首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The aims of this work were to examine the influences of starch quaternization/maleation on the film properties and adhesion-to-fibers of starch, and also to reveal if the quaternization/maleation could improve the adhesion-to-fibers and film properties of starch. A series of quaternized and maleated cornstarch (QMS) with the total degree of substitution (DS) values of 0.02-0.061 were prepared via a quaternization of acid-thinned cornstarch with N-(3-chloro-2-hydroxypropyl) trimethylammonium chloride for introducing 3-(trimethylammonium chloride)-2-hydroxypropyl (TACHP) substituents onto the backbones of starch, and a further maleation with maleic anhydride for the introduction of maleate substituents. The effects of starch quaternization/maleation on paste viscosity, paste stability, adhesion strengths to both cotton and viscose fibers, and film properties of starch were investigated. The degree of crystallinity of starch film was quantitatively obtained from X-ray diffraction analysis. It was found that the quaternization/maleation was able to stabilize the viscosity, increase adhesion strengths of starch to both cotton and viscose fibers, enhance breaking elongation, moisture regain, and bending endurance of starch film, and decrease tensile strength and degree of crystallinity of starch film, thereby improving the adhesion and displaying toughening effect to the film. Increasing the level of starch quaternization/maleation was capable of gradually increasing adhesion and toughness of the film. The quaternization/maleation with the DS values of 0.04-0.061 could be applied for the alleviation of the intrinsic drawbacks (insufficient adhesion and film brittleness) of cornstarch for warp sizing.  相似文献   

2.
The objectives of this work were to survey the effect of amphipathic modification of starch on the adhesion to cotton fibers for improving the adhesion of starch to cotton in warp sizing. The amphipathic starch (AS) with oleophilic octenylsuccinate and hydrophilic phosphate substituents was prepared by the phosphorylation with sodium tripolyphosphate (STP) followed by the octenylsuccinylation with 2-octenylsuccinic anhydride (OSA). Two series of AS samples with differential total degrees of substitution (DSt) and substituent ratios of phosphates to octenylsuccinates were evaluated by fourier transform infrared (FTIR) analysis, degree of substitution, adhesion to cotton and surface tension. The adhesion of the starch to fibers was investigated using a legal method (FZ/T 15001-2008). The FTIR spectra revealed that octenylsuccinates and phosphates have been attached to the backbones of the starch. The amphipathic modification of starch with STP and OSA was an effective method to enhance the adhesion of corn starch to cotton. The strong adhesion of the AS to cotton was attributed to the reduced surface tension arisen from oleophilic octenylsuccinate and hydrophilic phosphate substituents and increased steric hindrance of the substituents introduced onto starch. The investigation showed that the improvement in the adhesion of the starch after amphipathic modification could be buttressed by the tensile strength of cotton yarns sized with AS. It was found that the AS was desizable and showed satisfactory desizing efficiency in oxidant desizing. Based on the adhesion, reaction efficiencies, and desizability, the AS with a total DSt of 0.033 and a substituent ratio of DSp0.014/DSo0.032 showed potential for use in warp sizing.  相似文献   

3.
以锥栗淀粉为原料,采用酶法研究不同贮藏温度和pH对锥栗淀粉糊回生的影响。结果表明:锥栗淀粉糊在贮藏温度4℃时易回生,1 d后的淀粉糊回生率已达9.76%;pH为5和7时,锥栗淀粉糊易回生,pH为3和9时锥栗淀粉糊回生延缓。  相似文献   

4.
Acid-thinned cornstarch was crosslinked with pentanedioic acid to different degrees to enhance viscosity stability of cooked starch paste for replacing the currently used toxic crosslinking agents such as formaldehyde and epichlorohydrin in the preparation of starch sizing agents. The degree of crosslinking was determined according to the stability, adhesion-to-fibers, film properties, desizability, and aerobic biodegradation of crosslinked starch. The degree of crosslinking showed significant effects on the stability, adhesion, desizability, and film properties, but was less sensitive to the biodegradation and wear loss of starch film. Suitable degree of crosslinking resulted in stable viscosity, good adhesion to fibers, strong and bending resistant film, and better desizability. Low degree of crosslinking could be utilized to increase the stability and improve usability of the starch used as warp sizing agent. The degree of crosslinking range (902-477 anhydroglucose units per crosslink) was recommended to stabilize the viscosity of cooked starch paste and improve the sizing properties of starch sizing agents.  相似文献   

5.
By varying the ratios of N-(3-chloro-2-hydroxypropl) trimethylammonium chloride and orthophosphate to starch, a series of amphoteric starch with different degree of substitution (DS) were prepared for evaluating sizing effect of amphoteric starch for cotton warps. The amphoteric starch contained quaternary ammonium and phosphate groups simultaneously, and was set to electric neutrality by varying relative quantity of anionic and cationic groups in order to prevent adverse effects of negative and positive charges. The influence of amphoteric modification of starch on the adhesion to cotton fibers was assessed by measuring tensile strength and work-to-break of slightly sized cotton roving and comparing the adhesion of amphoteric starch with those of phosphorylated one. Comparison on mechanical performances of amphoteric starch film over phosphorylated one was evaluated in terms of tensile strength, breaking extension and wear loss of starch film. The properties such as increase in tensile strength, loss in elasticity, abrasion resistance, and hairiness of cotton yarns sized with amphoteric starch were evaluated through control tests by the comparison with those of phosphorylated one. When zeta potential of amphoteric starch was set close to zero, the adhesion increased and the properties of sized yarns enhanced as the modification level increased. The amphoteric starch was evidently superior to phosphorylated one in improving the quality of sized cotton yarns. The amphoteric starch with neutral zeta potential and DS levels of 0.02–0.03 for quaternary ammonium groups and phosphate ones, respectively, could be applied to size cotton warp yarns for the improvement of yarn quality.  相似文献   

6.
为了改善小麦淀粉的性能,采用湿法工艺制备小麦辛烯基琥珀酸淀粉酯,并从表面结构、糊的黏度、透明度和凝沉性四个方面分析了小麦淀粉辛烯基琥珀酸酐改性前后理化性质的差异。小麦辛烯基琥珀酸淀粉酯的湿法制备工艺为:反应时间3 h,pH值8.0,反应温度35℃,淀粉乳液浓度35%,酸酐加入量为淀粉干基重的3.0%~7.0%。该工艺所制备的小麦辛烯基琥珀酸淀粉酯的取代度为0.012 4~0.019 4。扫描电镜分析表明,经过辛烯基琥珀酸酐改性之后,小麦淀粉颗粒表面产生凹陷现象;小麦淀粉糊的黏度和透明度明显提高,并且随着取代度的增加呈增大趋势;小麦淀粉糊的凝沉性降低。  相似文献   

7.
Starch was isolated from breadfruit (Artocarpus artilis). It was further modified by oxidation, acetylation, heat–moisture-treatment and annealing. The functional properties of native and modified starches were then studied. Proximate analysis revealed that following modifications, the annealed (BANS), oxidised (BOS) and acetylated (BACS) starches retained higher moisture content compared to native starch (BNS), while heat–moisture treated starch (BHMTS) had lower moisture content. Crude fibre was reduced by following modifications, except that BNS and BANS had the same value (0.42%). Protein and fat contents were also reduced after modifications. Acetylation, oxidation and heat–moisture-treatment improved the swelling power of the native starch. The result indicates that all forms of modification reduced the solubility of native breadfruit starch. For all the starches, replacing the wheat flour by the starch resulted in increased alkaline water retention of the blends. Gelation studies revealed that native breadfruit starch is a better gelating food material than the modified derivatives. All forms of modification reduced pasting temperature, peak viscosity, hot paste viscosity and cold paste viscosity of the native starch, except that heat–moisture-treatment increased the pasting temperature. Setback value reduced after modifications, indicating that modifications would minimize starch retrogradation.  相似文献   

8.
To investigate the effects of tertiary amination/hydroxypropylsulfonation on the adhesion-to-fibers and film properties of corn starch for warp sizing, a series of tertiary aminated and hydroxypropylsulfonated corn starch (TAHPSS) samples were prepared by the tertiary amination and hydroxypropylsulfonation of acid-hydrolyzed corn starch (AHS) with 2- dimethylaminoethyl chloride hydrochloride (DMC-HCl) and 3-chloro-2-hydroxy-1-propanesulfonic acid sodium salt (CHPS-Na) simultaneously. The adhesion was evaluated by measuring the bonding force of starch to the fibers. The film properties were investigated in terms of tensile strength, breaking elongation, degree of crystallinity, and moisture regain. The results showed that tertiary amination/hydroxypropylsulfonation was able to increase bonding forces of starch to cotton and polyester fibers, enhance breaking elongation and moisture regain of the starch film and to decrease the tensile strength and degree of crystallinity of the film, thereby improving the adhesion and reducing film brittleness. Increasing the level of tertiary amination/hydroxypropylsulfonation was favorable for gradually improving the adhesion and decreasing the brittleness. The TAHPSS showed potential for use in cotton warp sizing.  相似文献   

9.
Gelatinisation and retrogradation of starch in wheat flour systems and whole wheat grains were studied using DSC and the impact of these events on starch digestibility was investigated. Gelatinisation of starch was possible in wheat flours with more than 60% moisture content (dwb) and gelatinised samples had higher digestibility values. Retrogradation of starch was studied with partially and fully cooked (boiled at 100 °C for 12 min and 32 min, respectively) wheat grains that were subjected to storage at 22 °C for 48 h. Stored samples had lower digestibility values when compared to the freshly cooked counterparts. The effect of moisture on retrogradation was studied with fully cooked wheat grains that were dried to a range of moisture contents (14.6–35.9%, wwb) and stored at 20 °C for 24 h. Retrogradation enthalpy increased with increasing moisture content; however, digestibility values did not reflect the changes in retrogradation enthalpy. The possibility of estimating the degree of retrogradation in fully cooked grains (32 min cooking) was investigated using a wheat flour-water system. The retrogradation enthalpy of fully cooked grains was slightly higher than the wheat flour-water system (at a moisture content of 49%, wwb) during the course of storage at 22 °C.  相似文献   

10.
Plant growth regulators (PGR) can be used to alleviate heat injury on the starch quality of crops. In this study, two waxy maize hybrids with exogenous cytokinin or spermine at silking stage were exposed to post-silking ambient temperature (AT; 28/20 °C) and high temperature (HT; 35/27 °C) during grain filling. Results indicated that spraying exogenous cytokinin or spermine increased the grain weight and starch content at both temperature regimes. The starch granule size, amylopectin chain length, and relative crystallinity differed between two hybrids and were affected by PGRs and temperatures. Peak viscosity decreased at HT, unaffected by cytokinin, and increased by spermine at both temperature regimes. The retrogradation percentage at HT with PGR was lower than that without PGR in both hybrids. In conclusion, spraying exogenous cytokinin or spermine at silking stage can increase peak viscosity and reduce retrogradation percentage at HT, thereby alleviating the detrimental effects of post-silking heat injury.  相似文献   

11.
Reduced glutathione (GSH) commonly exists in wheat flour and has remarkable influence on gluten properties. In this study, effect of GSH on the gelatinization and retrogradation of wheat flour and wheat starch were investigated to better understand the GSH-gluten-starch interactions in wheat flour. Compared with wheat starch, wheat flour showed significant decreases in peak and final viscosity, and gelatinization onset temperature with increasing GSH concentration. GSH depolymerized gluten and thereby broke down the protein barrier around starch granules to make the starch easily gelatinized. However, the interaction between GSH and wheat starch restrained starch swelling. GSH addition resulted in weakened structure with higher water mobility in freshly gelatinized wheat flour dispersions but decreased water mobility in wheat starch dispersions. After storage at 4 °C for 7 d, GSH increased elasticity and retrogradation degree in wheat flour dispersions but retarded retrogradation in wheat starch dispersions. The results indicated that GSH promoted retrogradation of wheat flour, which mainly attributed to the depolymerized gluten embedding in the leached starch chains, and inhibiting the re-association of amylose, and subsequently promoted the starch intermolecular associations and starch retrogradation. This study could provide valuable information for the control of the quality of wheat flour-based products.  相似文献   

12.
The effect of partial gelatinization and retrogradation on in vitro enzymatic digestibility of waxy rice starch was investigated, and the relationship between the residual crystallinity and digestibility measured. An aqueous dispersion of starch (5%, dry weight basis) was partially gelatinized by heating at different temperatures (60, 65, or 70 °C for 5 min). The relative melting enthalpy values of the starch samples, based on the melting enthalpy of native starch, were 69.0, 36.7, and 8.5%, respectively. Retrograded starch samples were also prepared by storing a fully gelatinized starch paste (5% starch) at 4 °C for 2, 4, or 7 d, and the relative melting enthalpy values for the starch samples were 36.7, 67.2, and 79.9%, respectively. The partial gelatinization and retrogradation changed the enzymatic digestion behavior of the waxy rice starch samples, and the changes were significant in the initial stage of digestion. The digestion rate was reduced as the melting enthalpy increased. The amounts of slowly digestible starch (SDS) and resistant starch (RS) correlated positively with the relative melting enthalpy of the partially gelatinized or retrograded starch samples. The glycemic index (GI) estimated using an in vitro digestion test correlated negatively with the relative melting enthalpy. At similar melting enthalpy levels, the partially gelatinized starch samples were more resistant to enzymatic digestion than the retrograded starch samples, indicating that the thermal history and the crystalline morphology affected the enzymatic digestion behavior of starch.  相似文献   

13.
A hitherto uninvestigated ligno-cellulosic seed fiber from the plant Pergularia Daemia has been chosen for the current study to unravel its physical properties, and potentialities in textile applications. The raw, NaOH treated, and wax removed fibers were tested for their morphological and structural features by X-ray diffraction, SEM, FT-IR spectra, and thermal analysis by thermogravimetry and differential scanning calorimetry. The raw fibers have low cellulose content and less crystalline compared to cotton and are having hollow, smooth surface, and less density. The brittle nature and low elongation at break of virgin fiber makes it difficult for the spinning. It becomes spinnable after NaOH treatment due to the increased elongation at break by partial removal of lignin.  相似文献   

14.
Oat roll is one of the traditional oat wholemeal foods. The purpose of this work was to investigate the effects of quick freezing at −20 °C, −40 °C and −80 °C for 90 min before frozen storage on the quality of frozen steamed oat roll. Quick freezing at −40 °C and −80 °C inhibited the increase of peak gelatinization temperature, enthalpy and the ordered degree of oat roll starch, therefore postponing starch retrogradation. The cross-section microstructure confirmed that reducing the quick-freezing temperature could prevent the increase of ice crystals size, ruptured structures and maintain the integrity of internal structure. As the storage time extend, the ice recrystallization led to an increase in size of ice crystals, while a decrease in their number. Frozen steamed oat roll starch had the highest swelling power at the quick-freezing temperature of −80 °C, that indicated strongest water absorption and binding ability when gelatinized again. Texture analysis demonstrated that hardness increased during frozen storage, quick freezing at −80 °C had the best texture properties. Therefore, declining the quick-freezing temperature could obtain a higher quality of frozen steamed oat roll, by means of delaying the starch retrogradation and minimising the size of ice crystals.  相似文献   

15.
In this study, corona discharge treatment was applied to modify the surface of cotton fibers at various temperatures. The fiber surface was roughened during this treatment and the surface oxygen content increased at a considerably low temperature, and then declined when temperature increased. Weight loss rate showed the treatment was fiercer as treated temperature increased. The breaking strength and surface adhesion property of the fabric treated with starch sizing increased to a certain extent and then decreased. These results suggest that the treated temperature plays a great role in the surface properties of cotton fiber when treated via corona discharge.  相似文献   

16.
Maize pasta was produced using various heat treatment such as drum-drying, extrusion-cooking, pasting and steaming. Cooking quality of pasta products were compared and discussed on the basis of starch physico-chemical properties. The best products were obtained by using drum-drying or pasting, whereas the worst product was obtained using extrusion-cooked maize starch. This was interpreted in terms of starchy component degradation and amylose retrogradation ability. The treatment of fresh pasta at high temperature (95°C) with high relative humidity (95%) improved pasta quality: after 1 h under these conditions, cooking losses were decreased by 9%. Addition of monoglycerides also significantly improved pasta cooking quality by making complexes with amylose during pasta cooking. In contrast, cold storage promoted amylopectin retrogradation and scarcely improved maize pasta quality.  相似文献   

17.
Gelatinisation and retrogradation of starch in wheat flour systems and whole wheat grains were studied using DSC and the impact of these events on starch digestibility was investigated. Gelatinisation of starch was possible in wheat flours with more than 60% moisture content (dwb) and gelatinised samples had higher digestibility values. Retrogradation of starch was studied with partially and fully cooked (boiled at 100 °C for 12 min and 32 min, respectively) wheat grains that were subjected to storage at 22 °C for 48 h. Stored samples had lower digestibility values when compared to the freshly cooked counterparts. The effect of moisture on retrogradation was studied with fully cooked wheat grains that were dried to a range of moisture contents (14.6–35.9%, wwb) and stored at 20 °C for 24 h. Retrogradation enthalpy increased with increasing moisture content; however, digestibility values did not reflect the changes in retrogradation enthalpy. The possibility of estimating the degree of retrogradation in fully cooked grains (32 min cooking) was investigated using a wheat flour-water system. The retrogradation enthalpy of fully cooked grains was slightly higher than the wheat flour-water system (at a moisture content of 49%, wwb) during the course of storage at 22 °C.  相似文献   

18.
Properties of natural fibers are influenced by the nature of their surface. Oil Red was evaluated as a histochemical stain for the waxy components on the surface of cotton and flax fibers and of plant cuticles. A positive reaction for arachidyl stearate and differential staining of fibers after sequential extraction of fatty acids and alcohols indicated that Oil Red stained wax components in plant materials. For cotton (Gossypium hirsutum) fibers, Oil Red stained to a greater extent the regions closest to the seed coat, especially at points where fibers attached to the seed coat. Fiber regions at a distance from the seed coats stained irregularly, suggesting that the wax was unevenly distributed. Flax (Linum usitatissimum) bast fibers, in contrast, did not stain with Oil Red, but the protective stem cuticle was intensely stained. The positive histochemical reaction for cuticle identified non-fiber fragments in processed and cleaned flax fibers, thus providing a quick method to detect visually trash components in fiber and products. Likewise, bast fibers from kenaf (Hibiscus cannabinus) did not stain well with Oil Red, whereas the stem cuticle gave a positive reaction. The general usefulness of Oil Red as a histochemical stain for the plant cuticle was demonstrated in leaves and stems of mature corn (Zea mays) and fresh bermudagrass (Cynodon dactylon) leaves. Oil Red provides a quick, qualitative histochemical method to demonstrate the wax-containing cuticle in plants.  相似文献   

19.
Gelatinized waxy and normal corn starches at various concentrations (20–50%) in water were stored under temperature cycles of 4°C and 30°C (each for 1 day) up to 7 cycles or at a constant temperature of 4°C for 14 days to investigate the effects of temperature cycling on the retrogradation of both starches. Compared to starches stored only at 4°C, both starches stored under the 4/30°C temperature cycles exhibited smaller melting enthalpy for retrogradation (ΔHr), higher onset temperature (To), and lower melting temperature range (Tr) regardless of the starch concentration tested. Fewer crystallites might be formed under the temperature cycles compared to the isothermal storage, but the crystallites formed under temperature cycling appeared more homogeneous than those under the isothermal storage. The effect of starch content on the retrogradation was greater when the starch gels were stored under cycled temperatures. The reduction in ΔHr and the increase in conclusion temperature (Tc) by retrogradation under 4/30°C temperature cycles became more apparent when the starch concentration was lower (20 or 30%). Degree of retrogradation based on melting enthalpy was greater in normal corn starch than in waxy corn starch when starch content was low.  相似文献   

20.
Three types of rice cultivars (indica, japonica and hybrid rice) with four levels of amylose were selected for assessing variability in starch digestibility. A vitro enzymatic starch digestion method was applied to estimate the glycemic index in vivo based on the kinetics of starch hydrolysis in vitro. The results indicated that significant differences in term of glycemic response were observed in three types of rice. Amylose content had an obviously impact on the estimated glycemic score (EGS) value and resistant starch (RS) content. The contents of RS were increased with the increasing amylose in the same type of rice. Japonica rice was significantly lower in RS content compared to indica rice and hybrid rice with similar amylose. The high amylose rice cultivar ZF201, which was characterized by low major RVA parameters, i.e. peak viscosity (PKV), hot paste viscosity (HPV) and cool paste viscosity (CPV), were obviously higher in RS content and lower in EGS. The retrogradation of cooked rice led to a reduction of HI and EGS of all varieties. Starch hydrolysis tends to be more quick and complete for the waxy and low amylose rice than for the intermediate and high amylose rice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号