首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Conventional textile based wound dressing materials are cost effective and highly absorbent, but when used alone fails to provide optimal wound healing conditions like homeostasis, non-adherence, maintenance of a moist wound bed, etc. Electrospun polymer web meets the requirements outlined for wound healing, by their microfibrous structures provide suitable environment for wound healing apart from the function of polymers. In this study, blends of soy protein isolate (SPI) and poly(ethylene oxide) (PEO) nano fiber web was prepared by electro spinning process. The developed blended nano fiber web was subjected to SEM, FTIR to evaluate fiber size and functional properties respectively. The Moisture vapour transmission rate (MVTR) result shows the blended electrospun web gives suitable mosit environment over wound bed such as the MVTR is 2994 g/m2/day. The blended electrospun web gives positive result on antimicrobial activity. The effect of SPI/PEO blended electrospun web on wound healing was experimented with female wistar rats and the blended electrospun web shows excellent result on wound healing by the growth of new epithelium without any significant adverse reaction. Forming of SPI/PEO electrospun fiber was fulfilled many critical elements desirable in a wound material.  相似文献   

2.
Application of electrospun nanofibrous scaffolds has received immense attention in tissue engineering. Fabrication of scaffolds with appropriate electrical properties plays a key role in neural tissue engineering. Since fibers orientation in the scaffolds affects the growth and proliferation of the cells, this study aimed to prepare aligned electrospun conductive nanofibers by mixing 1 %, 10 % and 18 % (w/v) doped polyaniline (PANI) with polycaprolactone (PCL)/poly lactic-coglycolic acid (PLGA) (25/75) solution through the electrospinning process. The fibers diameter, hydrophilicity and conductivity were measured. In addition, the shape and proliferation of the nerve cells seeded on fibers were evaluated by MTT cytotoxicity assay and scanning electron microscopy. The results revealed that the conductive nanofibrous scaffolds were appropriate substrates for the attachment and proliferation of nerve cells. The electrical stimulation enhanced neurite outgrowth compared to those PLGA/PCL/PANI scaffolds that were not subjected to electrical stimulation. As polyaniline ratio increases, electric stimulation through nanofibrous PLGA/PCL/PANI scaffolds results in cell proliferation enhancement. However, a raise more than 10 % in polyaniline will result in cell toxicity. It was concluded that conductive scaffolds with appropriate ratio of PANI along with electrical stimulation have potential applications in treatment of spinal cord injuries.  相似文献   

3.
The study aims at performing a comparative assessment of two types of burn wound treatment. The present study was designed to prepare crosslinked and blended two natural polymers nanofiber scaffolds using gelatin (GE) and hyaluronic acid (HA). The GE/HA composite nanofibrous membranes with varied GE/HA weight ratio have also been successfully fabricated by an electrospinning method. The average diameter of GE/HA fibers was in the range of 20 to 150 nm. In vivo efficacy was also investigated based on a deep second degree burns model for Wistar rats. At 14 days post-operation, the dermal defect basically recovered its normal condition. A percentage of wound closure of GE/HA composite nanofibrous membranes and ChitoHeal gel reached up to 81.9 % and 77.8 % respectively, compared with 65 % of the untreated control (p<0.05). Also, histological parameters were assessed on postoperative day 7 and 14. The results of in vivo experiments showed that more epidermis was formed in the gel and scaffold groups compared to the control group. The numbers of inflammatory cells in these two groups were also smaller as compared with the control group, which could well be the reason for the delayed healing in the control group.  相似文献   

4.
The complex nature of spinal cord injuries has provided much inspiration for the design of novel biomaterials and scaffolds which are capable of stimulating neural tissue repair strategies. Recently, conductive polymers have gained much attention for improving the nerve regeneration. In our previous study, a three-dimensional (3D) structure with reliable performance was achieved for electrospun scaffolds. The main purpose in the current study is formation of electrical excitable 3D scaffolds by appending polyaniline (PANI) to biocompatible polymers. In this paper, an attempt was made to develop conductive nanofibrous scaffolds, which can simultaneously present both electrical and topographical cues to cells. By using a proper 3D structure, two kinds of conductive scaffolds are compared with a non-conductive scaffold. The 3D nanofibrous core-sheath scaffolds, which are conductive, were prepared with nanorough sheath and aligned core. Two different sheath polymers, including poly(lactic-co-glycolic acid) PLGA and PLGA/PANI, with identical PCL/PANI cores were fabricated. Nanofibers of PCL and PLGA blends with PANI have fiber diameters of 234±60.8 nm and 770±166.6 nm, and conductivity of 3.17×10-5 S/cm and 4.29×10-5 S/cm, respectively. The cell proliferation evaluation of nerve cells on these two conductive scaffolds and previous non-conductive scaffolds (PLGA) indicate that the first conductive scaffold (PCL/ PANI-PLGA) could be more effective for nerve tissue regeneration. Locomotor scores of grafted animals by developed scaffolds showed significant performance of non-conductive 3D scaffolds. Moreover, the animal studies indicated the ability of two new types of conductive scaffolds as spinal cord regeneration candidates.  相似文献   

5.
In this study, we examined the effects of a dextran-modified silk fibroin nanofibrous mat (D-SFNM) on wound healing. To increase the hydrophilicity of silk fibroin (SF), the SF nanofibrous mat (SFNM) was modified with oxidized dextran. The D-SFNM absorbed water faster than the SFNM, and the swelling ratio was increased by approximately 80 % compared with the SFNM. An in vitro cell (NIH3T3) test revealed that fewer cells attached to the D-SFNM than the SFNM, but the proliferation of cells was not significantly affected by the presence of dextran. An in vivo wound healing test with mice indicated that the D-SFNM resulted in a good wound recovery effect similar to a commercial wound dressing material. The increased hydrophilicity of the D-SFNM might balance the moist environment at the wound site, which improves the wound healing compared with the SFNM.  相似文献   

6.
Artificial keratoprostheses are indispensable for visual rehabilitation in patients with end-stage corneal blindness. This study aimed to assess the biocompatibility of polyethylene terephthalate nanofibrous mats and its potential as a novel synthetic keratoprosthesis skirt material for corneal tissue engineering. Nanofibrous mats were prepared by an electrospinning method and were first treated with the CO2 plasma to yield carboxylic groups on the surface; finally, the modified PET mat was cross linked with collagen using water-soluble carbodiimide as a coupling agent. The samples were evaluated by ATR-FTIR, scanning electron microscope (SEM), contact angle, and cell culture. The cross-linking of collagen on PET surface was confirmed by ATR-FTIR spectroscopy and SEM images The 79° difference was obtained in the contact angle analysis, obtained for the collagen-cross-linked nanofibrous mat than the non-modified nanofibrous mat. Cellular investigation showed limbal epithelial progenitor cells (LEPCs) has been better adhesion, cell growth, and proliferation of collagen-crosslinked nanofibrous samples than other samples. The bioavailability of PET fibers with covalently attached collagen was found to be identical to that of PET fibers with covalent attachment is a suitable method for enhancing the biocompatibility of scaffolds special as a good skirt in keratoprosthesis designs.  相似文献   

7.
The aim of the present study was to prepare nanofibers loaded with montelukast, a cysteinyl leukotrienes (CysLTs) inhibitor, with anti-inflammatory properties effective on wound healing. Polymeric nanofibers containing montelukast were spun by electrospinning method using different ratios of the blend of two biodegradable polymers of poly(methyl vinyl etherco-maleic acid) (PMVEMA) and poly(lactic-co-glycolic acid) (PLGA) at the total polymer concentration of 37 %, the distance of the needle to rotating screen of 19 cm, the voltage of 12 Kv and the rate of injection of 0.2 ml/h. The ratio of two polymers in the blend and the concentration of montelukast were optimized based on the diameter of the nanofibers, drug loading percent and release efficiency by a full factorial design. The morphology, diameter and diameter distribution of the nanofibers were studied by scanning electron microscopy (SEM). Drug loading percent in the nanofibers was determined by extracting the loaded drug from a specific surface of the nanofibers which was subsequently analyzed spectrophotometrically. The drug release rate from the nanofibers was studied in phosphate buffer solution (pH 7.4) containing 0.5 % Tween 20 at predetermined time intervals until 10 days. The cytotoxicity of the designed nanofibers was evaluated on mouse fibroblast cells using trypan blue method, their platelet adherence property was quantified by measuring the lactate dehydrogenase (LDH) activity and confirmed by SEM micrographs. The optimized ratio of PLGA/PMVEMA was 3:1 with the total concentration of polymers as 37 % loaded with 30 % of montelukast produced nanofibers with a diameter of 157.6 nm, drug loading percent of 43.7 % and release efficiency of 75 % after 10 days. The cell viability was similar in nanofibers and the negative control group. The platelets adhesion to the nanofibers was more than the negative control group (p<0.05).  相似文献   

8.
9.
Marine biopolymers, abundantly present in seaweeds and marine animals, feature diverse structures and functionalities, and possess a wide range of beneficial biological activities. Characterized by high biocompatibility and biodegradability, as well as unique physicochemical properties, marine biopolymers are attracting a constantly increasing interest for the development of advanced systems for applications in the biomedical field. The development of electrospinning offers an innovative technological platform for the production of nonwoven nanofibrous scaffolds with increased surface area, high encapsulation efficacy, intrinsic interconnectivity, and structural analogy to the natural extracellular matrix. Marine biopolymer-based electrospun nanofibrous scaffolds with multifunctional characteristics and tunable mechanical properties now attract significant attention for biomedical applications, such as tissue engineering, drug delivery, and wound healing. The present review, covering the literature up to the end of 2021, highlights the advancements in the development of marine biopolymer-based electrospun nanofibers for their utilization as cell proliferation scaffolds, bioadhesives, release modifiers, and wound dressings.  相似文献   

10.
Natural materials and plants have a long history of medical applications due to their broad range of favorable biological functions including biocompatibility, anti-bacterial, anti-oxidant and anti-inflammatory properties. Main objective of this study was to develop alginate-chitosan-hyaluronic acid (ACH) composite fibers with controlled drug release, and liquid retention properties for better moist wound healing. The dope comprising sodium alginate was extruded into calcium chloride (CaC12) coagulation bath. The developed calcium alginate fibers were then passed through a bath containing hydrolyzed chitosan and dip coated with hyaluronic acid for 24 hours. The resulting ACH composite fibers were then rinsed with deionized water and dried using acetone. These fibers were tested for tensile properties, % swelling, liquid absorption (g/g) and controlled drug release. The results concluded that ACH composite fibers can be produced by wet spinning and have adequate tensile properties, high % swelling, liquid absorption (g/g) and controlled release of hyaluronic acid for improved wound healing.  相似文献   

11.
The design and development of innovative multifunctional wound dressing materials in engineered biomaterials is essential for promoting tissue repair. In this study, nanofibrous wound dressing materials loaded with anti-inflammatory ingredients were manufactured by a promising electrospinning strategy, and their capability for treating diabetic wounds was also investigated. A scaffold blend consisting of an Enteromorpha polysaccharide and polyvinyl alcohol (PVA) was fabricated. The in vitro and in vivo studies confirmed the efficacy of PVA/EPP1 fiber. We found that PVA/EPP1 fiber accelerated the repair of a full-thickness skin wound in diabetic mice. The results suggest that this scaffold could effectively shorten the wound healing time by inhibiting inflammatory activity, which makes it a promising candidate for the treatment of hard-to-heal wounds caused by diabetes.  相似文献   

12.
New generation wound dressings require the criteria that both bioactive and conventional wound dressing materials can recompense the fundamental properties like defense of wound from microbial invasion, dehydration during the wound care duration and mimic the healing process. In this study, functional double-layered nanofibrous composite membranes were fabricated via electrospinning method. The matrices consist of a sheet of ampicillin loaded poly(2-hydroxylethyl methacrylate/polyacrylic acid (pHEMA/pAA) nanofibers on the upper side (first layer: pH sensitive antibacterial barrier) and a sheet of poly(ε-caprolactone) (PCL)/gelatin nanofibers (second layer: bioactive part). Ampicillin was successfully incorporated to double-layered matrices which greatly changed the mechanical properties, biodegradability and water uptake ratios (up to 4 fold higher values). The success of the antimicrobial activity of ampicillin on Staphylococcus aureus and Escherichia coli was indicated by the inhibition zone test. pH sensitivity was confirmed by the swelling and ampicillin release studies by shifting pH value to basic environment. Thus, double-layered pHEMA-pAA nanofibers suggest as a potential wound dressing material for its pH sensitive drug delivery ability and its bioactive part.  相似文献   

13.
The bamboo yarn of Ne 40s was used for the preparation of the Gauze fabric. The physical properties such as areal density and stiffness of fabrics were measured. The fabric was then scoured and bleached as per the standard procedure using distilled water. Chitosan-sodium alginate, Calcium-sodium alginate polymer and their mixture were coated separately on the gauze structure to improve the antibacterial and wound healing property of the bandage. Scanning electron microscope (SEM) analysis was carried out to observe the uniform distribution of polymers in the samples. The antibiotic drugs were selected based on the antibiotic sensitivity test. The drugs such as Tetracycline hydrochloride (250 mg), Chloramphenicol (250 mg) and Rifampicin (250 mg) were immobilized on the polymer coated fabrics to increase the rate of wound healing and antibacterial activity. The drug loaded samples were subjected to drug release study for about four days in a static condition. The results show that good amount of drug was released during all the four days. Further, the antibacterial activity of the drug loaded and polymer coated samples were evaluated against S. aureus and Proteus bacteria. The results show excellent antibacterial activity.  相似文献   

14.
In this study, two biodegradable polymers, polycaprolactone (PCL) and polyvinyl alcohol (PVA) were used to fabricate nanofiber nonwovens (NFNs). Also, the silver nanoparticles (AgNPs) successfully reduced by using tea polyphenols (TP) and incorporated in the NFNs via electrospinning. The morphologies of the NFNs and AgNPs were analyzed by scanning electron microscopy (SEM), transmission electron microscopy (TEM), respectively. The PCL nanofibers and PVA nanofibers interweaved each other, and AgNPs with average diameter 1.53±0.15 nm were embedded in the PVA nanofibers. The properties of electrospun NFNs were characterized by pore property, swelling/weight loss, water contact angle, mechanical property, and antibacterial activity. The nanofibers cross-linked to each other forming the 3Dnetwork porous structure with diameter about 1-1.5 μm. Although the hydrophobic PCL was added in the hybrid NFNs, the NFNs still showed hydrophilic propriety, high swelling degree (i.e. swelling degree is 330 % for 48 h), and low weight loss (i.e. weight loss is 22.4 % for 48 h). Also, the hybrid PCL/PVA/AgNPs NFNs exhibited a suitable mechanical property for wound dressings (i.e. tensile strength is 4.27 MPa, and breaking elongation is 88 %). Moreover, the hybrid NFNs effectively inhibited growth of Escherichia coli and Staphylococcus aureus. In summary, this PCL/PVA/AgNPs NFNs may provide a promising candidate for accelerating wound healing.  相似文献   

15.
Unsaturated polyester (UP) resin has been blended with phenolic resin (PF) resole type at various ratios to obtain a homogeneous blend with improved flame resistance compared to its parent polymers. The polymer blend was reinforced with 20 wt% kenaf using hand lay out technique. Fourier transform infrared spectroscopy (FT-IR) was used to characterize changes in the chemical structure of the synthesized composites. The thermal properties of the composites were investigated using thermogravimetric analysis (TGA). The thermal stability of UP/PF kenaf composites co-varies with the PF content, as shown by the degradation temperature at 50 % weight loss. The char yield of the composites increases linearly with PF content as shown by the TGA results. The flammability properties of the composites were determined using the limiting oxygen index (LOI) and UL-94 fire tests. The LOI increased with the PF content while the composites exhibit improved flame retardancy as demonstrated by UL-94 test. The mechanical and morphological properties of the composites were determined by tensile test and scanning electron microscopy (SEM), respectively. The tensile strength and the Young’s modulus of the blend/composites slightly decreased with increasing PF content albeit higher than PF/kenaf fiber composites.  相似文献   

16.
The aim of this study was to compare physical, mechanical and biological properties of 3-dimensional scaffolds prepared from Bombyx mori silk fibroin (SF), fibroin blended with collagen (SF/C), and fibroin blended with gelatin (SF/G) using a freeze-drying technique. The prepared scaffolds were sponge-like structure that exhibited homogeneous porosity with highly interconnected pores. Average pore size of these scaffolds ranged from 65–147 μm. All biodegradable scaffolds were capable of water absorption of 90 %. The degradation behavior of these scaffolds could be controlled by varying the amount of blended polymer. The SF/C and SF/G scaffolds showed higher compressive modulus than that of SF scaffolds which could be attributed to the thicker pore wall observed in the blended constructs. The less crystalline SF structure was observed in SF/G scaffolds as compared to SF/C scaffolds. Thus, the highest compressive modulus was observed on SF/C matrix. To investigate the feasibility of the scaffolds for cartilage tissue engineering application, rat articular chondrocytes were seeded onto the scaffolds. The MTT assay demonstrated that blending collagen or gelatin into SF sponge facilitated cell attachment and proliferation better than SF scaffolds. The blended SF scaffolds possessed superior physical, mechanical and biological properties in comparison to SF scaffolds and showed high potential for application in cartilage tissue engineering.  相似文献   

17.
This paper reports on the preparation and characterization of nanofibers and nanofiber/film composites fabricated by electrospinning and dip-coating. The polymers in this study consist of polyurethane, nylon-6, and silicone. Scanning electron microscopy (SEM), fiber distribution, X-ray diffraction (XRD) analysis, Fourier transform infrared spectroscopy (FTIR) and tensile tests were conducted. The electrospun nylon-6 nanofiber/dip-coated silicone film (dried for 5 min) showed the optimum tensile strength and strain results, showing an increase in tensile strength of 63 % compared to pure nylon-6 nanofiber alone. XRD and FTIR verified the presence of individual polymers in the composite matrix. The electrospun PU nanofiber produced the biggest fiber diameter, while electrospun nylon-6, and PU/nylon-6 produced uniform fiber diameters, with PU/nylon-6 obtaining very random and curved fiber morphology.  相似文献   

18.
Mycosporine-like amino acids (MAAs) are secondary metabolites found in diverse marine, freshwater, and terrestrial organisms. Evidence suggests that MAAs have several beneficial effects on skin homeostasis such as protection against UV radiation and reactive oxygen species (ROS). In addition, MAAs are also involved in the modulation of skin fibroblasts proliferation. However, the regulatory function of MAAs on wound repair in human skin is not yet clearly elucidated. To investigate the roles of MAAs on the wound healing process in human keratinocytes, three MAAs, Shinorine (SH), Mycosporine-glycine (M-Gly), and Porphyra (P334) were purified from Chlamydomonas hedlyei and Porphyra yezoensis. We found that SH, M-Gly, and P334 have significant effects on the wound healing process in human keratinocytes and these effects were mediated by activation of focal adhesion kinases (FAK), extracellular signal-regulated kinases (ERK), and c-Jun N-terminal kinases (JNK). These results suggest that MAAs accelerate wound repair by activating the FAK-MAPK signaling pathways. This study also indicates that MAAs can act as a new wound healing agent and further suggests that MAAs might be a novel biomaterial for wound healing therapies.  相似文献   

19.
Reconstructing the typical analogue of extracellular matrix (ECM) in engineered biomaterials is essential for promoting tissue repair. Here, we report an ECM-mimetic scaffold that successfully accelerated wound healing through enhancing vascularization and regulating inflammation. We prepared an electrospun fiber comprising a brown alga-derived polysaccharide (BAP) and polyvinyl alcohol (PVA). The two polymers in concert exerted the function upon the application of PVA/BAP2 fiber in vivo; it started to reduce the inflammation and promote angiogenesis at the wound site. Our serial in vitro and in vivo tests validated the efficacy of PVA/BAP2 fiber. Particularly, PVA/BAP2 fiber accelerated the repair of a full-thickness skin wound in diabetic mice and induced optimal neo-tissue formation. Generally, our results suggest that, by mimicking the function of ECM, this fiber as an engineered biomaterial can effectively promote the healing efficiency of diabetic wounds. Our investigation may inspire the development of new, effective, and safer marine-derived scaffold for tissue regeneration.  相似文献   

20.
A novel thin film nanofibrous composite (TFNC) polyphenylsulfone (PPSU) membrane was fabricated by casting a thin PPSU barrier layer on the surface of the electrospun nanofibrous PPSU support. Polyethylene glycol (PEG) 400 was applied in the electrospinning solution to prevent the penetration of coating solution into the support. The membrane morphology and filtration performance were investigated via scanning electron microscopy (SEM), and filtration of canned beans production wastewater, respectively. Atomic force microscopy (AFM) was utilized to evaluate the surface roughness of the membranes. Furthermore, the mechanical strength and thermal stability of the membranes were determined via tensile test and thermogravimetric analysis (TGA). Comparison of the TFNC membrane and the unsupported membrane prepared through the wet phase inversion method with almost equal rejection values indicated a 2.3 fold higher PWF using the former.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号