首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
In this study, we report the fabrication and evaluation of a hybrid multi-scale basalt fiber/epoxy composite laminate reinforced with layers of electrospun carbon nanotube/polyurethane (CNT/PU) nanofibers. Electrospun polyurethane mats containing 1, 3 and 5 wt% carbon nanotubes (CNTs) were interleaved between layers of basalt fibers laminated with epoxy through vacuum-assisted resin transfer molding (VARTM) process. The strength and stiffness of composites for each configuration were tested by tensile and flexural tests, and SEM analysis was conducted to observe the morphology of the composites. The results showed increase in tensile strength (4–13 %) and tensile modulus (6–20 %), and also increase in flexural strength (6.5–17.3 %) and stiffness of the hybrid composites with the increase of CNT content in PU nanofibers. The use of surfactant to disperse CNTs in the electrospun PU reinforcement resulted to the highest increase in both tensile and flexural properties, which is attributed to the homogeneous dispersion of CNTs in the PU nanofibers and the high surface area of the nanofibers themselves. Here, the use of multi-scale reinforcement fillers with good and homogeneous dispersion for epoxy-based laminates showed increased mechanical performance of the hybrid composite laminates.  相似文献   

2.
Cellulose nanowhisker (CNW) reinforced electrospun Bombyx mori silk fibroin (SF) nanofibers were fabricated. The morphology, structure, and mechanical properties of nanofibers were investigated by FE-SEM, TEM, FTIR, and tensile testing. It was found that the nanofiber size decreased obviously from 250 nm in the unreinforced mat to 77–160 nm in the CNW reinforced mats depending on the CNW content due to the increased conductivity of spinning dope. In the reinforced mats, the CNWs were embedded in the SF matrix separated from each other, and aligned along the fiber axis. There was a positive correlation between the CNW content and the tensile strength and Young’s modulus of reinforced mats. However the strain at break dropped gradually with the increase of CNW. When the CNW content was 2 w/w%, the tensile strength and Young’s modulus of reinforced SF nanofiber mats were about 2 times higher than those of unreinforced mat.  相似文献   

3.
In this work, PA-6 core and PMMA shell composite nanofiber mats together with pure PMMA and PA-6 nanofibrous membranes were obtained through electrospinning. Two kinds of transparent composites were fabricated by hot pressing multilayers of the composite nanofiber mats and of the interlaced pure PA-6 with PMMA nanofibrous membranes, respectively, under the same processing condition and with the same amount of PA-6 nanofiber content. Tensile properties and visible light transmittances of the two transparent composites were characterized. It has been found that both the tensile behavior and the visible light transmittance of the composites obtained from the composite nanofiber mats were better than the counterparts from the interlaced pure PA-6 and PMMA nanofibrous membranes. With a minor loss of less than 10 % in the transparency, a maximal increase of around 20 % in the tensile modulus and tensile strength has been recognized for a transparent composite from the composite nanofibers. Although less efficient, the tensile strengths of the composites from the interlaced nanofibrous membranes were all higher than that of a transparent panel processed from the pure PMMA nanofibers.  相似文献   

4.
The tribological performance of PA6 and carbon fiber reinforced polyamide 6 (CF/PA6) under dry sliding condition was examined. Different contents of carbon fibers were employed as reinforcement. All filled and unfilled polyamide 6 composites were tested against CGr15 ball and representative testing was performed. The effects of carbon fiber content on tribological properties of the composites were investigated. The worn surface morphologies of neat PA6 and its composites were examined by scanning electron microscopy (SEM) and the wear mechanisms were discussed. Moreover, all filled polyamide 6 have superior tribological characteristics to unfilled polyamides 6. The optimum wear reduction was obtained when the content of carbon fiber is 20 vol%.  相似文献   

5.
Polyethylene terephthalate (PET)/biomedical polyurethane (BPU) composite nanofibers with modulated mechanical properties are electrospun by varying the weight ratios of PET and BPU polymers in the mixture. The effect of BPU content on the morphology, porosity, thermal properties, and crystalline structures are systematically investigated. It is shown that uniform PET/BPU nanofibers can be formed through optimization. When the content of BPU is low (0?C7 %), better elongation of the nanofibrous mats is obtained with the increase of BPU content, whereas further increasing the BPU polymer (up to 15 %) results in a decreased breaking elongation as well as the mechanical strength of composites. The formed nanofibrous mats may find potential applications in tissue engineering and vascular graft.  相似文献   

6.
Natural fiber reinforced polypropylene (PP) biocomposites were fabricated by blending long-and-discontinuous (LD) natural fibers (NF) with LD PP fibers. Firstly, random fiber mats were prepared by mixing NFs and PP fibers using a carding process. Then, heat and pressure were applied to the mats, such that the PP fibers dispersed in the mats melted and flowed out, resulting in the formation of consolidated sheets upon subsequent cooling. The effect of the fiber volume fraction on the mechanical properties of the bio-composites was scrutinized by carrying out tensile and flexural tests and observing the interface between the fiber and matrix. It was observed that the natural LD fiber content needs to be maintained at less than the nominal fiber fraction of 40 % by weight for the composites fabricated using the current method, which is quite low compared to that of continuous or short fiber reinforced composites. The limited fiber fraction can be explained by the void content in the biocomposites, which may be caused by the non-uniform packing or the deficiency of the matrix PP fibers.  相似文献   

7.
There have been many interests in using natural fibers as substitutes for glass fibers to prepare fiber reinforced composites. Flax fibers, due to their specific strength, have been a hot issue in this field. The focus of this research work is to manufacture flax fiber reinforced low melting point PET composites directly from nonwoven mats. No consolidation methods are applied to the carded nonwoven mats before the hot-press molding. The effects of operating parameters like carding method, molding temperature, molding time, etc. on the mechanical properties of composites have been investigated. Results show it is a facile and cost-saving method to produce composites specifically in the application areas like automobile interior ornament and decoration materials, etc.  相似文献   

8.
A series of blend nanofiber mats comprising poly(vinyl alcohol) (PVA) and polyurethane (PU) were prepared by dual-jet electrospinning in various parameters. Orthogonal experimental design was used to investigate how those parameters affected on fiber diameters and fiber diameter distribution. Altogether three parameters having three levels each were chosen for this study. The chosen parameters were tip-to-collector distance (TCD), voltage and tip-to-tip distance (TTD). Fiber diameters, thermal properties, mechanical properties and hydrophilicity of the blend nanofiber mats were examined by scanning electron microscopy (SEM), thermogravimetric analysis (TGA), tensile test, contact angle and water absorption test, respectively. The results showed that the optimum conditions for PVA/PU blend nanofiber mats fabricated by dual-jet electrospinning were TCD of 20 cm, voltage of 18 kV and TTD of 4 cm. Besides, the thermal stability of PVA/PU blend nanofiber mats had been improved compared with pure nanofibers. Furthermore, the elongation and tensile strength of the blend nanofiber mats were significantly increased compared with pure PVA and pure PU, respectively. And the blend nanofiber mats exhibited well hydrophilicity.  相似文献   

9.
In this study, we describe the preparation and characterization of electrospun Nylon66 composite nanofibers incorporated with carbon nanotubes (CNT) fillers and silver nanoparticles. We have incorporated the composites in to Nylon66 nanofibers to enhance the characteristics of the resultant composite nanofibers. The resultant composite nanofibers were characterized by using field-emission scanning electron microscopy, energy dispersive X-ray analysis, high-resolution transmission electron microscopy, X-ray diffraction, and current-voltage (I–V) measurement analysis. The morphology of the composite nanofibers exhibited densely arranged mesh-like ultrafine nanofibers which were strongly bound in between the main fibers. From I–V characteristics, it was observed that the incorporation of CNT fillers and Ag nanoparticles in to electrospun Nylon66 composite nanofibers can be significantly enhanced the electrical properties.  相似文献   

10.
Two different sets of polyamide 66(PA66)-based composite films containing 2.0-10.0 wt% acid-treated multiwalled carbon nanotubes (MWCNT) were manufactured by solution mixing and casting method in the presence or absence of a nonionic surfactant. For the improved dispersion and interfacial interaction of MWCNTs in the PA66 matrix, carboxylic acid-functionalized MWCNTs were prepared by the acid-treatment of pristine MWCNTs. The uniform dispersion of the acidtreated MWCNTs in the PA66 matrix was confirmed from FE-SEM images of the fractured composite film surfaces. DSC thermograms supported that the acid-treated MWCNTs served as nucleating agents for the melt-crystallization of PA66 in both composite films prepared with/without the addition of the surfactant. The electrical and tensile mechanical properties of the composite films prepared with the surfactant were ~20 % higher than those of the composite films manufactured without the surfactant. For both composite films, sheet resistivity and tensile mechanical properties were found to be highly decreased and increased, respectively, with the increment of the acid-treated MWCNT content.  相似文献   

11.
Electrically conductive nanofibers were fabricated from elastic polyurethane (PU) and PU/multiwalled carbon nanotubes (MWCNTs) nanocomposite by electrospinning method. The nanocomposites were electrospun at various MWCNTs loading. Electron microscopy was used to investigate nanofibers morphology and dispersion of MWCNTs in the electrospun nanofibers. The results showed that the presence of the MWCNTs promoted the creation of fibrous structures in comparison with the PU without MWCNTs. On the other hand, increasing the MWCNTs content resulted in a slight increase in the average fiber diameter. TEM micrographs and mechanical properties of the electrospun mats indicated that the homogeneous dispersion of MWCNTs throughout PU matrix is responsible for the considerable enhancement of mechanical properties of the nanofiber mats. Electrical behavior of the conductive mats was also studied, in view of possible sensor applications. Cyclic experiments were conducted to establish whether the electrical properties were reversible, which is an important requirement for sensor materials.  相似文献   

12.
Muzzarelli RA 《Marine drugs》2011,9(9):1510-1533
Recently developed technology permits to optimize simultaneously surface area, porosity, density, rigidity and surface morphology of chitin-derived materials of biomedical interest. Safe and ecofriendly disassembly of chitin has superseded the dangerous acid hydrolysis and provides higher yields and scaling-up possibilities: the chitosan nanofibrils are finding applications in reinforced bone scaffolds and composite dressings for dermal wounds. Electrospun chitosan nanofibers, in the form of biocompatible thin mats and non-wovens, are being actively studied: composites of gelatin + chitosan + polyurethane have been proposed for cardiac valves and for nerve conduits; fibers are also manufactured from electrospun particles that self-assemble during subsequent freeze-drying. Ionic liquids (salts of alkylated imidazolium) are suitable as non-aqueous solvents that permit desirable reactions to occur for drug delivery purposes. Gel drying with supercritical CO(2) leads to structures most similar to the extracellular matrix, even when the chitosan is crosslinked, or in combination with metal oxides of interest in orthopedics.  相似文献   

13.
Well-aligned PMIA nanofiber mats were fabricated by electrospinning and then hot-stretching along the fiber axis was used to improve the mechanical properties of nanofibers in this paper. Scanning electron microscopy (SEM), X-ray diffraction (XRD) and Differential scanning calorimetry (DSC) were used to characterize the morphology and properties of nanofibers. The results showed that the nanofibers became thinner and better alignment than the as-spun nanofibers after hotstretching, and the average diameter of the nanofibers decreased with the increasing of the tensile force. In the same time, hotstretching improved the crystallinity and T g of the as-spun PMIA nanofibers. The tensile strength and modulus of the hotstretched nanofiber mats peaked at ca.50 % and ca.196 % respectively at the tensile force of 12 N compared with the as-spun nanofiber mats.  相似文献   

14.
The tussah silk fibroin (TSF) nanofibers with 611 nm diameters were prepared by electrospinning with the solvent hexafluoroisopropanol (HFIP). And then, the TSF nanofibers were crosslinked by 1-(3-Dimethylaminopropyl)-3-ethylcarbodiimide/N-Hydroxysuccinimide (EDC/NHS) crosslinking agent. The morphology and microstructure of the crosslinked TSF nanofibers were characterized by scanning electron microscopy (SEM), Fourier transforms infrared analysis (FTIR), X-ray diffraction, Instron electronic strength tester, and cell culture. After treatment with EDC/NHS crosslinking agent, the TSF nanofibers swelled and its average diameter increased from 611 to 841 nm. FTIR and X-ray diffraction results demonstrated that random coil, ??-helix, and ??-sheet co-existed in the TSF nanofiber mats, but the content of ??-sheet increased from 25.26 to 45.34 %, and the random coil content decreased from 32.47 to 24.94 %. Compared with the electrospun pure TSF nanofiber mats, the crosslinked TSF nanofiber mats exhibited a lower breaking tenacity and initial modulus, which were 5.51 MPa and 9.86 MPa, respectively. At the same time, the extension at break of the crosslinked TSF nanofiber achieved 109.38 %. In cell culture evaluation, the crosslinked TSF nanofibers were found to support cell adhesion and spreading fibroblast L373 and bone marrow mesenchymal stem cells (BMSCs), which had potential utility in a range of tissue engineering.  相似文献   

15.
In this study, a kind of hydrogel nanofibers were successfully fabricated via solution blowing of chitosan (CS) and polylactic acid (PLA) solutions mixed with various contents of polyethylene glycol (PEG) to offer hydration. The nanofibers with PEG content varying were average 341-376 nm in diameter with smooth surface and distributed randomly forming three-dimension (3D) mats. Glutaraldehyde (GA) vapor was then applied to impart stability, and the cross-linking reaction mainly occurred between GA and hydroxyl groups which was confirmed by XPS. The hydrogel nanofibers showed quick absorption behavior, high equilibrate water absorption and good air permeability which could help the mats absorbing excess exudates, creating a moist wound healing environment and oxygen exchanging in wound healing. The mats also exhibited good antibacterial activities against E. coil. The combination advantages of nanofibers mats and hydrogel will help it find promising application in wound healing.  相似文献   

16.
Composites of good performance formed from non-woven mats of flax and hemp fibres and natural resin matrices have been prepared. Both higher density thin composites as well as lower density thicker composites have been prepared. Two natural matrices types were used: (i) commercial mimosa flavonoid tannin extract with 5% hexamine added as hardener and (ii) a mix of mimosa tannin + hexamine with glyoxalated organosolv lignin of low molecular weight, these two resins mixed 50/50 by solids content weight. The composites prepared were tested for MOE in bending and in tension and for maximum breaking strength in tension. Some of the mats were corona treated and the optimum length of corona treatment determined to improve the composites MOEs and breaking strength. These were related to the morphology of the treated fibre. Thermomechanical analysis (TMA), Brinell surface hardness and contact angle tests were also carried out with good results. The composites made with the mix of tannin and lignin resins as a matrix remained thermoplastic after a first pressing. The flat sheets prepared after the first pressing were then thermoformed into the shape wanted.  相似文献   

17.
Easy fabrication, porosity, good mechanical properties, and composition controllable of the electrospun nanofiber mat make this material a promising candidate for wound dressing applications. In the present study, nylon6/gelatin electrospun nanofiber mats are introduced as novel wound dressing materials. The introduced mats were synthesized by electrospinning of nylon6 and gelatin mixtures, three mats containing different gelatin content were prepared; 10, 20 and 30 wt%. Interestingly, addition of the gelatin did not affect the mechanical properties of the nylon 6, moreover the mat containing 10 wt% gelatin revealed higher mechanical properties due to formation of spider-net like structure from very thin nanofibers (~10 nm diameter) bonding the main nanofibers. Biologically study indicates that gelatin incorporation strongly enhances the bioactivity performance as increasing the gelatin content linearly increases the MC3T3-E1 cell attachment. Overall, the obtained results recommend exploiting the introduced mats as wound dressing material.  相似文献   

18.
In this paper, we report on the fabrication and characterization of poly(sulfone amide)/graphene (PSA/G) nonwoven based nanocomposite mat assembled via electrospinning technique. Different types of nanocomposite mats were electrospun by varying the weight percentage of graphene in the polymer solution. The surface morphologies, chemical structural, thermal, and electrical properties of the nanocomposites were evaluated systematically. The morphology of the PSA/G nanocomposites exhibited that mesh-like ultrafine nanofibers were densely aligned. Thermal stability and electrical properties of the PSA/G composites could be improved obviously with the addition of graphene. And the thickness uniformity of the nanocomposite mat was improved by using an electrospinning system. Our experimental results suggested that the PSA/G nanocomposites have potential to serve in many different applications, especially in the area of electronic components.  相似文献   

19.
The effects of adding surface modified graphene nanoplatelets (GNPs) in various weight percentages (0, 0.1, 0.2, 0.3, 0.4, 0.5 with respect to matrix) on the high velocity impact response of basalt fibers/epoxy composites were evaluated. High speed mechanical stirrer and ultrasonic waves were used for the dispersion of GNPs in the epoxy matrix, and hand layup method was utilized for the fabrication of the composite samples. High velocity impact testing was performed using a conical projectile. The results demonstrated that the maximum improvement in the impact limit velocity and energy absorption occurred in the 0.3 wt.% GNPs nanocomposite, i.e., 11 and 23 %, respectively. Also, the electron microscopy studies revealed that the addition of GNPs contributed in improving the impact properties by influencing the matrix and thus enhancing the interfacial characteristics between the basalt fibers and the matrix.  相似文献   

20.
In the present study, we introduce poly(caprolactone) (PCL) nanofibers that contain hydroxyapatite (HAp) nanoparticles (NPs) as a result of an electrospinning process. A simple method that does not depend on additional foreign chemicals has been employed to synthesize HAp NPs through calcination of bovine bones. Typically, a colloidal gel consisting of PCL/HAp has been electrospun to form nanofibers. Physiochemical aspects of prepared nanofibers were characterized for FE-SEM, TEM, XRD and FTIR which confirmed nanofibers were well-oriented and had good dispersion of HAp NPs. Parameters affecting the utilization of the prepared nanofibers in various nano-biotechnological fields have been studied; for instance, the bioactivity of the produced nanofiber mats was investigated while incubated with stimulated body fluid (SBF). The results from incubation of nanofibers in SBF indicate that incorporation of HAp strongly activates precipitation of the apatite-like materials because the HAp NPs act as seeds that accelerate crystallization of the biological HAp from the utilized SBF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号