首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 33 毫秒
1.
Facile embedding of TiO2 nanoparticles onto cotton fabric has been successfully attained by ultraviolet light irradiations. The adhesion of nanoparticles with fibre surface, tensile behaviour and physicochemical changes before and after ultraviolet treatment were investigated by scanning electron microscopy, energy dispersive X-ray and inductive couple plasma-atomic emission spectroscopy. Experimental variables i.e. dosage of TiO2 nanoparticles, temperature of the system and time of ultraviolet irradiations were optimised by central composite design and response surface methodology. Moreover, two different mathematical models were developed for incorporated TiO2 onto cotton and tensile strength of cotton after ultraviolet treatment and used further to testify the obtained results. Self-clean fabric through a synergistic combination of cotton with highly photo active TiO2 nanoparticles was produced. Stability against ultraviolet irradiations and self-cleaning properties of the produced fabric were evaluated.  相似文献   

2.
Nylon 6 fabric with self-cleaning properties was prepared by corona discharge pre-treatment and coating with TiO2 nanoparticles (NPs) using pad-dry-cure technique. The self-cleaning property was studied by discoloration of methylene blue (MB), ketchup, tea and coffee stains from the corona+TiO2 treated nylon-6 fabric. Color difference (ΔΕ*), reflectance (R) and K/S of MB stain were investigated by diffuse reflectance spectrophotometry. The MB stain was almost completely removed from the corona+TiO2 treated nylon surface after 24 h under UV light/daylight irradiation. Both of these phenomena (corona and TiO2) led to an increase in the discoloration of stains under UV and daylight irradiations. The EDS analysis showed an increase in the concentration of deposited TiO2 NPs coating after corona treatment. The FE-SEM images revealed that the surface of nylon 6 was coarser after the corona treatment. Also, the FE-SEM micrographs exhibited that a uniform layer of TiO2 NPs was formed on the corona treated nylon fabric. The corona+TiO2 treated nylon illustrated antibacterial activity against E. coli and B. subtillis microorganisms. The EDS and FE-SEM analysis confirmed that after 5 washing cycles, the amount of TiO2 NPs was higher on the surface of corona+TiO2 treated nylon than that of the fabric only treated with TiO2 without corona pretreatment. This result justifies that the corona+TiO2 treated nylon fabric with appropriate self-cleaning property can be applied cost-effectively in the textile industry.  相似文献   

3.
This study reports the results of an investigation aiming at finding what affect nano titania (TiO2) and nano strontium titanate (SrTiO3) on self-cleaning of cotton fabrics. The photocatalytic activity of nano strontium titanate has been examined on cotton fabric under UV irradiation in various concentrations in mixing of nano titania. The amount of loaded nano titania and nano strontium titanate particles on cotton fabrics were investigated using X-ray fluorescence spectrometry (XRF) and crystallinity of coatings by X-ray diffraction spectroscopy (XRD). The treated cotton fabrics, which were stained with two common synthesized dyes, were exposed to 400 W UV radiation for 30 hours and their self-cleaning property was investigated by a reflectance spectrophotometer. Scanning electron microscope (SEM) images show pervasion of nano materials on the surface of the treated cotton. Adding nano strontium titanate to nano titania showed the most promising photocatalytic activity toward dye degradation.  相似文献   

4.
Cotton fabrics were dyed with three commercial vat dyes in order to provide camouflage in Vis-NIR regions and imitate reflectance profile of greenish leaves. To investigate the effect of nano particles on camouflage properties of dyed fabric, nano particles of TiO2 were applied on dyed fabrics using pad-dry-cure method. The nano TiO2 padded dyed fabrics were investigated using scanning electron microscopy (SEM). Reflectance curves of coated dyed samples with different concentrations of nano TiO2 were measured. Results showed that in both of the standard shades, nano TiO2 increases the reflectance value in NIR region and with increasing the concentration of nano TiO2, the reflectance curves of samples tend to show the maximum reflection of greenish leaves (deciduous leaves) in NIR region. Chromatic values (CIE1976 L*, a*, and b*) and color difference (according to CIECMC color difference ΔE*cmc (2:1)) of each of the coated samples were measured using the reflection spectrophotometer. By considering the influence of white color of nano TiO2 on green shade of dyed cotton fabrics and increasing the color difference (between coated samples and the standard shades of the 1948 U.S army pattern) in visible range, optimum concentrations of nano TiO2 for development of camouflage properties on cotton fabrics in both NIR and visible region were determined. These values for NATO and forest green shades were 0.75 % and 0.5 %, respectively. Fastness results showed that both of the samples have acceptable color fastness. The effect of washing and exposure to light on camouflage properties of coated dyed fabrics in visible (in term of chromatic values) and NIR region (in term of spectral reflectance) was investigated when those were coated in optimum concentrations of nano TiO2. The results showed that the effect of after treatments (washing and exposure to light) on surface color spectral characteristics and camouflage properties was inconsiderable.  相似文献   

5.
Nano-TiO2 based multilayer nanocomposite films were fabricated on cationically modified woven cotton fabrics by layer-by-layer molecular self-assembly technique. Cationization process was used to obtain cationic surface charge on cotton fabrics. Attenuated total reflectance Fourier transform infrared spectroscopy analyses were used to verify the presence of cationic surface charge and multilayer films deposited on the fabrics. Scanning electron microscope micrographs of poly(sodium 4-styrene sulfonate)/TiO2, nano polyurethane/TiO2, and TiO2/poly(diallyldimethylammonium chloride) multilayer films deposited on cotton fabrics were taken. With nano-TiO2 based multilayer film deposition, the protection of cotton fabrics against UV radiation is enhanced. The UV protection durability of the self-assembled multilayer films deposited on the cotton fabrics was analyzed after 10 and 20 washing cycles at 40 °C for 30 min. Air permeability and whiteness value analysis were performed on the untreated and multilayer film deposited cotton fabrics. The effect of layer-by-layer deposition process on tensile strength properties of the warp and weft yarns was determined.  相似文献   

6.
In this study, a new finishing technique is introduced through treatment of wool fabric with graphene/TiO2 nanocomposite. Graphene oxide/titanium dioxide nanocomposite first applied on the wool fabric by hydrolysis of titanium isopropoxide in graphene oxide suspension and then this coating chemically converted by sodium hydrosulfite to graphene/TiO2 nanocomposite. The homogenous distribution of the graphene/TiO2 nanocomposite on the fiber surface was confirmed by field emission scanning electron microscopy (FE-SEM), Energy-dispersive X-ray spectroscopy (EDS) and X-ray mapping. X-ray diffraction patterns proved the presence of titanium dioxide nanoparticles with a crystal size of 127 Å on the treated wool fabric. Also, the defect analysis based on X-ray photoelectron spectroscopy (XPS) established the composition of the nanocomposite. Other characteristics of treated fabrics such as antibacterial activity, photo-catalytic self-cleaning, electrical resistivity, ultraviolet (UV) blocking activity and cytotoxicity were also assessed. The treated wool fabrics possess significant antibacterial activity and photo-catalytic self-cleaning property by degradation of methylene blue under sunlight irradiation. Moreover, this process has no negative effect on cytotoxicity of the treated fabric even reduces electrical resistivity and improves UV blocking activity.  相似文献   

7.
Nano-SiOx suspension was prepared for its unique optical performance to improve the anti-ultraviolet property of cotton fabric in this paper. The experimental results showed that UV-resistance property of thus treated fabrics had been enhanced significantly. The spectrum of absorption, reflection, and transmittance of the treated fabric was analyzed during the optimized processing. The mechanical property of the treated fabric displayed a little increase compared with the original untreated fabric. The morphology of the treated fabric was studied by SEM. The UPF (Ultraviolet Protection Factor) of the fabric treated with nano-SiOx suspension reached 62, much higher than that of the original untreated fabric. Moreover, after 50 home launderings, the UV-blocking property of treated fabric changed little due to the strong affinity between the nano-SiOx particles and cotton fiber.  相似文献   

8.
The main goal of present study was the fabrication of cotton fabric with special functions, including electrical conductivity, magnetic, antibacterial, and ultraviolet (UV) blocking. In this regard, the cotton fabric was primarily coated with graphene oxide and then reduction of graphene oxide and synthesis of magnetite nanoparticles accomplished in one step. The alkaline hydrolysis of magnetite precursors and reduction of graphene oxide was simultaneously performed using sodium hydroxide to produce reduced graphene oxide/Fe3O4 nanocomposite on the fabric surface. The prepared cotton fabrics were characterized with field emission scanning electron microscope (FE-SEM), X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDS), and X-ray photoelectron spectroscopy (XPS). The treated fabrics with reduced graphene oxide/Fe3O4 nanocomposite displayed a low electrical resistivity i.e. 80 kΩ/sq. Furthermore, the coated fabrics showed reasonable magnetic properties due to the presence of magnetite nanoparticles on the surface of cotton fabrics. Moreover, this process imparted proper antibacterial properties and UV blocking activity to cotton samples.  相似文献   

9.
In this research work, multifunctional cotton fabric comprising of UV protection, superhydrophobicity and antibacterial activity has been developed using facile pad-dry-cure method. In the first step, the concentration of repellent chemical has been optimized. Then, formulations containing nanoparticles of ZnO or TiO2 along with optimized concentration of repellent chemical and organic-inorganic binder have been applied to cotton fabric followed by the evaluation of functional properties. The surface morphology and elemental composition of treated fabric has been characterized through SEM and EDX, respectively. The treated samples have shown promising UV protection, superhydrophobicity and antibacterial properties durable upto 20 washing cycles.  相似文献   

10.
A natural colorant was extracted fromCassia tora L. using buffer solutions (pH: 2–11) as extractants. The dyeing solution (Cassia tora L. extract) extracted using pH 9 buffer solution was found to give the highest K/S values of dyed fabrics. Cotton and silk fabrics were dyed withCassia tora L. extract at 60°C for 60 min with pre-treatment of various metal salts as mordants. It was found thatCassia tora L. extract was polygenetic dyestuffs and its major components were anthraquinones. Studies have been made on the effects of the kind of mordant on dyeing properties and colour fastnesses of cotton and silk fabrics. The K/S of cotton fabrics increased in the order of the dyeing using FeSO4>CuSO4>ZnSO4>MnSO4≅Al2(SO4)3>NiSO4>none, however, the K/S of silk fabrics increased in the order of the dyeing using FeSO4>CuSO4>ZnSO4≅Al2(SO4)3>MnSO4≅NiSO4>none. It was found that the K/S values of dyed fabrics were largely affected by the colour difference (ΔE) between mordanted fabric and control fabric. However, they were not depended on the content of mordanted metal ion of the fabrics. Mordants FeSO4 and CuSO4 for cotton fabric, FeSO4, CuSO4, and Al2(SO4)3 for silk fabric were found to give good light fastness (rating 4).  相似文献   

11.
Bi2WO6 particles were prepared and then coated on the polyester fabric. Surface morphology, crystal structure, and chemical structure of the Bi2WO6 particle coated polyester fabric were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR). Photocatalytic activity was evaluated by the degradation of methylene blue (MB) under ultraviolet light irradiation. Influences of the different concentrations of Bi2WO6 on the deposit weight and the photocatalytic activity of the Bi2WO6 particle coated polyester fabric were investigated. In addition, UV protection of the Bi2WO6 particle coated polyester fabric was examined. The results show that Bi2WO6 particles are uniformly coated on the surface of the polyester fabric. The Bi2WO6 particles coated on the polyester fabric are irregular and are orthorhombic. In addition, the Bi2WO6 particle coated polyester fabric exhibits excellent photocatalytic activity and UV protection. The average degradation efficiency of MB in the presence of the Bi2WO6 particle on the polyester fabric coated with 10 g/l Bi2WO6 reaches 98.6 % after being illuminated for 7 h. Therefore, the Bi2WO6 particle coated polyester fabric shows excellent photocatalytic stability for dyes degradation.  相似文献   

12.
Handle is an important factor when designing the end-uses of fabric as it is also a critical factor for purchasing decision. In the present study, the Kawabata Evaluation System for Fabrics (KES-F) was used for measuring the fabric handle of BTCA-TiO2 treated cotton fabric with or without plasma pre-treatment. The results revealed that the BTCA-TiO2 treated cotton fabrics without plasma pre-treatment had a negative effect on tensile, shearing, compressional, and surface properties while the bending properties were improved. On the other hand, the plasma pre-treatment improved the tensile and compressional properties, but not the bending, shearing, and surface properties.  相似文献   

13.
TiO2 contents in yarns can influence color yield so that dyeing quality of industrial poly ethylene terephthalate (PET) yarns can be improved through the adjustment of TiO2 contents. To evaluate the dyeing performance of color yield, the chips which included the different TiO2 contents of 330, 550, and 1,100 ppm respectively were used to produce the yarns of different TiO2 content by a spin-draft machine. The physical and structural properties of the yarns were measured to investigate effect of the TiO2 contents on them. Dye uptake and dyeing rate were also evaluated using a colorimeter to compare the yarns having different TiO2 contents. The experimental results showed that there were no appreciable variation in physical and structural properties among the yarn samples and no difference were observed among the dyed fabric samples with regard to dyeing uptake and dyeing rate. However, the color yield of dyed fabrics increased as TiO2 contents decreased in the yarns especially when the fabric samples were dyed to pale shade. The physical reasoning could be proposed on why the yarns having low TiO2 contents appeared to have higher color yield after dyeing.  相似文献   

14.
In this paper, a silane coupling agent, 3-aminopropyltriethoxysilane, was reacted with nano-TiO2 to introduce amino group onto it which was then reacted with trichlorotriazine to obtain a dichlorotriazine functionalized nano-TiO2 for the firm fixation of it on cotton fibers. The reaction process was monitored by the titration of primary and secondary amino groups, and the reaction conditions were optimized with orthogonal method accordingly. The dichlorotriazine functionalized nano-TiO2 was reacted with cotton fabric by the nucleophile substitution reaction to afford nano-TiO2 functionalized cotton fabric, the structure and surface morphology of the nano-TiO2 finished cotton fibers were studied by FT-TR and SEM. In addition, the fixation duration of the nano-TiO2 modified cotton was studied according to AATCC test method 61–2010. The results show that the washing fastness of the nano-TiO2 is excellent.  相似文献   

15.
A series of CNTs/SiO2/thiazole dye hybrid materials prepared via the sol-gel process is synthesized from carbon nanotubes (CNTs) and tetraethoxysilane with heteroaryl 4-phenyl-2-amino-thiazole dyes. Heterocyclic 4-phenyl-2-aminothiazole dyes are processed with the hydrolysis-condensation reaction at a constant ratio of vinyltriethoxysilane and tetraethoxysilane condensed with modified CNTs in appropriate proportion under a catalyst. The structures of the CNTs/SiO2/thiazole dye hybrid materials are characterized by Fourier transform infrared spectroscopy (FTIR). Polytrimethylene terephthalate (PTT) fabrics are used to evaluate the morphology structure by scanning electron microscopy (SEM). SEM images show that a uniform dyeing on the PTT fabrics to confirm the reaction of hybrid materials with PTT fabrics. The washing fastness, color evenness, water contact angle, air permeability, electric conductivity, and weatherability of PTT fabrics dyed with CNTs/SiO2/thiazole dye hybrid materials are evaluated, with results indicating improved conductivity and water-repellent.  相似文献   

16.
Titanium dioxide (TiO2) is one of the excellent photocatalysts used for degradation of environmetal pollutants. In this work, 2.5, 5.0 and 7.5 wt.% of silver (Ag)-loaded TiO2 nanofibers of mean size 52–134 nm were synthesized by electrospinning method. These electrospun nanofibers were calcined at 500 °C to enable the transformation of Rutile (R) phase to Anatase (A), elimination of reaction moieties from the TiO2 matrix and subsequently formation of Ag clusters. The effect of Ag loading on the morphology, crystal structure, phase transformation, and band gap of these electrospun nanofibers have been characterized by scannining electron microscopy (SEM), X-ray diffraction (XRD), fourier transform infrared spectroscopy (FTIR), raman spectroscopy and UV-visible spectroscopy. These nanofibers exhibited a red-shift in the absorbance edge and a significant enhancement of light absorption in the wavelength range of 250–550 nm. These electrospun nanofibers were investigated for photodecomposition of methylene blue (MB), and photocatalytic decolorization rates were determined by pseudo-first-order equation. The rate constants for the pure and those of 2.5, 5.0, and 7.5 wt% Agloaded TiO2 nanofibers were computed to be 0.1439 min-1, 0.1608 min-1, 0.1876 min-1, and 0.2251 min-1 respectively.  相似文献   

17.
Ag3PO4 was loaded on sulfonated polyphenylene sulfide (SPPS) superfine fibre by a facile precipitation method. Both the structure and properties of the as-synthesized Ag3PO4/SPPS composites were characterized via XRD, SEM, EDS, XPS, FTIR, and UV-vis. The photocatalytic performance of Ag3PO4/SPPS composites was investigated via degradation of Methylene blue(MB) solution under visible light irradiation. The degradation results revealed that the photocatalytic activity of Ag3PO4/SPPS composites was greatly enhanced by the incorporation of Ag3PO4 with SPPS superfine fibre. For concentrations of AgNO3 and Na2HPO4 solutions of 0.3 M and 0.06 M in the preparation process, the Ag3PO4/SPPS composite showed higher photocatalytic activity under visible light irradiation.  相似文献   

18.
A novel dodecylphenylsiloxane oligomer resin/nanocomposite (PHDESR-SiO2) was prepared by graft copolymerization between dodecyl modified phenylsiloxane resin with pendent epoxy groups (PHDESR) and amino-functionalized silica nanoparticles (BTEPA-SiO2). PHDESR-SiO2 was then used to prepare a super hydrophobic surface on cotton fabric by a facile solution-immersion process method. Chemical structures, chemical compositions, wettability, surface morphology, and thermal properties were investigated by Fourier Transform Infrared Spectrum (FT-IR), 1H-NMR spectrum, X-ray photoelectron spectroscopy (XPS), static contact angle analyzer, scanning electron microscopy (SEM), Particle size distribution (PSD) and thermo-gravimetric analysis (TGA). The results showed that the target product PHDESR-SiO2 has an anticipative structure with many micro/nanostructure tubercles, a cross-linked network hydrophobic organosilicon resin film and many clusters of cylindrical dodecyl molecular brushes. This created super hydrophobic structure on the surface of the treated cotton fabrics. XPS analysis indicated that the long carbon chain groups had a slight tendency to enrich the film-air interface. In addition, PHDESR-SiO2 can provide good hydrophobicity for the treated fabric. As the dose of PHDESR-SiO2 increased, the hydrophobicity of the treated fabric enhanced and consequently the water static contact angle reached 152.5 °. This had little influence on the softness, color, and gas permeability of the fabrics. This makes it slightly stiff at high doses, and the super-hydrophobic cotton fabric also had good launderability.  相似文献   

19.
A simple and practical strategy has been developed for preparing polyaniline(PANi)-doped TiO2/poly(l-lactide) (P@TiP-C) fibers by a combination of coaxial-electrospinning and in-situ polymerization. The TiO2/PLLA composite fibers with TiO2 located on the surface were fabricated by coaxial-electrospinning, with PLLA as the core phase and a dispersion of TiO2 particles, a well-known photocatalyst, in the sheath phase. The aniline monomers were also located in the core phase and in-situ polymerized by ammonium persulfate (APS) after electrospinning. SEM images show that TiO2 particles were located on the surface of PLLA fibers. Photocatalytic degradation tests show that the P@TiP-C fibers exhibit enhanced photocatalytic activity for degradation of methyl orange under visible light, likely due to the synergistic effect of PANi and TiO2.  相似文献   

20.
In this study, natural dyes were extracted from five plants, namely diospyros kaki, dioscorea cirrhosa, millettia (jixueteng), ecliptae, and macrocarpa nucuma, using environmentally-friendly solvents, including ethanol and deionized (DI) water. A plant mordant, tannin extracted from Emblica officinalis G., and a metal mordant, copper sulfate, were used in the pre-dyeing process. Cotton and silk fabric samples were treated using the five natural dyes without and with mordanting for comparison on their color strength and characteristics as well as protection against ultraviolet radiation (UVR). Results revealed that Emblica officinalis G. had the highest total phenol content, followed by dioscorea cirrhosa. The presence of abundant phenolic groups in the natural dyes and mordant makes them effective coloration agents for fabrics. Cotton and silk fabrics dyed using ecliptae without pre-mordanting had the highest K/S values. Silk fabrics had higher K/S values than cotton fabrics, indicating greater color strength in pre-mordanted silk treated with DI water-extracted dyes. Natural mordant used before treatment with natural dyes contribute to significant enhancement in color strength, and Emblica officinalis G. alone could darken the color of cotton and silk fabrics dyed with plant pigment. Moreover, treatment with natural dyes after mordanting can increase ultraviolet protection factor (UPF) and the enhancement in UVR protection is greater and more significant in cotton fabrics than in silk fabrics, and in fabrics treated with DI water-extracted natural dyes than in those treated with ethanol-extracted ones. In conclusion, pre-dyeing with natural mordant followed by treatment with natural dyes extracted using environmentally-friendly solvents can enhance significantly K/S and UPF, offering directions for manufacturing textiles without environmental hazards but with good appearance and health benefits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号