首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Electron beam irradiation grafting of acrylic acid (AAc), acrylamide (AAm), and dimethyl vinylphosphonate (DMVP) onto poly(ethylene terephthalate) (PET) fabrics was performed using a high-energy electron accelerator. Parameters affecting the graft polymerization of PET fabrics, including absorbed dose and monomer concentration, were investigated. Fourier transform infrared spectroscopy analysis confirmed that the monomers were grafted onto the PET fabrics. The thermal behavior of the grafted PET fabrics was investigated with thermogravimetric analysis. Findings showed that grafting with AAm could improve the thermal stability of PET. The limiting oxygen index values and vertical flammability test results showed that PET fabric graft-polymerized with AAc could improve the flammability and prevent melt dripping. Grafting with AAm and DMVP could improve the flame retardation property of PET fabric. Scanning electron micrographs showed that the surface morphology of the PET fabric samples was significantly influenced by graft polymerization, and that grafting with AAc could promote the formation of residual char and impart an anti-dripping quality to PET fabrics.  相似文献   

2.
A series of hybrid materials composed of zirconia, silica, and thiazole dyes were synthesized from zirconium npropoxide (ZNP) and tetraethoxysilane (TEOS) using heteroaryl 2-amino-thiazole azo dyes, and prepared via the sol-gel process. The heterocyclic 2-amino-thiazole azo dyes underwent a hydrolysis-condensation reaction with an appropriate proportion of ZNP under a catalyst, using a constant ratio of vinyltriethoxysilane (VTES) and TEOS. The structures of these hybrid materials composed of zirconia/silica/thiazole dyes were characterized using Fourier transform infrared (FT-IR) analysis. The surface morphologies of the polyethylene terephthalate (PET) fabrics were evaluated using scanning electron microscopy (SEM). The SEM images demonstrated the uniform dyeing of the PET fabrics, which confirmed the reaction of the hybrid materials with the PET fabrics. The water contact angle, washing fastness, color uniformity, and warmth retention of the PET fabrics dyed with the hybrid materials composed of the zirconia/silica/thiazole dyes were evaluated. The evaluation results indicated that these fabrics offered enhanced warmth retention properties and good water repellency.  相似文献   

3.
The dyeing and color fastness properties of two reactive-disperse dyes containing a sulfatoethylsulfone group on nylon, PET and N/P mixture fabrics were examined. The rate of dyeing on nylon fabric was greatly dependent upon dye bath pH. The final dye uptakes at all pH, however, were as high as 97 %. Color strength of the dyed nylon fabric linearly increased up to 0.5 %owf and then slowed down over 1 %owf dyeing. Washing and rubbing fastness of the dyed nylon fabric were excellent, but grade of light fastness was moderate. Dyeability of the reactive-disperse dyes on PET fabric was not much affected by pH, and K/S values of PET fabric dyed at pH 5–8 were lower than those of nylon fabric at all pH examined. Buildup and color fastnesses properties on PET fabric showed the same tendency with nylon fabric. The rate of dyeing of the reactive-disperse dyes on nylon fabric was faster than on PET fabric when both fabrics were dyed simultaneously in the same dye pot, resulting in higher color strength of nylon than PET. The reactive-disperse dyes were found to be adequate to the one-bath, one-step dyeing of N/P mixture fabric when applied at pH 5 and 120 °C.  相似文献   

4.
Poly(acrylic acid) and poly(hydroxyethyl methacrylate) were introduced onto PET fabrics by UV-induced photografting to improve its hydrophilicity. Several factors affecting the photografting were studied including irradiation energy, monomer, and photoinitiator (PI) concentrations. ATR and ESCA analyses proved successful grafting of the two monomers onto PET. Morphology of fabric surface was examined using FE-SEM. Both zeta potential and water wetting time of the grafted PET fabrics decreased with increasing grafting yield. Also cationic dyeability of the grafted PET fabrics increased because of the increased electrostatic interactions between the anionic dyeing sites and cationic dyes.  相似文献   

5.
A series of hybrid materials composed of boehmite/silica/thiazole dyes and prepared via the sol-gel process is synthesized from aluminum isopropoxide (AIP) and tetraethoxysilane using heteroaryl 2-amino-thiazole azo dyes. Heterocyclic 2-amino-thiazole azo dyes undergo a hydrolysis-condensation reaction with an appropriate proportion of AIP under a catalyst, at a constant ratio of vinyltriethoxysilane (VTES) and tetraethoxysilane (TEOS). The structures of these hybrid materials composed of boehmite/silica/thiazole dyes are characterized using Fourier transform infrared (FT-IR) analysis. The surface morphology of polyethylene terephthalate (PET) fabrics is evaluated using scanning electron microscopy (SEM). SEM images show uniform dyeing of the PET fabrics that confirms the reaction of the hybrid materials with the PET fabrics. The water contact angle, washing fastness, color evenness, air permeability, and warmth retention of the PET fabrics dyed with hybrid materials composed of boehmite/silica/thiazole dyes are evaluated. The evaluation results indicate improved warmth retention property and good water repellency.  相似文献   

6.
A series of some novel hybrid materials prepared via a sol-gel process have been synthesized from methyltrimethoxysilane and titanium n-butoxide with heterocyclic thiazole azo dyes. Silica/titania/thiazole azo dyes hybrid materials were synthesized via a sol-gel process with a precursor system. Alternatively, the heterocyclic thiazole azo dyes were catalytically processed by means of hydrolysis-condensation reactions with appropriate amounts of a mixture of vinyltriethoxysilane, methyltrimethoxysilane, and titanium n-butoxide at a fixed molar ratio. The structure of these hybrid silica/titania/thiazole dye materials was characterized by Fourier transform infrared (FT-IR) analysis. The surface morphology of processed PET/PA6 nonwoven fabrics was evaluated by scanning electron microscopy (SEM). SEM images showed uniform dyeing, thereby confirming the reaction of the hybrid materials with the PET/PA6 nonwoven fabrics. The water contact angle, washing fastness, color evenness, air permeability, and weatherability characteristics of the as-prepared dyed PET/PA6 nonwoven fabrics were subsequently evaluated. Results revealed improved weatherability and good water repellency. Further, it was also revealed that dyeing and finishing could be achieved in a single bath, which is advantageous to reduce processing costs.  相似文献   

7.
A porous complex structured woven fabric was manufactured to maximize the moisture transition ability of the prepared fabric by increasing the absorptive property of the fabric through surface modification using plasma, which is a dry modification method. Porous single and complex structured woven fabrics were produced by applying pattern, porosity, and plasma technology, including fabric patterning based on the sheath/core complex structure, the formation of porosity by removing the weft thread or warp thread, and hydrophilic surface treatment using plasma and the improvement in water absorption of different fabrics by the porous and plasma treatment was investigated. Therefore, two different types of fabrics were prepared. One is the porous single structured FAB-SINGLE fabric which was taken out in the direction of the Polyester (PET) warp thread of a general single structure to form a porous. Another is FAB-COMPLEX fabrics that the water-soluble polylactic acid (PLA) yarns with a 1.7 to 2.0 times longer absorption distance than that of PET yarns were inserted into the weft threads, and the PLA yarns were dissolved in a solvent to form the porous complex fabric. And then the physical properties and water absorption of the two types of fabric were compared after the plasma treatment. The results showed that when the FAB-SINGLE fabric, which has porosity induced by the removal of the warp threads in a certain gap, was plasma treated for 5 min, the contact angle was decreased to the extent that a measurement of the contact angle was impossible, whereas the fabric that had not undergone a plasma treatment had a contact angle of 123.6 o. The contact angle of the FABCOMPLEX with porosity caused by the dissolution of the PLA yarns was reduced from 76.8 o to 0 o after 3 minutes of a lowtemperature plasma treatment, indicating that the hydrophilic property was increased. In addition, the water absorption measurements showed that the absorption height was increased from 2.3 cm of the fabric sample that had not been treated with plasma to the highest absorption height of 8.3 cm, suggesting that the water absorption also increased with the improvements in moisture transition ability by the plasma treatment. The physical tensile strength of the fabrics was not changed by the plasma treatment, despite the changes on the fabric surface, suggesting that the combination of double complex structures and the plasma treatment helped improve the water absorption.  相似文献   

8.
We report herein a superhyrodrophobic poly(ethylene terephthalate) (PET) fabric prepared through a biomimetic method of the Lotus effect. To attain the Lotus effect on the PET fabrics, physical roughness and chemical hydrophobicity were controlled by adopting silica nanoparticles and a commercial water-repellent agent, respectively. For this, narrow-size distributed silica nano-particles were prepared by a sol-gel process. The water contact angle on PET fabric treated with both silica nanoparticles and water-repellent agent reached 158°, which was much higher than 137° reached by the fabric treated with the water-repellent agent only.  相似文献   

9.
In the present paper, flame resistance property is imparted to cotton fabrics by N-methylol dimethylphos-phonopropionamide (Pyrovatex CP New, FR), melamine resin (Knittex CHN, CL), phosphoric acid catalyst (PA), and ZnO/nano-ZnO co-catalyst. The study shows that effectiveness of the FR-CL-PA reaction to form a crosslinked structure is enhanced by the co-catalytic reaction, resulting in enhancement of fabric’s compressional recovering ability. However, the low pH reaction weakened the fabrics, resulting in poor tensile strength and toughness, stiffer hand feel, brittle and tendered polymer layers, a less spongy fabric structure, and a roughened fabric surface with fuzzy fibrils. In addition, atmospheric pressure plasma jet (APPJ) was used to enhance materials properties by sputtering or etching effect. The roughening effect of plasma treatment enhances tensile properties of treated specimens. Nevertheless, the positive effect is negligible after post-treatment with flame-retardant agents. Moreover, the increased inter-yarn friction enhances the subjective stiffness of fabric and the rigid effect is even worse for plasma pre-treated cotton specimens subjected to flame-retardant treatment. However, plasma pre-treated specimens have a compressible structure after post-treatment with flame-retardant agents. Moreover, neutralization of flame-retardant-treated specimens helps minimize side effects of acidic finishing, irrespective of tensile and compression properties. The process also minimizes shear and bending rigid effect by removing unattached metal oxides from the fabrics.  相似文献   

10.
Oxygen plasma pre-treatment was applied to cotton fabric with the aim of improving the water repellency performance of an inorganic-organic hybrid sol-gel perfluoroalkyl-functionalized polysilsesquioxane coating. Cotton fabric was pre-treated with low-pressure oxygen plasma for different treatment times and operating powers. Afterward, 1H,1H,2H,2H-perfluorooctyltriethoxysilane (SiF) was applied to the cotton fabric samples using the pad-dry-cure method. The surfaces of the untreated and modified cotton fibers were characterised using Fourier transform infrared spectroscopy, Xray photoelectron spectroscopy, scanning electron microscopy, and atomic force microscopy. The water repellency of the SiF-coated fabric samples was evaluated using static and sliding contact angle measurements with water. The results show that the plasma treatment with the shortest treatment time (10 s) and the lowest operating current (0.3 A) increased the atomic oxygen/carbon ratio of the cotton fiber surface from 0.6 to 0.8 and induced the formation of a nano-sized grainy surface. Increasing the plasma treatment time and/or operating current did not intensify the surface changes of the cotton fibers. Such saturation effects were explained by the large influence of reactive oxygen atoms during the plasma treatment. The measured static water contact angles on the surface of the untreated and plasma pre-treated and SiF-coated cotton fabrics showed that the oxygen plasma pre-treatment enabled the increase of the water contact angle from 135° to ≈150°, regardless of the applied plasma treatment time and discharge power. This improvement in the hydrophobicity of the SiF coating was followed by a decrease in the sliding angle of water droplets by more than 10° compared to the plasma untreated and SiF-coated sample characterized by a water sliding angle of 45°. Additionally, measurements of the water sliding angle revealed that the increase of the static contact angle from 149° to 150° corresponded to a drop of the water sliding angle from 33 to 24°, which suggests that the plasma pre-treatment of 20 s at an operating current of 0.3 A produced the best water-repellent performance of the SiF-coated cotton fabric.  相似文献   

11.
Dimethylaminopropyl methacrylamide (DMAPMA) was grafted onto PET/wool blend fabrics by continuous UV irradiation. Union dyeing of the photografted fabrics was investigated using three reactive dyes of α-bromoacrylamide reactive groups. The influence of grafting yield, DMAPMA concentration, NaCl amount, pH value, and dyeing temperature on the dyeability was evaluated. The dyeability of both PET and wool components was improved significantly by the DMAPMA photografting and successive reactive dyeing. Although the dyeability of the PET component in the blend substantially was improved with higher grafting, equal dyeability between PET and wool was difficult to achieve due to more facile grafting and higher reactivity of the wool component compared with the modified PET component. However, the color fastness of the PET/wool blend fabric was excellent for all three colors. This study may offer a way to achieve union dyeing of PET/wool blend fabrics.  相似文献   

12.
In Part 1 of this study, the dyeability, color shade, wash, light fastness and compatibility of homogeneous disperse dyes on PLA fabric and PET fabric were reported. The present paper (Part 2) focuses on the application of commercial disperse dyes to PLA fabric. Specific areas of investigation are the coloration properties of dyes originally intended for the production of high lightfastness polyester fabrics or for application to cellulose diacetate. The compatibility of the eight members of the dye set was investigated. In terms of lightfastness, the ratings were higher than that of conventional disperse dyes. In addition, the use of dye combinations to achieve synergistic uptake on PLA was explored leading to the pronounced synergism with a mixture of CI Disperse Blue 374 and 284.  相似文献   

13.
Ultra porous and flexible PET/Aerogel blankets were prepared at ambient pressure, and their acoustic and thermal insulation properties were characterized. Two methods were selected for the preparation of PET/Aerogel blanket. Method I was a direct gelation of silica on PET. PET non-woven fabric was dipped and swelled in TEOS/ethanol mixture, and pH of reaction media was controlled to 2.5 using HCl to promote hydrolysis. After acid hydrolysis, pH was controlled to 7,8,9, and 10 with NH4OH for the condensation. Method II was by the dipping of PET non-woven fabric in the dispersion of Silica hydrogel. The gelation process was same with Method I. However, PET fabric was not dipped in reaction media. After the hydrogel was dispersed and aged in EtOH for 24 hrs, then, PET non-woven fabric was dipped in the dispersion of hydrogel/EtOH for 24 hrs. The surface modification was carried out in TMCS/n-hexane solution, then the blanket was washed with nhexane and dried at room temperature to prevent the shrinkage. The silica areogels synthesized in optimum conditions exhibit porous network structure. Silica aerogel of highly homogeneous and smallest spherical particle clusters with pores was prepared by gelation process at pH 7. When direct gelation of silica was performed in PET nonwoven matrix (Method I), silica aerogel clusters were formed efficiently surrounding PET fibers forming network structure. The existence of a great amount of silica aerogel of more homogeneous and smaller size in the cell wall material has positive effect on the sound absorption and thermal insulation.  相似文献   

14.
In this study, a hybrid silica sol-gel embedded with a photochromic dye has been applied to wool fabric to form a photochromic coating. The treated wool fabrics showed very quick photochromic response. Five different silanes have been used as the silica precursor, and the resultant coating showed slight differences in photochromic performance, fabric washing fastness, and surface hydrophilicity. However, the silica type had a considerable influence on fabric handle property. The silica matrix from the silane containing a long alkyl chain had a very little influence on the fabric handle and better photochromic performance than those from other different silane precursors.  相似文献   

15.
The properties of moisture transfer and the comfort of mesh-structured fabrics with various knit compositions and properties were investigated. The comfort effects of the double knitted fabrics combined with different cross-shaped fibers composed of dyeable-polypropylene (PPd) and regular polyester (PET) double-knitted fabrics were studied. A series of PET, PPd, Coolmax® (Cm) with single knitted fabrics and PPd/Cm with double knitted fabrics were evaluated to determine the physical properties and wearing performance for comfortable clothing. To compare the structural properties involving the vapor transfer of 4 types of fabrics with different fiber compositions, fiber types, weights, and thicknesses, the surface structure and pore characteristics were evaluated by scanning electron microscopy and a capillary flow porometer. The properties of moisture transfer were tested using vertical wicking and gravimetric absorbent testing system (GATS). In addition, the comfort performance measured by the thermal insulation value (Rt) and moisture permeability index (im) with a thermal manikin in a conditioned walk-in environmental test chamber was predicted. The result showed that the PPd/Cm sample has potential applications as good comfort fabric materials.  相似文献   

16.
Electromagnetic shielding has a very emerging role in the textile applications. Screen-printing is a well-known, easy and cost effective process for textile printing. In this study, carbon black and graphite particles were used to impart electromagnetic shielding property to polyester fabric by screen printing technique. To this aim, printing pastes containing carbon materials were prepared with different binder concentrations. The electrical resistance, surface morphology, color coordinates and washing fastness properties of screen printed polyester fabrics were investigated. The washing durability of electromagnetic shielding effectiveness of carbon based printed fabrics as a function of binder concentration have also been studied. Electromagnetic shielding effectiveness was evaluated in the frequency ranges between 15-3000 MHz. The results showed that the electromagnetic shielding properties of fabric were affected by increased binder concentration. The most durable electromagnetic shielding effectiveness after washing process was obtained at highest binder concentration. The surface morphologies and color difference values of printed fabrics after washing process also provided a positive contribution.  相似文献   

17.
Hydrophobic synthetic textile substrates, nylon and polyester fabrics, were continuously treated in an atmospheric-pressure-glow-discharge-cold-plasma reactor using He and air. The samples were evaluated for antistatic properties by measuring the static charge build-up and half charge decay time. The 60 sec air-plasma treated nylon fabric produced only 1.53 kV of charge and showed a significantly smaller half decay time of 0.63 sec compared to static voltage of 2.76 kV and a half decay time of 8.9 sec in the untreated nylon fabric. In comparison, the He plasma treated nylon fabrics showed relatively less improvement by producing static charge built-up of 2.12 kV and half charge decay time of 1.1 sec. Similar improvements were obtained for polyester (PET) fabrics as well. The treated samples showed good antistatic properties even after five laundry wash cycles. The surface characteristics of the samples were investigated using SEM, AFM, and ATR-FTIR. The results revealed that the improvement on antistatic properties are attributable to increase in the surface energy of the fabrics due to the formation of hydrophilic groups and increase in the surface area due to the formation of nano-sized horizontal and vertical channels on the fibre surface. The study suggests that plasma treatment may be used for imparting effective antistatic finish on otherwise hydrophobic substrates.  相似文献   

18.
Plasma gases of oxygen and argon were employed for pre-treating silk fabric before conducting electroless silver plating in this study. The effect of plasma pre-treatment with oxygen and argon gases on the electroless silver-plated silk fabric was investigated. Based on the observation of micro-structure using SEM, it was found that there was an increase in the amount of silver particles deposited on the silk fibre surface after plasma pre-treatment. The functional properties of plasmainduced electroless silver-plated silk fabrics were also evaluated. The increase in weight of the silver-plated silk after plasma pre-treatment was determined. When compared, the oxygen plasma treatment could improve the effect of silver plating on the silk fabric. Additionally, anti-static, anti-bacterial, UV protection and water-repellent properties of the silver-plated silk fabric were determined in this study.  相似文献   

19.
Plasma treatment of textiles is becoming more and more popular as a surface modification technique. It not only changes the outermost layer of a material without interfering with the bulk properties but also offers the advantage of greater chemical flexibility to obtain multifunctional textiles. Inkjet printing is becoming increasingly important and popular for the printing of textiles. When polyester fabric is inkjet printed with pigment-based inks, the printed patterns have poor color yield and easily bleeding. As a result, the fabric requires pretreatment prior to the stage of ink-jet printing. In the present study the polyester fabric was printed with magenta pigment ink after radio frequency O2 plasma surface-treatment. At such condition, polyester fabric could obtain the effects of features with enhanced color yield and excellent pattern sharpness. The results showed that there were better patterns when the polyester fabric was treated for 9 min at a working pressure of 40 Pa and a working power 80 W. SEM images indicated that radio frequency oxygen plasma induced modifications to the surface of polyester fabric with more micro pits. Water absorption time measurement showed that the hydrophilicity of polyester fabric was remarkably improved after treatment. Anti-bleeding performance of the fabric was improved greatly, too. Therefore, radio frequency O2 plasma treatment with the ink-jet printing technique could improve the final printed properties of polyester fabric.  相似文献   

20.
Three unreported cationic reactive dyes based on azobenzene were synthesized using a novel synthetic route. Synthesized dyestuffs containing three primary color dyes were characterized by FTIR, H-NMR, LC-MS, Element Analysis and UV-vis spectroscopic techniques. The absorption spectra of dyes were measured in three solvents with different polarities. The dyeing and color fastness properties of three cationic reactive dyes on wool, acrylic and wool/acrylic blend fabrics were determined. The optimum pH for wool and acrylic fabrics were 6 and 5, respectively. Effect of temperature, time on dyeing properties and color fastness properties on wool fabric showed the same tendency with acrylic fabric. The K/S value of wool fabric dyed with three dyes was similar to that of acrylic fabric when both fabrics were dyed simultaneously in the same dyebath using low dye concentration. Wool/acrylic blend fabric dyed with three cationic reactive dyes using onebath one-step method achieved good union dyeing property and excellent color fastness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号