首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Protein and polysaccharide was the most important extracellular matrix in dermal tissue. In this study, Silk fibroin (SF) / hyaluronic acid (HA) blend films mimicking the dermal tissue components were prepared and investigated. The results indicated that HA and SF has a good miscibility, HA interfered with SF to form crystal structure. By using EDC as cross-linker, effective cross-linking function on SF and HA macromolecules was reacted, the water solubility of the blend films decreased obviously after being cross-linked by EDC. The existence of EDC could promote SF to form Silk I structure. L929 cells were seeded on these blend films and showed normal attachment morphology. Cell-matrix interactions established by newly formed extracellular matrix were observed after 5 days in culture. The MTT assay showed that cell proliferation on the SF/HA blend films were enhanced significantly compared with that on the SF and HA films. These new 2D SF/HA blend films provided a favorable microenvironment for the proliferation of L929 cells and hold a potential for dermal tissue regeneration.  相似文献   

2.
Cartilage repair is a challenge in bone tissue reconstruction. In this study, silk fibroin (SF), chondroitin sulfate (CS) and hyaluronic acid (HA) were employed to fabricate scaffolds for tissue engineered cartilage by freeze drying technique. The secondary pores were formed in the main pores of SF/CS/HA scaffold which improved the pore connectivity and equilibrium swelling of the scaffold. Furthermore, rat bone marrow mesenchymal stem cells were seeded on the scaffolds to evaluate the cell adhesion and proliferation. Results of hematoxylin/eosin staining and cell counting kit-8 assay showed that the cells migration and differentiation of SF/CS/HA (80/15/5) scaffold were better than that of SF/CS/HA scaffolds with different ratios after 7 days culture. Moreover, immunohistochemistry and scanning electron microscope demonstrated that large amounts of collagen II and proteoglycans of the cells were expressed in the SF/CS/HA 3D scaffold, while the expression of collagen I was barely visible by immunohistochemistry. Abound of extracellular matrix was formed to morphologically round and distributed uniformly throughout the scaffolds. The 3D ternary scaffold could promote the cells chondrogenic differentiation without using any inductive agent and offer potential for cartilage tissue regeneration.  相似文献   

3.
Conventional textile based wound dressing materials are cost effective and highly absorbent, but when used alone fails to provide optimal wound healing conditions like homeostasis, non-adherence, maintenance of a moist wound bed, etc. Electrospun polymer web meets the requirements outlined for wound healing, by their microfibrous structures provide suitable environment for wound healing apart from the function of polymers. In this study, blends of soy protein isolate (SPI) and poly(ethylene oxide) (PEO) nano fiber web was prepared by electro spinning process. The developed blended nano fiber web was subjected to SEM, FTIR to evaluate fiber size and functional properties respectively. The Moisture vapour transmission rate (MVTR) result shows the blended electrospun web gives suitable mosit environment over wound bed such as the MVTR is 2994 g/m2/day. The blended electrospun web gives positive result on antimicrobial activity. The effect of SPI/PEO blended electrospun web on wound healing was experimented with female wistar rats and the blended electrospun web shows excellent result on wound healing by the growth of new epithelium without any significant adverse reaction. Forming of SPI/PEO electrospun fiber was fulfilled many critical elements desirable in a wound material.  相似文献   

4.
Avena sativa L. (Poaceae) has been reported to have traditional utilization against skin diseases and inflammation. Therefore, in this study, the n-hexane, ethyl acetate, ethanol, and water extracts of A. sativa were investigated for their wound healing and antioxidant activities. Total phenol and flavonoid contents of the extracts were established spectrophotometrically. For the wound healing activity, linear incision and circular excision models on rats and mice were evaluated with a standard ointment Madecassol®. Antioxidant activity was evaluated by 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging, ferrous ion-chelating, and ferric-reducing antioxidant power (FRAP) assays. Significant wound healing activity was observed with the ointment formulation of the ethanol extract at 1% concentration. The histopathological examination results also supported the outcome of both linear incision and circular excision wound models. All of the extracts exerted low antioxidant activity in the applied assays. The present study provides a scientific evidence for the traditional usage of A. sativa in the management of wound healing.  相似文献   

5.
Fabrication of Ceftazidime (CTZ) loaded silk fibroin/gelatin (SF/GT) nanofibers (NFs) without the loss of structure and bioactivity of CTZ was demonstrated by electrospinning method. The structure, morphology and mechanical properties of the electrospun SF/GT nanofibrous mats were characterized using FT-IR, SEM and DSC. The drug release profile of different electrospun fibers was analyzed using spectrophotometric method, and also diffusion method was applied to assess the antibacterial effect of NFs. Cell viability was evaluated by MTT assay. The results show that the average diameter of drug loaded NFs at the optimum polymer to drug feeding ratio (10:1) was 276.55±35.8 nm, while increasing the feeding ratio to 1:1 increases the average diameter to 825.02±70.3 nm. FT-IR of drug loaded NFs was revealed that CTZ was successfully encapsulated into NFs while viability study approved cytocompatibility of SF/GT NFs. CTZ was released from NFs during 6 h, and formation of inhibition zone in diffusion test demonstrated the antibacterial effect of drug loaded NFs. Altogether, the CTZ loaded SF/GT NFs can improve the drug effectiveness particularly in the prevention of post-surgical adhesions and infections for wound dressing.  相似文献   

6.
The study aims at performing a comparative assessment of two types of burn wound treatment. The present study was designed to prepare crosslinked and blended two natural polymers nanofiber scaffolds using gelatin (GE) and hyaluronic acid (HA). The GE/HA composite nanofibrous membranes with varied GE/HA weight ratio have also been successfully fabricated by an electrospinning method. The average diameter of GE/HA fibers was in the range of 20 to 150 nm. In vivo efficacy was also investigated based on a deep second degree burns model for Wistar rats. At 14 days post-operation, the dermal defect basically recovered its normal condition. A percentage of wound closure of GE/HA composite nanofibrous membranes and ChitoHeal gel reached up to 81.9 % and 77.8 % respectively, compared with 65 % of the untreated control (p<0.05). Also, histological parameters were assessed on postoperative day 7 and 14. The results of in vivo experiments showed that more epidermis was formed in the gel and scaffold groups compared to the control group. The numbers of inflammatory cells in these two groups were also smaller as compared with the control group, which could well be the reason for the delayed healing in the control group.  相似文献   

7.
In this report, silk fibroin (SF) mats coated with silver nanoparticles (AgNPs) were manufactured as a prototypic wound dressing and evaluated for antimicrobial properties. SF was extracted from cocoons of Thai silkworms Bombyx mori (variant Nangnoi Si Sa Ket) and fabricated into nonwoven mats by electrospinning. In a one-step synthesis method, colloidal AgNPs were prepared from silver nitrate by gamma irradiation and inspected by transmission electron microscopy. Using the in vitro disc diffusion and growth-inhibition assays, AgNP-coated SF mats effectively inhibited the growth of Staphyllococus aureus and Pseudomonas aeruginosa when the coating solution containing colloidal AgNPs was 4 mM, or equivalent to 50.4 ng/cm2 of adsorbed AgNPs. Based on these results, the AgNP-coated SF mats can potentially be used as antimicrobial wound dressings.  相似文献   

8.
In this study, we examined the effects of a dextran-modified silk fibroin nanofibrous mat (D-SFNM) on wound healing. To increase the hydrophilicity of silk fibroin (SF), the SF nanofibrous mat (SFNM) was modified with oxidized dextran. The D-SFNM absorbed water faster than the SFNM, and the swelling ratio was increased by approximately 80 % compared with the SFNM. An in vitro cell (NIH3T3) test revealed that fewer cells attached to the D-SFNM than the SFNM, but the proliferation of cells was not significantly affected by the presence of dextran. An in vivo wound healing test with mice indicated that the D-SFNM resulted in a good wound recovery effect similar to a commercial wound dressing material. The increased hydrophilicity of the D-SFNM might balance the moist environment at the wound site, which improves the wound healing compared with the SFNM.  相似文献   

9.
New applications call for many new requirements. In order to improve the toughness of aldehyde hyaluronic acid (A-HA) and adipic acid dihydrazide (ADH) hydrogel, the poly(ethylene glycol) (PEG) was added. PEG content and molecular weight have little effect on the gelation time, and the composite hydrogels can form in situ within 20 seconds at room temperature. The press test showed that the hydrogels containing PEG possessed a better compression resistance, after pressed more than five times, the composite hydrogels could restore. Rheological properties were measured to evaluate the working ability and the effect of PEG on hydrogels. By analyzing the shear viscosity (η γ=0.01), yield stress (σ 0) and threshold shear stress (σ c ), the addition of PEG can make the structure of composite hydrogels get loose and improve the shear resistance. Especially, PEG800 can enhance the antishear ability obviously. The amplitude sweep tests showed a broad linear viscoelastic region, indicating a wide processing range. In the meanwhile, we also found that PEG can improve the optical transmittance of xerogel evidently.  相似文献   

10.
We report our study on fabrication of soluble eggshell membrane (SESM) and silk fibroin (SF) nanofibers composite (SF/SESM) for facemasks by electrospinning. Biocompatibility of the SF and SESM, determined from hydrophilicity results, is exploited in SF/SESM nanocomposite for facemask application. The SF/SESM nanocomposites were prepared in different ratios of SF and SESM. The samples were characterized by scanning electron microscopy (SEM), FTIR and water droplet adsorption tests conducted via water contact angle (WCA) and water droplet diffusion. The results revealed that addition of SESM has insignificant effect on the electrospinnability of SF nanofibers in the studied ratios. The SEM results depicted regular morphology of the nanofibers except increase in nanofiber diameter with addition of SESM. The FTIR results confirmed respective peaks of SF and SESM in SF/SESM nanocomposite. WCA of the nanofibers decreased with addition of SESM such that for SF/SESM30, 30 % SESM, it reduced to 0 ° from 101 ° for pure SF nanofibers. The research results demonstrate SF/SESM30 nanocomposite as optimum ratio of SF and SESM for facemasks and other biomedical applications.  相似文献   

11.
Summary A rapid and simple method for assessing wound healing in dises of potato tuber tissue has been developed. The rate of water loss is measured when batches of six dises are briefly exposed in a stream of air. The rate of water loss shows little change during the early stages of wound healing but decreases rapidly later.  相似文献   

12.
The bamboo yarn of Ne 40s was used for the preparation of the Gauze fabric. The physical properties such as areal density and stiffness of fabrics were measured. The fabric was then scoured and bleached as per the standard procedure using distilled water. Chitosan-sodium alginate, Calcium-sodium alginate polymer and their mixture were coated separately on the gauze structure to improve the antibacterial and wound healing property of the bandage. Scanning electron microscope (SEM) analysis was carried out to observe the uniform distribution of polymers in the samples. The antibiotic drugs were selected based on the antibiotic sensitivity test. The drugs such as Tetracycline hydrochloride (250 mg), Chloramphenicol (250 mg) and Rifampicin (250 mg) were immobilized on the polymer coated fabrics to increase the rate of wound healing and antibacterial activity. The drug loaded samples were subjected to drug release study for about four days in a static condition. The results show that good amount of drug was released during all the four days. Further, the antibacterial activity of the drug loaded and polymer coated samples were evaluated against S. aureus and Proteus bacteria. The results show excellent antibacterial activity.  相似文献   

13.
In recent decades, tremendous research has focused on the production of nanoscale fibers using synthetic polymers, with the goal of fabricating nanofibrous scaffolds for wound healing. However, the hydrophobicity of such polymers typically hinders attachment and proliferation of the cells. In this study, we combined poly-d,l-lactide-co-glycolide (PLGA) and small intestine submucosa (SIS) to fabricate blended nanofibers for wound healing by electrospinning. PLGA and SIS were dissolved in 1,1,1,3,3,3-hexafluoro isopropanol to produce different weight ratios of PLGA/SIS-blended nanofibrous membranes (NFM). Physicochemical characterization of the electrospun NFM was performed by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy, water contact angle analysis, degradation test and tensile testing. The PLGA/SIS-blended NFM showed improved hydrophilicity and tensile strength. Better infiltration, attachment and proliferation of rat granulation fibroblasts of PLGA/SIS-blended NFMs compared to PLGA NFMs were identified by morphological differences determined by SEM and a water-soluble tetrazolium salt assay kit. Based on our results, the PLGA/SIS blended NFMs were found to be suitable for use as a potential material for wound dressing.  相似文献   

14.
In this study, a kind of hydrogel nanofibers were successfully fabricated via solution blowing of chitosan (CS) and polylactic acid (PLA) solutions mixed with various contents of polyethylene glycol (PEG) to offer hydration. The nanofibers with PEG content varying were average 341-376 nm in diameter with smooth surface and distributed randomly forming three-dimension (3D) mats. Glutaraldehyde (GA) vapor was then applied to impart stability, and the cross-linking reaction mainly occurred between GA and hydroxyl groups which was confirmed by XPS. The hydrogel nanofibers showed quick absorption behavior, high equilibrate water absorption and good air permeability which could help the mats absorbing excess exudates, creating a moist wound healing environment and oxygen exchanging in wound healing. The mats also exhibited good antibacterial activities against E. coil. The combination advantages of nanofibers mats and hydrogel will help it find promising application in wound healing.  相似文献   

15.
A three-dimensional, porous collagen/chitosan complex sponge was prepared to closely simulate basic extracellular matrix (ECM) constitutes, collagen and glycosaminoglycan. The complex sponge was prepared by a lyophilization method and had the regular network with highly porous structure, suitable for cell adhesion and growth. The pores were well interconnected, and their distribution was fairly homogeneous. The complex sponge was crosslinked using 1-ethyl-3-(3-dimethyl aminopropyl) carbodiimide (EDC) and N-hydroxysuccinimide (NHS) to increase its biological stability and enhance its mechanical properties. The crosslinking medium had a great effect on the inner structure of the sponge. The homogeneous, porous structure of the sponge was remarkably collapsed in an aqueous crosslinking medium. However, the morphology of the sponge remained almost intact in a water/ethanol mixture crosslinking milieu. Mechanical properties of the collagen/chitosan sponge were significantly enhanced by EDC-mediated crosslinking. The potential of the sponge as a scaffold for tissue engineering was investigated using a Chinese hamster ovary cell (CHO-K1) line.  相似文献   

16.
The aim of the present study was to prepare nanofibers loaded with montelukast, a cysteinyl leukotrienes (CysLTs) inhibitor, with anti-inflammatory properties effective on wound healing. Polymeric nanofibers containing montelukast were spun by electrospinning method using different ratios of the blend of two biodegradable polymers of poly(methyl vinyl etherco-maleic acid) (PMVEMA) and poly(lactic-co-glycolic acid) (PLGA) at the total polymer concentration of 37 %, the distance of the needle to rotating screen of 19 cm, the voltage of 12 Kv and the rate of injection of 0.2 ml/h. The ratio of two polymers in the blend and the concentration of montelukast were optimized based on the diameter of the nanofibers, drug loading percent and release efficiency by a full factorial design. The morphology, diameter and diameter distribution of the nanofibers were studied by scanning electron microscopy (SEM). Drug loading percent in the nanofibers was determined by extracting the loaded drug from a specific surface of the nanofibers which was subsequently analyzed spectrophotometrically. The drug release rate from the nanofibers was studied in phosphate buffer solution (pH 7.4) containing 0.5 % Tween 20 at predetermined time intervals until 10 days. The cytotoxicity of the designed nanofibers was evaluated on mouse fibroblast cells using trypan blue method, their platelet adherence property was quantified by measuring the lactate dehydrogenase (LDH) activity and confirmed by SEM micrographs. The optimized ratio of PLGA/PMVEMA was 3:1 with the total concentration of polymers as 37 % loaded with 30 % of montelukast produced nanofibers with a diameter of 157.6 nm, drug loading percent of 43.7 % and release efficiency of 75 % after 10 days. The cell viability was similar in nanofibers and the negative control group. The platelets adhesion to the nanofibers was more than the negative control group (p<0.05).  相似文献   

17.
In this study, two biodegradable polymers, polycaprolactone (PCL) and polyvinyl alcohol (PVA) were used to fabricate nanofiber nonwovens (NFNs). Also, the silver nanoparticles (AgNPs) successfully reduced by using tea polyphenols (TP) and incorporated in the NFNs via electrospinning. The morphologies of the NFNs and AgNPs were analyzed by scanning electron microscopy (SEM), transmission electron microscopy (TEM), respectively. The PCL nanofibers and PVA nanofibers interweaved each other, and AgNPs with average diameter 1.53±0.15 nm were embedded in the PVA nanofibers. The properties of electrospun NFNs were characterized by pore property, swelling/weight loss, water contact angle, mechanical property, and antibacterial activity. The nanofibers cross-linked to each other forming the 3Dnetwork porous structure with diameter about 1-1.5 μm. Although the hydrophobic PCL was added in the hybrid NFNs, the NFNs still showed hydrophilic propriety, high swelling degree (i.e. swelling degree is 330 % for 48 h), and low weight loss (i.e. weight loss is 22.4 % for 48 h). Also, the hybrid PCL/PVA/AgNPs NFNs exhibited a suitable mechanical property for wound dressings (i.e. tensile strength is 4.27 MPa, and breaking elongation is 88 %). Moreover, the hybrid NFNs effectively inhibited growth of Escherichia coli and Staphylococcus aureus. In summary, this PCL/PVA/AgNPs NFNs may provide a promising candidate for accelerating wound healing.  相似文献   

18.
Porous cellulose acetate (CA) films by breath figure (BF) incorporated with capric acid as form-stable phase change materials (PCMs) were fabricated and characterized for storing and retrieving thermal energy. Effects of different solvents, CA concentration and film thickness on morphology, microstructure and thermal energy storage property of formstable PCMs were investigated by scanning electron microscopy (SEM), Brunauer-Emmett-Teller (BET) surface area analyzer and differential scanning calorimetry (DSC), respectively. The results indicated that the prepared CA films were porous with DMF, acetone, and dichloromethane (DCM) as the solvents, and capric acid absorption capacity was as high as 86.9, 75.0 and 82.2 % with the specific surface area of 4.8, 2.8 and 1.8 m2/g. Moreover, porous CA film with 5 % CA concentration and 0.5 mm thickness prepared by using DMF as solvent had larger specific surface area and higher thermal energy storage properties. The fabricated form-stable PCMs could well maintain their PCM characteristics and demonstrated great temperature regulation ability and had potential applications in building energy conservation.  相似文献   

19.
Polyurethane (PU) foam was combined with protein drug-loaded pH-sensitive alginate-bentonite hydrogel for wound dressings. Alginate is a linear copolymer composed of 1–4-linked β-D-mannuronic acid (M) and its c-5-epimer α-Lguluronic acid (G). The amount of (M) and (G) and their sequential distribution are varied depending on the alginate source. Soluble sodium alginate can become a hydrogel when cross-linked with divalent cations and has widespread applications in the food, drink, pharmaceutical and bioengineering industries. Recently, it has been also proposed as a biomaterial for drug delivery systems. Bentonites are the natural inorganic polymers consisting of a large proportion of expandable clay minerals with a three-layer structure such as montmorillonite, beidellite, nontronite, etc. They are important adjutants and supports for medical products, and they have many useful physicochemical, mechanical, and biological properties such as absence of toxicity, indifference to other raw materials, sorption, swelling, and complex formation properties. Alginate-bentonite hydrogels were prepared at concentration ratios of 10/0, 7/3, 5/5, 3/7. PU foams were prepared using hydrophilic polyols. We investigated the controlled release of a protein drug from PU foam combined with alginate-bentonite hydrogel at different pH values of 4.2, 5.2, 7.2, 8.2. The mechanical properties and cytotoxicity tests of this foam were also studied.  相似文献   

20.
The purpose of this study was to develop an effective potential wound dressing material based on a polyvinyl alcohol (PVA) and tannic acid (TA) composite film. To prepare the PVA/TA films, PVA and TA blended aqueous solutions were cast into film form by spreading the solutions and drying them. Then the films were heat treated at 155 oC for 3 min to promote esterification between the PVA and TA. After removing un-crosslinked moieties from the films by rinsing and drying, the films were investigated by swelling behavior, FTIR spectroscopy, XRD and TGA. And, the antibacterial and antioxidant abilities of the films were also examined in this study. Through this investigation it was discovered that TA effectively acts as a functional antibacterial and antioxidant agent as well as crosslinker in the PVA/TA system. Thus, the PVA/TA composite films prepared by the casting and heat treatment method proposed in this study are expected to be used for topical medication, such as wound dressing material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号