan using α-ketoglutaric acid. The binder covalently linked to cotton fabric via esterification of the hydroxyl groups on the cotton surface, and tightly adhered to surface of the AgNPs by coordination bonds. As a result, the coating of AgNPs on the cotton fabric showed excellent antibacterial property and laundering durability. After 30 consecutive laundering cycles, the Ag content on the fabrics decreased to 37.6 %, but the bacterial reduction rates against both S. aureus and E. coli were maintained over 95 %. It has potential applications in a wide variety of fields such as sportswear, socks, and medical textile.  相似文献   

5.
A novel antibacterial agent polysulfopropylbetaine (PSPB) bearing carboxyl groups was synthesized and its application on cotton fabric to provide durable antibacterial property was also presented. The successful synthesis of PSPB and its immobilization onto the cotton fabric surface were verified by a series of tests including FTIR, 1H NMR, XPS and SEM. Viable cell counting method was employed to investigate antibacterial properties of the finished cotton fabrics. It was found that the cotton fabrics treated with PSPB were endowed with desirable antibacterial activity against both gram-negative bacteria Esherichia coli (E.coli, AATCC 6538) and gram-positive bacteria Staphylococcus aureus (S.aureus, AATCC 25922), with the bacterisotatic rates of 99.69 % and 99.95 %, respectively. Notably, the bacterial reduction rates still maintained over 90 % against both bacteria even after 50 consecutive laundering cycles. Moreover, tests concerning the hydrophilicity, air permeability, water vapor transmission, mechanical properties as well as thermal properties were carried out systematically. The experimental results indicated the hydrophilic performance, air permeability and moisture penetrability of the cotton fabrics finished with PSPB were improved greatly in spite of a slight reduction in thermal performance and little obvious influence on mechanical performance. The antibacterial cotton fabric has the potential to be applied in sportswear, underwear, household textiles, medical fields and much more.  相似文献   

6.
Carboxyl group-terminated poly(N-isopropylacrylamide) (PNIA-COOH) was synthesized via radical polymerization of N-isopropylacrylamide (NIA) using mercaptoacetic acid (MAA) as a chain transfer agent. The molecular weight of the PNIA-COOH was controlled by changing the molar ratio of MAA to NIA. A water-soluble chitosan derivative, N-(2-hydroxy)propyl-3-trimethylammonium chitosan chloride (HTCC), was also synthesized by reacting chitosan with glycidyltrimethylammonium chloride. Then, chitosan-g-PNIA and HTCC-g-PNIA copolymers were synthesized using the “graft-onto” method by reacting PNIA-COOH with chitosan and HTCC, respectively. The formation of the grafted copolymers was confirmed by Fourier transform infrared spectroscopy, solubility test in water, and scanning electron microscopy — energy dispersive spectroscopy. The thermo-responsive behaviors of the grafted copolymers and the change in lower critical solution temperature (LCST) were also studied. Chitosan-g-PNIA was insoluble in water and behaved like a thermo-responsive hydrogel due to the crosslinking-point action of the chitosan backbone. The swelling ratio of chitosan-g-PNIA increased with increasing PNIA content. HTCC-g-PNIA behaved as a water-soluble thermo-responsive polymer. Compared to the homo PNIA, the LCST of HTCC-g-PNIA was slightly increased.  相似文献   

7.
A water soluble quaternary ammonium chitosan derivative, N-benzyl-N,N-diethyl chitosan quaternary ammonium salt (BDCQA), was prepared for antibacterial finish of cotton textiles. The effects of concentrations of finish agents and treatment time on the add-on ratio of cotton treated BDCQA (BDCQA-cotton) were studied in details. The morphology and thermal property of BDCQA-cotton were characterized by scanning electron microscopy (SEM) and thermagravimetric (TG) analysis. Gram-positive bacterium Staphylococcus aureus (S. aureus) and Bacillus cereus (B. cereus), Gram-negative bacterium Escherichia coli (E. coli) and drug-resistant bacterium Methicillin-resistant Staphylococcus aureus (MRSA), were used to evaluate the antibacterial activity and durability of BDCQA-cotton. The results showed that BDCQA-cotton possessed good antibacterial activity and high durability against broad spectrum bacterium. The preliminary investigation on the antibacterial mechanism was discussed in this work.  相似文献   

8.
The present investigation describes the synthesis and characterization of novel biodegradable nanoparticles based on chitosan for biomedical applications. The presence of primary amine groups in repeating units of chitosan grants it several properties like antibacterial activity, antitumor activity and so on. Chitosan forms nanoparticles spontaneously on the addition of polyanion tripolyphosphate which has greater antimicrobial activity than parent chitosan. In the present study, chitosan nanoparticles (ChNP) were prepared by the ionic gelation method. The physiochemical characteristics of nanoparticles were analyzed using XRD, SEM, FTIR. The antibacterial activity of chitosan nanoparticles against medical pathogens Klebsiella pneumoniae, Escherichia coli, Staphylococcus aureus and Pseudomonas aeruginosa was evaluated by calculation of minimum inhibitory concentration (MIC) and compared with chitosan and chitin activity. The mode of action and factors affecting antibacterial activity were also analyzed. ChNP compounds exhibited superior antimicrobial activity against all microorganisms in comparison with chitosan and chitin. The antibiofilm activity was studied using crystal violet assay and growth on congo red agar. The study is thus a good demonstration of the applicability of chitosan nanoparticles as an effective antimicrobial agent with antibiofilm activity as well.  相似文献   

9.
In this study silver nanoparticles with different particle sizes and hence colors were synthesized on silk and cotton fabrics through reduction of silver nitrate. Particle sizes of the silver colloids were measured by dynamic light scattering (DLS). The structure and properties of the treated fabrics were characterized by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), and UV-Vis reflectance spectroscopy. Various characteristics of the treated fabrics including antibacterial activities against a Gram positive (Staphylococcus aureus) and a Gram negative (Escherichia coli) bacteria, color effect, wash and light fastness, water absorption, fabric rigidity, and UV blocking properties were also assessed. The results indicated that the treated fabrics displayed different colors in the presence of silver nanoparticles with different particle sizes and exhibited good and durable fastness properties. Also, the size of the silver particles had a tangible effect on antibacterial activity of treated fabrics and its antibacterial performance was improved by decreasing the size of particles. Moreover, this process imparted significantly UV blocking activity to fabric samples.  相似文献   

10.
In the present work the natural madder dye (Rubia tinctorum L.) was applied to the simultaneous dyeing and functionalization of polyester (PET) fabric. In the first part of the study the color performance and the durability were revealed for exhaustion dyed fabric. The dyed fabric was then characterized with respect to ultraviolet (UV) protection ability and antibacterial activity against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli). CIELab color coordinates, namely the positive a* and b* values, confirmed a yellow/orange color of the dyed fabric. From durability tests, the color showed a moderate to good light fastness and good to excellent fastness to washing and rubbing. The madder dye improved both the UV protective performance and the antibacterial activity of the fabric. With 3 % on weight of fiber (owf) the UV protection factor increased up to 106, and the antibacterial activity up to 86 % against both types of bacteria tested.  相似文献   

11.
An alternative approach to application of chitosan based on layer by layer (LbL) assembled technique is studied in this paper. For this aim, chitosan (CHT) was used as a bio-based cationic polyelectrolyte and pentasodium tripolyphosphate (TPP) and poly(sodium 4-styrene sulfonate) (PSS) were selected as anionic polyelectrolyte. TPP/CHT and PSS/CHT based bilayers were fabricated on the cationized woven cotton fabrics via layer-by-layer self-assembly technique. The characterization of coatings on the fabric surface in terms of surface appearance, atomal content, and chemical bondings were made in detail through SEM, XPS, and FTIR-ATR analysis. Also, the antibacterial activity, air permeability, and water contact angle were measured. Surface analyses demonstrate the interaction between TPP, PSS and chitosan separately. XPS spectra also showed the existence of LbL deposition over cotton substrates in terms of both elemental composition and the presence of different types of bondings on the fabric surface. The antibacterial activity analysis revealed that the modified cotton fabric with the addition of CHT/TPP and CHT/PSS bilayers could increase the degree of inhibition on K. pneumanie and S. aureus bacteria.  相似文献   

12.
Dyeing and antibacterial properties of a natural dye extracted from Liriope platyphylla fruit applied on silk fabrics have been studied. The total phenolic content (1109.13±69.02 mg), total flavonoid content (530.60±89.44 mg), and total anthocyanin content (492.26±77.79 mg) were measured in 100 g fresh weight of L. platyphylla fruits. In addition, ten anthocyanins and four flavanols were identified in L. platyphylla fruits by high performance liquid chromatography with diode array detection coupled with electrospray ionization mass spectrometry (HPLC-DAD/ESI-MS). A broad variation in color shade and color depth can be achieved with mixtures of dye extracts and metal mordants. Purple, blue, and pale green were main color shades of silk fabrics dyed with the extracts. The fastness of dyed silk fabrics except for control dyed fabrics against light, washing, and rubbing were acceptable with at least a grey scale rating of 3. The antibacterial activities of L. platyphylla fruit extracts were retained on dyed silk fabrics even after home washing 30 cycles. Mordanting with metal salt mordant had a positive effect on antibacterial activity of dyed silk fabrics in this study. Among them, aluminum and copper were the most effective mordants for improving antibacterial activity of silk fabrics dyed with L. platyphylla fruit extracts. The costs of natural dyeing of per silk fabrics kg by the extracts from L. platyphylla fruit were also calculated on laboratory scale.  相似文献   

13.
Actinomycins as clinical medicine have been extensively studied, while few investigations were conducted to discover the feasibility of actinomycins as antimicrobial natural dye contributing to the medical value of the functional fabrics. This study was focused on the application of actinomycin X2 (Ac.X2), a peptide pigment cultured from marine-derived Streptomyces cyaneofuscatus, in the dyeing and finishing of silk fabric. The dyeing potential of Ac.X2 with silk vs. cotton fabrics was assessed. As a result, the silk fabric exhibited greater uptake and color fastness with Ac.X2. Through Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), and X-ray diffraction (XRD) analyses, some changes of chemical property for the dyed fabric and Ac.X2 were studied. The silk fabric dyed with Ac.X2 exhibited good UV protection ability. The antibacterial properties of dyed and finished silk were also evaluated, which exhibited over 90% antibacterial activity even after 20 washing cycles. In addition, the brine shrimp assay was conducted to evaluate the general toxicity of the tested fabric, and the results indicated that the dyed silk fabrics had a good biological safety property.  相似文献   

14.
In the present study, a novel eco-friendly production of silk fabrics dyed with different natural dye bath concentrations (40, 80, 120, 160, 200 and 240 g/l) extracted from neem (Azadirachta indica) leaves was developed. The surface morphology of the fabrics was examined by scanning electron microscopy (SEM) and Fourier-transform infrared (FTIR) spectroscopy to characterize the chemical structure of the fabrics. The SEM images of the undyed fabric show that the fabric was tightly woven with little porosity between the fibres with dozens of silk threads in orthogonal directions. By increasing the neem concentration, a scale of fine particles grew on the surface of the silk fabrics with little macroscopical defects was demonstrated. The fiber diameters and tightness between filaments were significantly increased. The FTIR displayed that, neem dye does not change the characteristic peaks of the silk fabrics. Also, the evaluation of the antimicrobial activity of the undyed and neem dyed silk fabrics was monitored for Gram positive and Gram negative bacteria in addition to yeasts and fungi by using the agar diffusion method. The comparison between the different dye bath concentrations was based on the inhibition zones obtained after incubation. The antimicrobial activity in leaf extract of neem was estimated in Staphylococcus aureus, Bacillus subtilis and Lactobacillus cereus (Gram positive bacteria); Escherichia coli (Gram negative bacteria); Candida albicans and Candida tropicalis (yeasts); and Aspergillus niger and Fusarium solani (fungi). The results emphasized that, the highest neem dye bath concentration (240 g/l) was found to display good inhibitory effect against the Gram positive and reasonable activity against the Gram negative bacteria. Furthermore, the different dye bath concentrations possess no activities against yeast and fungi. In conclusion, the data reveal that the increase of neem dye concentration does not damage the silk fabric; however, it improves its antimicrobial activity by incorporating with antimicrobial agent. The current study highlighted that using neem leaves had beneficial effect in controlling the pathogenic microbial organisms.  相似文献   

15.
A new hybrid ionic liquids solvent, 1-allyl-3-methylimidazolium chloride (AMIMCl) and glycine hydrochloride (Gly·HCl) was utilized to dissolve chitosan and fabricate chitosan/cellulose (Cs/Ce) blend films with chitosan proportion varying from 2 to 35 wt.% through solution casting method. FTIR, XRD, TG, SEM and EA were used to evaluate the prepared composites. Besides, the mechanical property and antibacterial activity were also analyzed. The shifting of the characteristic peaks of -NH and C=O for chitosan, similar crystal pattern with low intensity diffraction peaks at 2θ of around 20°, superior thermal stability (increased Tonset) with chitosan ratio below 10 wt.% in the composites suggested that the interactions via hydrogen bonds formed between chitosan and cellulose. Besides, the elemental analysis showed that the actual N% contents from the chitosan in the blend films were roughly equivalent to the theoretical value though the inevitable residue of ionic liquids. Furthermore, the blends not only presented compact structure but also processed high bacterial reduction to E. coli and S. aureus at pH 6.3, which indicated that the Cs/Ce blend films prepared via the Gly·HCl/AMIMCl dissolution method were suitable for production of degradable antibacterial materials.  相似文献   

16.
In this work, the novel chitosan derivative ethylamine hydroxyethyl chitosan (EHC) was synthesized and blended with cellulose in an aqueous N-methylmorpholine-N-oxide (NMMO) solution in order to fabricate antibacterial chitosan/cellulose fiber. The rheological behaviors of the obtained co-solution in both steady and dynamic states were carefully investigated to determine the spinnability of the co-solution. In steady state, the addition of EHC was found to preserve the power-law flow characteristics of cellulose in the aqueous NMMO solution, while broadening the first Newtonian fluid-flow area. Under dynamic conditions, both Han-plot and viscoelastic analyses indicated the homogeneity of the co-solution. EHC/cellulose antibacterial fibers were successfully spun via the lyocell process using aqueous NMMO as the solvent, confirming the excellent spinnability of the EHC/cellulose co-solution. Scanning electron microscopy was used to observe the morphology of the obtained EHC/cellulose fibers; they were also investigated for antibacterial activity. The obtained EHC/cellulose fiber exhibited good spinning consistency and strong antibacterial activity against Escherichia coli, demonstrating potential applications for the material in antibacterial textiles.  相似文献   

17.
Enzymatic oxidation of tyrosine side-chains in proteins could produce reactive o-quinones that might subsequently react with the primary amino groups of functional compounds, which provided a worthwhile reference for functionalization of fibrion materials. In the present work the potential for using tyrosinase to graft the bovine lactoferrin onto Bombyx mori silk fibroin was examined. Lactoferrin could adsorb onto silk fibers and covalently bind to the previous enzymatically oxidized fibroin surface. The enzyme-generated quinones in silk fibers also might cause self-crosslinking of fibroin peptides, which led to beneficial changes of silk properties. For the fabric treated with tyrosinase and lactoferrin slight improvements of dyeability and strength were obtained in comparison to the control. The combinedly treated fabric showed encouraging resistance to S. aureus and E. coli, the antibacterial activities reached to 87.0 % and 76.4 %, respectively. The durability of the antibacterial silk was noticeably higher than that of the sample treated with lactoferrin alone.  相似文献   

18.
This study was performed to evaluate the ability of N-(2-hydroxypropyl)-3-trimethylammonium chitosan chloride (HTCC), the cationically modified chitosan, to form biologically inactive complexes with unfractionated heparin and thereby blocking its anticoagulant activity. Experiments were carried out in rats in vivo and in vitro using the activated partial thromboplastin time (APTT) and prothrombin time (PT) tests for evaluation of heparin anticoagulant activity. For the first time we have found that HTCC effectively neutralizes anticoagulant action of heparin in rat blood in vitro as well as in rats in vivo. The effect of HTCC on suppression of heparin activity is dose-dependent and its efficacy can be comparable to that of protamine-the only agent used in clinic for heparin neutralization. HTCC administered i.v. alone had no direct effect on any of the coagulation tests used. The potential adverse effects of HTCC were further explored using rat experimental model of acute toxicity. When administered i.p. at high doses (250 and 500 mg/kg body weight), HTCC induced some significant dose-dependent structural abnormalities in the liver. However, when HTCC was administered at low doses, comparable to those used for neutralization of anticoagulant effect of heparin, no histopathological abnormalities in liver were observed.  相似文献   

19.
In this study, durable antibacterial cotton fabrics were prepared by a simple two-step impregnation method. Firstly, thioglycolic acid (TGA) was grafted onto cotton fabric via esterification with the hydroxyl groups of cellulose, then silver nanoparticles (Ag NPs) were immobilized on the cotton fabric surface via coordination bonds with the TGA thiol groups. As a result, the mean size of Ag NPs coating on the cotton fabric is around 74 nm, and these functionalized cotton fabrics show superior antibacterial properties and excellent laundering durability. After withstand 50 laundering cycles, the obtained cotton fabrics still showed outstanding bacterial reduction rates (BR) against both S. aureus and E. coli, and the rates are all higher than 97 %. Therefore, this method to prepare antibacterial cotton fabric shows great potential applications in socks, cosmetic, and medical textiles.  相似文献   

20.
N-methylmorpholine-N-oxide (NMMO) is used widely in the manufacturing of man-made cellulose fibers and functional lyocell fibers due to its environment-friendly advantage. Although chitosan is known as a natural antibacterial polymer it has poor solubility in neutral to basic medium and the antibacterial activity is shown only in acidic medium. Chitosan’s poor solubility in NMMO is the disadvantage for the production of antibacterial lyocell fibers. This paper investigates a more “NMMO soluble” derivative of chitosan, 2-(2-aminoethoxy) ethyl chitosan (AECS). AECS has greatly improved solubility in NMMO hydrate, and stronger antibacterial activity than chitosan. AECS was introduced to modify the lyocell fiber spun in a co-solution of cellulose and AECS in NMMO hydrate. The physical properties and antibacterial activity of the fibers were examined and the results indicated that the modified lyocell fiber, containing more than 2 wt% of AECS, exhibits good antibacterial activity against E. coli and slightly decreased tensile strength compared with unmodified fibers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号