首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the present study, cellulose nanofibers composite films were manufactured based on thermoplastic starch. Nanofibers were extracted from rice straw employing a developed chemo-mechanical method. In the chemical step, almost all of non-cellulosic components were removed and a white pulp of cellulose microfibers was obtained. Then, a diluted suspension of fibers was ultrasonicated to destruct intermolecular hydrogen bonds achieving nanofibers networks. Afterward, bio-nanocomposites were prepared by film casting. In order to study the effect of nanofibers content on the composite properties, the mechanical and dynamic mechanical properties, morphology, humidity absorption, and transparency of films were investigated. The yield strength and Young modulus of nanocomposites were satisfactorily enhanced compared to the pure thermoplastic starch film. The glass transition temperature of films was shifted to higher temperatures by increasing nanofibers contents. The uniform dispersion of the nanofibers was investigated using SEM images. The humidity absorption resistance of films was significantly enhanced by using 10 wt% cellulose nanofibers. The transparency of the nanocomposites was reduced compared to the pure starch films.  相似文献   

2.
The multi-walled carbon nanotube (MWNT)/cellulose nanocomposites were prepared by using monohydrated Nmethylmorpholine-N-oxide (NMMO) as a solvent for dispersing the acid-treated MWNTs (A-MWNTs) as well as for dissolving the cellulose. The A-MWNTs were well dispersed in both monohydrated NMMO and the nanocomposite films. The nanocomposite films were prepared by a film-casting method onto a glass plate. The tensile strain at break, Young’s modulus, and toughness of nanocomposite films increased by ~5, ~2 and ~12 times, respectively at ? (A-MWNT content in the nanocomposite)=0.8 wt%, as compared to those of the pure cellulose film. The thermal degradation temperature of the nanocomposite films also increased from 329 to 339 oC by incorporation of 1 wt% A-MENTs. The electric conductivities of the A-MWNT/cellulose nanocomposites at ? =1 and 10 wt% were 2.09×10?5 and 3.68×10?3 S/cm, respectively. The transmittances were 86, 69 and 55 % at 550 nm for 0.4, 0.8 and 1 wt% nanocomposite films, respectively. Thus, these nanocomposites are promising materials in terms of all the properties studied in this paper and can be used for many applications, such as toughened cellulose fibers, transparent electrodes, etc.  相似文献   

3.
We have manufactured poly(vinylidene fluoride) (PVDF)-based nanocomposite films with different graphene contents of 0.1~10.0 wt% by ultrasonicated solution-mixing and melt-compression. As a reinforcing nanofiller, graphene sheets are prepared by rapid thermal expansion of graphite oxide, which are from the oxidation of natural graphite flakes. Graphene sheets are characterized to be well exfoliated and dispersed in the nanocomposite films. X-ray diffraction data confirm that the α-phase crystals of PVDF are dominantly developed in the nanocomposite films during the meltcrystallization. DSC cooling thermograms show that the graphene sheets serve as nucleating agents for the PVDF α-form crystals. Thermal stability of the nanocomposite films under oxygen gas atmosphere is noticeably improved, specifically for the nanocomposite with 1.0 wt% graphene. Electrical volume resistivity of the nanocomposite films is substantially decreased from ~1014 to ~106 W cm, especially at a critical graphene content between 1.0 and 3.0 wt%. In addition, mechanical storage modulus is highly improved with increasing the graphene content in the nanocomposite films. The increment of the storage modulus for the nanocomposite film at 30 °C with increasing the graphene content is analyzed by adopting the theoretical model proposed by Halpin and Tsai.  相似文献   

4.
We have prepared a series of polypropylene/exfoliated graphene (PP/EG) nanocomposite films via efficient meltcompounding and compression, and investigated their morphology, structures, thermal transition behavior, thermal stability, electrical and mechanical properties as a function of EG content. For the purpose, EG, which is composed of disordered graphene platelets as reinforcing nanoscale fillers, is prepared by the oxidation/exfoliation process of natural graphite flakes. SEM images and X-ray diffraction data confirm that the graphene platelets of EG are well dispersed in PP matrix for the nanocomposites with EG contents less than 1.0 wt%. It is found that thermo-oxidative degradation of PP/EG nanocomposites is noticeably retarded with the increasing of EG content. Electrical resistivity of the nanocomposite films was dramatically changed from ∼1016 to ∼106 Ω·cm by forming electrical percolation threshold at an certain EG content between 1 and 3 wt%. Tensile drawing experiments demonstrate that yielding strength and initial modulus of PP/EG nanocomposite films are highly improved with the increment of EG content.  相似文献   

5.
Sericin (SS) is a protein that is secreted by silkworms, but it is usually discarded during the degumming process. To obtain and make use of the sericin, we prepared sericin/glycerol/graphene oxide nanocomposite film. The inherent brittleness of pure sericin film was improved by the addition of glycerol (Glc) as a plasticizer. To compensate for the reduced stiffness, we added graphene oxide (GO) into the SS/Glc film. At concentrations of up to 0.8 wt% relative to SS, GO dispersed evenly in the SS matrix without any agglomeration. The maximum tensile strength (9.5±0.7 MPa) and Young’s modulus (414.4±23.2 MPa) were obtained when the GO content was 0.8 wt% relative to SS. The elongation of SS/Glc/GO nanocomposite film also increased by approximately 40 % compared to SS/Glc film. The strong interfacial interaction between the SS and the GO was responsible for the increased stiffness. The increased elongation was due to the reduced crystallinity of the sericin matrix in the presence of GO.  相似文献   

6.
This paper reports the fabrication of electrical heating elements based on the graphene/waterborne polyurethane (WPU) composite coated on polyester fabric with toughness like that of artificial leather. Samples were prepared with 0, 4, 8, and 16 wt% of graphene by using the knife edge method, and then, the samples were annealed from 100 oC to 160 °C. The graphene content had a large effect on the electrical and electrical heating properties. The surface resistivity was decreased by approximately 6 orders of magnitude with an increase from 0 wt% to 16 wt% graphene/WPU composite fabric. The electric heating properties were also improved, as indicated by the percolation threshold. Samples with various graphene contents were annealed, and it was found that the electrical and electrical heating properties were improved, and the most enhanced properties were obtained when the samples were annealed at 120 °C. The initial modulus and tensile strength were increased in comparison with those of 0 wt% and 16 wt% graphene/WPU composite coated on fabrics, but the elongation at break value was slightly decreased with an increasing graphene content. When the samples were annealed, initial modulus and tensile strength of samples were improved at 120 °C and 140 °C, and they were slightly decreased at 160 °C. However, the elongation at break showed an opposite tendency to the tensile strength. With the increase in content of graphene and annealing at 120 °C and 140 °C, the samples were more stiff and tough, and at 160 °C, the samples were softer. Therefore, graphene/WPU composite coated on polyester fabric by use of the annealing process may have applications in electrical heating elements due to its excellent heating performance and toughness like that of artificial leather.  相似文献   

7.
In this work, the reduced graphene oxide (RGO) sheets were effectively uploaded through nylon-6 fibers using combined process of electrospinning and hydrothermal treatment. Good dispersion of graphene oxide (GO) with nylon-6 solution could allow to upload GO sheets through nylon-6 fibers and facilitate the formation of spider-wave-like nano-nets during electrospinning. GO sheets present on/into nylon-6 spider-wave-like nano-nets were further reduced to RGO using hydrothermal treatment. The impregnated GO sheets into nylon-6 nanofibers and their reduction during hydrothermal treatment were confirmed by FE-SEM, TEM, FT-IR and Raman spectra. The electrical characteristics of pristine nylon-6, GO/nylon-6 and RGO/nylon-6 nanofibers were investigated and it was found that RGO/nylon-6 composite mat had better electrical conductivity than others. The formation of spider-wave-like nano-nets as well as indirect route of incorporation of RGO sheets on electrospun nylon-6 mat may open a new direction for future graphene/polymer electronics.  相似文献   

8.
In this study, a new approach consisting of chemical treatment steps followed by electrospinning process was applied to produce cellulose nanofibers from wheat straws. Wheat straws were initially pretreated by NaOH solution to open the complex structure of raw materials and remove non-cellulosic materials. Then, acid and alkali hydrolysis was separately performed to eliminate hemicellulose and soluble lignin. Also, bleaching processes were implemented to remove the insoluble lignin. Cellulose nanofibers were produced by electrospinning of various concentrations of cellulose in different solvents including sodium hydroxide/urea/thiourea, pure trifluoroacetic acid (TFA), and TFA/methylene chloride. Images obtained by Scanning Electron Microscope (SEM) showed long and uniform nanofibers produced from electrospinning of cellulose/TFA/methylene chloride solution. An epoxy based laminated composite was prepared by a lamina of cellulose microfiber and electrospun nanofiber mat using hand lay-up composite manufacturing method. The fracture surface of the epoxy nanocomposite was analyzed by SEM images. In addition, the mechanical properties of laminated epoxy composites were compared with pure epoxy by conducting tensile and impact tests. Tensile test results showed that the ultimate tensile strength, elongation, and modulus of laminated epoxy nanocomposites were significantly increased. Moreover, it was found that by adding a nanofiber lamina in the epoxy composite, the impact resistance was significantly improved as a result of crack growth prevention.  相似文献   

9.
The graphene oxide (GO) sheets are chemically grafted with γ-etheroxygentrimethoxysilane (KH560) and liquid crystalline epoxy (LCE) is synthesized from 4,4′-bis(2-hydroxyhexoxy)biphenyl (BP2) and epichlorohydrin before being incorporated into epoxy matrix. Then we present a novel approach to the fabrication of advanced polymer composites from epoxy matrix by incorporation of two modifiers, which are grafted GO (g-GO) and LCE. The mechanical properties of epoxy composites are greatly improved by incorporating LCE/g-GO hybrid fillers. For instance, the addition of 3 wt% hybrid filler (2 wt% g-GO and 1 wt% LCE) into the epoxy matrix resulted in the increases in impact strength by 132.6 %, tensile strength by 27.6 % and flexural strength by 37.5 %. Moreover, LCE/g-GO hybrid fillers are effective to increase thermal decomposition temperature, glass transition temperature, and storage modulus by strong affinity between the fillers and epoxy matrix.  相似文献   

10.
Polyurethane (PU) films containing different amounts of fly ash particles (FAPs) were prepared by simple solution casting method. The morphological, thermal, and mechanical properties of the composite films were investigated by several characterization methods. Results show that sufficient amounts (up to 40 wt%) of FAPs can be incorporated throughout the film. The presence of FAPs within PU film not only acts as filler to increase the mechanical strength of the film but also increases its volatile organic compounds (VOCs) adsorption capacity. The VOCs adsorption capacity of FAPs/PU composite films were investigated on three different compounds (chloroform, toluene, and benzene). It showed consistent trend in the order of toluene > benzene > chloroform for all the samples. The VOCs adsorption capacity of PU film was found to be increased by two fold when 20 wt% of FA was incorporated through it. The present results suggest the potential use of FAPs as filler materials for PU films with improved VOCs adsorption from outdoor and indoor air.  相似文献   

11.
The current paper is aimed to compare different arrangement of Ag nanoparticles within silver/reduced graphene oxide (Ag/rGO) nanocomposites on the polyester fabric. rGO sheets cannot be dispersed in the water for long time however, thin layer surfactant-free Ag/rGO nanocomposites were immobilized on the surface of polyester. This leads to attain the preserved array of nanocomposites for a long time. TEM, FESEM/EDX, XRD, XPS, cyclic voltammetry, catalytic activity and electrical resistivity were used to characterize Ag/rGO nanocomposites coated polyester fabric. Interestingly, sonoimmobilization of Ag/GO produced an even coating layer of nanocomposites on the polyester fabric. The prepared fabric can be used as a high active and stable nanocatalyst for reduction of 4-nitrophenol (4-NP) in water at room temperature. The created flexible and light fabric showed low electrical resistance and high catalytic activity, wherein sonoimmobilization of Ag/rGO treated samples indicated highest catalytic activity as 4-NP solution completely reduced to 4- AP with assistance of 2×4 cm2 treated polyester after 25 min. On the other hand, introducing sonoprepared silver nanoparticles among graphene nanosheets led to significant lowering of electrical resistivity from 43 kΩ/square in mechanical stirring methodto 2 kΩ/square using ultrasound.  相似文献   

12.
Graphene is classified as a carbon-based material. Structurally, graphene is made up of carbon-based two-dimensional atomic crystals and a one atom thick planar sheet of sp2-bonded carbon atoms. This sort of arrangement in graphene makes it a unique material with exceptional mechanical, physicochemical, thermal, electrical, optical, and biomedical properties. Methods for graphene-based fabric production mainly use graphene-based materials such as graphene (G), graphene oxide (GO), and reduced graphene oxide (rGO) coated on fabric or yarn. Waterborne polyurethane (WPU) is one of the most rapidly developing and active branches of polyurethane chemistry. More and more attention is being paid to graphene-coated fabrics owing to their low temperature flexibility, the presence of zero or very few VOCs (volatile organic compounds), water resistance, pH stability, superior solvent resistance, excellent weathering resistance, and desirable chemical and mechanical properties. It is used as a coating agent or adhesive for fibers, textiles, and leather. Also, graphene-containing materials have been used to enhance the properties of WPU. In this study, graphene/WPU composite solution and film was prepared to conduct basic research for developing electrical heating textiles which is not harmful to the human body, flexible and excellent in electrical properties. Graphene/WPU composite solutions were prepared with a graphene content of 0, 2, 4, 8, and 16 wt%, and graphene/WPU film was prepared with solution casting method. The graphene contents were analyzed for their surface morphology, electrical properties, and electrical heating properties.  相似文献   

13.
A new thermal conductive poly(vinylidene fluoride) (PVDF) composite has been developed via a hybrid functionalized graphene sheets (FGS)-nanodiamonds (NDs) filler by a simple solution method. The PVDF composite showed different thermal conductivities at different proportion of hybrid filler. The thermal conductivity of the composite was up to 0.66 W/m·K for a mixture containing 45 wt% hybrid filler, which is about 2-fold increment in comparison to the PVDF martrix. The PVDF composites consisting of 20 wt% hybrid FGS/ND filler at the weight ratio of 1:3 shows the best thermal stability. The electrical conductivity of composites was increased from 5.1×10?15 S cm?1 (neat PVDF) to 7.1×10?7 S cm?1 of the PVDF composite with 10 wt% hybrid filler.  相似文献   

14.
Here, a novel method is introduced to create tunable properties on the polyester fabric through diverse chemical modifications. The polyester fabric was primarily modified with NaOH or ethylenediamine to enhance the surface activity. This will produce diverse chemical groups on the polyester fabric surface including carboxylate, hydroxyl and amine groups. The fabric was treated with grahene oxide through exhaustion method. The silver nitrate was then added and simultaneously reduced with grapheme oxide using ascorbic acid and ammonia to produce reduced graphen oxide/silver nanocomposites (rGO/Ag) on the fabric surface. The synthesized nanocomposites were characterized by TEM and Raman spectra. The presence and uniform distribution of the nanocomposites on the fabric surface was also confirmed by SEM images and EDX patterns. The electrical resistivity was varied on the raw and modified polyester fabric due to the diverse formation of the graphene nanosheets network on the fabric surface. More Ag particles were formed on the surface of the alkali hydrolyzed polyester whereas more graphene nanosheets deposited on the aminolyzed polyester fabric. Also the hydrolyzed polyester fabric exhibited higher antibacterial properties with the lowest silver nitrate in the processing solution. The aminolyzed fabric showed a lower electrical resistance than the hydrolyzed and raw fabrics with the same amount of GO in the procedure bath. The aminolyzed polyester fabric indicated higher affinity towards GO produced higher antibacterial properties before reduction and without silver nitrate however lower electrical resistance obtained after reduction comparing with other samples.  相似文献   

15.
Numerous efforts to prepare useful graphene-based nanocomposites have been made and important improvements achieved. In our studies, novel structured polyolefin-based thermoplastic elastomer, poly(ethylene-ter-1-hexene-ter-divinylbenzene) (PEHV) was designed and synthesized. And high quality graphene was manufactured via the exfoliation of graphite. PEHV/graphene nanocomposites were fabricated using solution casting method as the amount of graphene added. The morphologies of nanocomposites were observed using scanning electron microscopy. And density, mechanical properties and electrical properties were also measured. Electrical properties and mechanical properties were improved with the increase of graphene added in nanocomposites. It is expected that PEHV/graphene nanocomposites could be applied to lightweight EMI shielding materials.  相似文献   

16.
Composites consisting of polyurethane (PU)/carbon nanotubes (CNTs) have been successfully prepared by solution mixing method. CNTs were modified through mechano-chemical reaction to increase the compatibility with PU via hydrogen bondings. SEM microphotographs proved that modified CNTs (M-CNTs) became shorter and FTIR spectra showed that hydroxyl groups had been introduced to the surface of M-CNTs. SEM images of PU/M-CNTs composites also proved that M-CNTs were effectively dispersed in PU matrix. Mechanical property tests showed that addition of M-CNTs could significantly improve the tensile properties of PU/M-CNTs composite (breaking strength enhancement ratio for composite with 5.0 wt% M-CNTs was 103.81 %). The thermal stability of composites with M-CNTs was also improved. The initial degradation temperature enhancement was 19.9 oC for the composite with 0.5 wt% M-CNTs. Electrical property tests showed that the electrical properties were improved by adding M-CNTs. The volume conductivities increased 3 and 5 orders of magnitude for the composites with 5.0 wt% and 10 wt% M-CNTs, respectively. The addition of M-CNTs had little effect on the elastic properties of the composites.  相似文献   

17.
Two different sets of polyamide 66(PA66)-based composite films containing 2.0-10.0 wt% acid-treated multiwalled carbon nanotubes (MWCNT) were manufactured by solution mixing and casting method in the presence or absence of a nonionic surfactant. For the improved dispersion and interfacial interaction of MWCNTs in the PA66 matrix, carboxylic acid-functionalized MWCNTs were prepared by the acid-treatment of pristine MWCNTs. The uniform dispersion of the acidtreated MWCNTs in the PA66 matrix was confirmed from FE-SEM images of the fractured composite film surfaces. DSC thermograms supported that the acid-treated MWCNTs served as nucleating agents for the melt-crystallization of PA66 in both composite films prepared with/without the addition of the surfactant. The electrical and tensile mechanical properties of the composite films prepared with the surfactant were ~20 % higher than those of the composite films manufactured without the surfactant. For both composite films, sheet resistivity and tensile mechanical properties were found to be highly decreased and increased, respectively, with the increment of the acid-treated MWCNT content.  相似文献   

18.
In the present study, nanofibrils of cellulose are extracted from waste jute fibers using high energy planetary ball milling process in wet condition. The rate of refinement of untreated fibers having non-cellulosic contents was found slower than treated fibers due to strong holding of fiber bundles by non-cellulosic contents. At the end of three hours of wet milling, untreated fibers were refined to the size of 850 nm and treated fibers were refined to the size of 443 nm. In the subsequent stage, composite films of poly lactic acid (PLA) were prepared by solvent casting with 3 wt% loading of untreated jute nanofibrils, treated jute nanofibrils and microcrystalline cellulose. The influence of non-cellulosic contents on mechanical properties of PLA films are investigated based on results of tensile test, dynamic mechanical analysis and differential scanning calorimetry. The maximum improvement was observed in case of treated jute nanofibril/PLA composite film where initial modulus and tensile strength increased by 207.69 % and 168.67 %, respectively as compared to neat PLA film. These improvements are attributed to the increased interaction of treated jute nanofibrils with PLA matrix due to their higher precentage of cellulosic contents and mechanically activated surface.  相似文献   

19.
In this paper, we report on the fabrication and characterization of poly(sulfone amide)/graphene (PSA/G) nonwoven based nanocomposite mat assembled via electrospinning technique. Different types of nanocomposite mats were electrospun by varying the weight percentage of graphene in the polymer solution. The surface morphologies, chemical structural, thermal, and electrical properties of the nanocomposites were evaluated systematically. The morphology of the PSA/G nanocomposites exhibited that mesh-like ultrafine nanofibers were densely aligned. Thermal stability and electrical properties of the PSA/G composites could be improved obviously with the addition of graphene. And the thickness uniformity of the nanocomposite mat was improved by using an electrospinning system. Our experimental results suggested that the PSA/G nanocomposites have potential to serve in many different applications, especially in the area of electronic components.  相似文献   

20.
This study prepared a polyethylene glycol (PEG)/sisal fiber cellulose (SFC)/graphene oxide (GO) composite using a novel dynamic impregnating method to obtain a high-performance shape-stabilized phase change materials (PCMs). In this material, the ternary system PEG served as the latent heat storage material and SFC and GO served as the supporting materials. The structure, morphology, thermal conductivity, phase change temperature, and latent heat of the composite PCMs were characterized by fourier transform infrared spectroscopy, wide-angle X-ray diffraction, polarizing microscope, digital camera, scanning electron microscopy, differential scanning calorimetry, and thermal conductivity analysis. Results show that the composite PCMs exhibit a fine impregnation morphology and excellent shape-stabilized feature during the phase change process, the shape of the PEG/SFC/GO composite PCMs are unchanged even after being placed on a 85 °C hot plate. Thermal behavior tests indicate that the composite PCM (PEG weight percentage of 80 wt.%) shows a high latent heat storage capacity of approximate 140 J/g after more than 100 thermal cycling, and exhibits good heat-conducting performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号