首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
耕地土壤有机碳(Soil Organic Carbon,SOC)含量不仅是土壤质量的重要表征,还是农业温室气体的重要源库,而基于环境变量建立的随机森林算法(Random Forest,RF)是当前提高土壤有机碳空间预测精度的方法,但不同组合环境变量对RF模型预测精度的影响仍需深入研究.本文以福建闽东南复杂地貌区为例,以...  相似文献   

2.
The agricultural soil carbon pool plays an important role in mitigating greenhouse gas emission ana unaerstanamg the son orgamc carbon-climate-soil texture relationship is of great significance for estimating cropland soil carbon pool responses to climate change. Using data from 900 soil profiles, obtained from the Second National Soil Survey of China, we investigated the soil organic carbon (SOC) depth distribution in relation to climate and soil texture under various climate regimes of the cold northeast region (NER) and the warmer Huang-Huai-Hai region (HHHR) of China. The results demonstrated that the SOC content was higher in NER than in HHHR. For both regions, the SOC content at all soil depths had significant negative relationships with mean annual temperature (MAT), but was related to mean annual precipitation (MAP) just at the surface 0-20 cm. The climate effect on SOC content was more pronounced in NER than in HHHR. Regional differences in the effect of soil texture on SOC content were not found. However, the dominant texture factors were different. The effect of sand content on SOC was more pronounced than that of clay content in NER. Conversely, the effect of clay on SOC was more pronounced than sand in HHHR. Climate and soil texture jointly explained the greatest SOC variability of 49.0% (0-20 cm) and 33.5% (20-30 cm) in NER and HHHR, respectively. Moreover, regional differences occurred in the importance of climate vs. soil texture in explaining SOC variability. In NER, the SOC content of the shallow layers (0-30 cm) was mainly determined by climate factor, specifically MAT, but the SOC content of the deeper soil layers (30-100 cm) was more affected by texture factor, specifically sand content. In HHHR, all the SOC variability in all soil layers was predominantly best explained by clay content. Therefore, when temperature was colder, the climate effect became stronger and this trend was restricted by soil depth. The regional differences and soil depth influence underscored the importance of explicitly considering them in modeling long-term soil responses to climate change and predicting potential soil carbon sequestration.  相似文献   

3.
祁连山中段土壤有机碳剖面垂直分布特征及其影响因素   总被引:2,自引:0,他引:2  
杨敏  杨飞  杨仁敏  杨帆  张甘霖 《土壤》2017,49(2):386-392
以2012—2013年调查的我国西北祁连山中段97个代表性土壤剖面为对象,分析了土壤有机碳(SOC)含量的剖面垂直分布模式,计算了1 m土体内各层次SOC相对含量及其与环境因素(年均降水、年均温度、海拔、坡度、坡向、NDVI)和土壤因素(颗粒组成、体积质量)之间的关系。结果表明:(1)SOC含量剖面垂直分布模式可分为均一分布型、表层聚集型、普通递减型、不规则分布型4个类型,SOC含量剖面垂直分布模式与选取的环境因素和土壤颗粒组成之间没有明显的关系;(2)SOC含量的变异较大,随着深度的增加从中度变异过渡到强度变异;(3)NDVI和年均降水是影响表层土体SOC含量的主要因子,而黏粒和砂粒是影响下层土体SOC含量的主要因子。  相似文献   

4.
典型喀斯特林地土壤养分空间变异的影响因素   总被引:12,自引:0,他引:12  
为了探明喀斯特森林生态系统土壤养分空间异质性的成因及其对养分生物地球化学过程的指示意义,该研究以广西木论国家级自然保护区典型喀斯特峰丛洼地为研究对象,利用地统计学和经典统计方法分析了土壤养分的空间变异特征,并探讨了其主要影响因子。结果表明,研究区土壤有机碳(SOC)和全氮(TN)的块金值/基台值较大,分别为49.9%和28.6%,表现为中等程度的空间自相关,全磷(TP)和全钾(TK)的块金值/基台值较小,分别为10.4%和2.9%,表现为强烈的空间自相关,说明随机因素对TP和TK的影响相对较小;逐步回归分析表明,各环境因子对TK的方差解释最大,对SOC的方差解释最小。其中,土壤交换性Ca2+离子和凋落物中N含量是SOC和TN的主要控制因素,随着交换性Ca2+和凋落物中N含量升高,土壤SOC和TN积累增加;TP的控制因素比较单一,仅受凋落物中P含量影响。TK的影响因素比较复杂,除主要受交换性Ca2+控制外,凋落物N:P比、海拔高度和黏粒含量也有显著影响。  相似文献   

5.
This research investigates the impact of human activities on carbon (C) dynamics in a mountainous and semi‐arid environment. Despite the low C status of drylands, soil organic carbon (SOC) is the largest C pool in these systems and therefore may offer significant C sequestration potential in systems recovering from degradation. Nevertheless, quantification of this potential is limited by lack of knowledge concerning the magnitude of and controls on regional SOC stocks. Therefore, this study aimed to (i) investigate the variability of soil organic carbon in relation to recovery period and key soil and topographical variables, and (ii) quantify the effects of recovery period following abandonment on SOC stocks. Soil profiles were sampled in the Sierra de los Filabres (southeast Spain) in different land units along geomorphic and degradation gradients. SOC contents were modelled using recovery period and soil and topographical variables. Sample depth, topographic position, altitude, recovery period and stone content were identified as the main factors for predicting SOC concentrations. SOC stocks in 1 m depth of soil varied between 3.16 and 76.44 t/ha. Recovery period (years since abandonment), topographic position and altitude were used to predict and map SOC stocks in the top 0.2 m. The results show that C accumulates rapidly during the first 10–50 yr following abandonment; thereafter, the stocks evolve towards a steady‐state level. The erosion zones in the study area demonstrate greater potential to increase their SOC stocks when abandoned. Deposition zones have greater SOC values, although their C accumulation rate is lower compared with erosional landscapes in the first 10–50 yr following abandonment. Therefore, full understanding of the C sequestration potential of land use change in areas of complex topography requires knowledge of spatial variability in soil properties and in particular SOC.  相似文献   

6.
近30 a玛纳斯县北部土壤有机碳储量变化   总被引:4,自引:2,他引:2  
研究玛纳斯县北部土壤有机碳时空变异特征,可以为当地土壤肥力管理提供理论依据。本文采用地统计学和GIS相结合的方法,研究了玛纳斯县北部地区1980-2011年间土壤有机碳的时空变异特征。研究结果表明:研究区32a来1m深土体土壤有机碳密度和储量呈现增加的趋势,分别较1980年二次土壤普查时增加1.81kg/m2和7.7×106kg;2011年0~20、>20~60和>60~100cm土壤有机碳质量分数平均值为5.74、4.44和2.17g/kg;0~20cm和>20~60cm土壤有机碳含量符合正态分布特征,相应土壤有机碳变异函数理论模型分别符合指数和球状模型;0~20cm土壤有机碳和>20~60cm土壤有机碳均具有中等程度的空间变异性,土壤有机碳的空间分布受土壤母质、地形等结构因素和耕作、施肥等随机因素的共同影响并呈现出南部和东北部高,中部地区偏低的分布特征;>60~100cm土壤有机碳呈现出南部高北部低的空间分布特征。本文获取了玛纳斯县北部地区土壤有机碳时空变异特征,该结果对研究区域土壤肥力管理具有重要意义。  相似文献   

7.
There are a number of uncertainties in the use of 137Cs as a marker for deriving soil erosion rates. However, this should not limit other potential uses of this anthropogenic radionuclide in the study of soil landscape processes. This study outlines a sampling methodology which aids in the assessment of the history of erosion and depositional processes within a landscape unit. The depth distribution of 137Cs and soil organic carbon (SOC) was utilized as a means of determining the erosion and depositional history of a conventionally tilled agricultural field in southern Ontario, Canada. Three transects oriented along the slope of a large field had five soil profiles excavated at the summit, sideslope, shoulder slope, footslope and toeslope landscape positions. The soils were sampled in 5 cm increments, and 137Cs and SOC were determined on the samples. The results show that soil redistribution within landscape units of agricultural fields has been substantial both before and after fallout of 137Cs to the soil surface. Soils in depositional areas contained significant 137Cs and SOC at depths beyond which the plow can attain at present. This implies that a significant amount of carbon is being sequestered beneath the present plow layer, and the characterization of this pool must be considered in deriving the dynamics of SOC in agroecosystems.  相似文献   

8.
冲积平原区土壤碳密度估算及其空间分布   总被引:2,自引:1,他引:1  
冲积平原区通常具有复杂的剖面质地层次排列,为了准确估算冲积平原区土壤碳密度的空间分布特征,该文在华北冲积平原区的河北曲周县选取了121个土壤剖面,测定了各土层有机碳含量,构建了基于负指数函数的土壤有机碳垂向分布模型,结合地统计学方法绘制了该县土壤碳密度的空间分布图。结果表明,土壤有机碳含量随深度增加呈逐渐递减的趋势,各土层有机碳含量均属于中等变异程度。0~20和20~40 cm土壤有机碳空间连续性较好,它们的空间相关距离分别为14和3 km,而下层(40 cm)土壤有机碳均表现为纯块金效应结构。土壤有机碳垂向分布模型可以很好地描述剖面土壤有机碳含量的变化特征,且预测与实测的土壤有机碳含量的均方根误差仅为0.70 kg/m3,决定系数达到了0.95。曲周县土壤有机碳密度的空间分布总体表现为西北高东南低的趋势。其空间分布主要受土壤类型和质地的影响,其中潮土和盐化潮土的碳密度明显高于褐土化潮土,质地较细的土壤(轻壤、中壤和粘土)碳密度明显高于质地较粗的土壤(砂土和砂壤)。该研究为冲积平原区土壤碳密度的估算提供了一种新的方法。  相似文献   

9.
State‐of‐the‐art predictive models of soil organic carbon (SOC) dynamics associated with land use changes are unable to reflect the diversity of tropical soil types as the knowledge of contrasting site‐specific factors in mediating the response of the SOC pool is sparse. This paper examines the influence of soil type and management on SOC dynamics following the conversion of forests to annual cropping in Ghana. Soil from primary forests and from areas with short (2–7 years) and long (20 years) histories of maize cultivation was sampled from a Vertisol dominated by smectite and Ultisol dominated by kaolinite. Wet sieving was used to separate soil fractions below and above 250 µm. SOC concentrations and δ13C signatures of SOC in soil fractions and bulk soil were determined. SOC stocks were calculated by the commonly used fixed depth approach and by the equivalent soil mass approach. After 20 years of cultivation of the Vertisol, the total SOC content was 40 per cent lower than under forest, and about 95 per cent of the forest‐derived SOC had been lost. After 20 years of cultivation of the Ultisol, total SOC content was only about 20 per cent lower than under forest and merely 30 per cent of the forest‐derived SOC had been lost. Both soil types were managed as they would typically be in small scale farming systems, thus the higher SOC losses and the substantial loss of forest‐derived SOC from the Vertisol question the conventional concept of smectite having a higher SOC‐stabilizing potential than kaolinite under field conditions. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
The facts that the global carbon budget cannot be currently balanced and current estimates of agricultural sources and sinks may be inaccurate, may be linked to unaccounted‐for erosion‐induced changes in soil organic carbon (SOC). A closed landscape with field banks and an open landscape without field banks were selected from two sites located in Jianyang County, Sichuan Province, and Zhongxian County, Chongqing Municipality, respectively. In these landscapes, the role of tillage and water erosion was examined using measurements of soil redistribution in relation to 137Cs radionuclide depth‐stratigraphy, to elucidate the mechanism of SOC depth distribution in the soil profile and resultant stocks in agricultural landscapes of terraced field systems. Changes in the 137Cs inventory at different landscape positions depend on both 137Cs concentrations of individual subsample layers (5‐cm depth) and the vertical extent of 137Cs depth distribution in the terrace system with field banks, while the changes are only associated with the vertical extent of 137Cs depth distribution in the terrace system without field banks because of similar 137Cs concentrations of individual subsample layers. The profile shape of SOC depth distribution exhibits notable differences between the upper and lower parts of the terrace in systems with field banks, but no apparent differences were found in the systems without field banks and the SOC profile shape is similar to that of the upper part of the terrace in systems with field banks. It is suggested that SOC depth distribution in these two types of terraced field systems is controlled by different soil erosion patterns. Tillage erosion playing a dominant role in the process of soil erosion within a landscape can increase SOC stocks. However, SOC depletion takes place in situations where the two processes of tillage and water erosion are both important and tillage erosion acts as a delivery mechanism for water erosion. We conclude that tillage erosion plays a dual role: enhancing carbon storage at depositional positions, and accelerating carbon depletion when combined with water erosion within the same landscape.  相似文献   

11.
Soil organic carbon (SOC) in Canadian agricultural soils plays an important role in the global cycle of C, and management can influence its fate. Although the scientific literature suggests that practicing no-till (NT) can sequester C, this is not always the case. Furthermore, there are many other factors including climate, management history, soil type and soil landscape processes that may affect the dynamics of SOC under NT. We measured the changes in SOC under NT in southern Ontario, at varying positions in the landscape in Gleyic and Orthic Luvisols at the end of a 15-year-period. Soil cores taken to depths beyond the solum, were segmented with depth, and total SOC was determined for each segment on an equivalent mass basis. When the entire soil column was considered, there was a loss of SOC in more profiles than there were gains. Furthermore, the erosion/deposition history at each landscape position appeared to influence the dynamics of SOC. In depression areas where Ap horizons were greater than 27 cm thick due to a history of soil deposition from upslope and local hydrology, there was a loss of total SOC after 15 years of NT. While where the Ap thickness was less than 27 cm, there were 18 profiles with SOC gains and 15 with net losses. Multiple linear regression analysis revealed that the change in SOC after 15 years was negatively related to the initial total SOC content and positively related to mass of clay. The results of this study suggest that landscape position and erosion/deposition history play a significant role in the ability of NT soils to sequester SOC. Interpretations of long-term SOC monitoring studies must take into account the location of samples within fields if useful information is to be gained on C dynamics in agricultural soils.  相似文献   

12.
ABSTRACT

The vertical dynamics of paddy soil organic carbon (SOC) play an important role in soil quality and carbon cycling. In this study, we used an exponential decay function to estimate the vertical dynamics of SOC content and determined its influencing factors in a typical paddy soil area of the Chengdu Plain from the 1980s to the 2010s. Our results show an overall increase in SOC stocks at 0–100 cm from 11.8 Tg in the 1980s to 13.7 Tg in the 2010s. SOC content increased at depths of 0–40 cm and declined at depths of 40–100 cm over the past three decades. The exponential decay function parameters C0 and k significantly increased by 31.4% and 18.2% respectively, which suggests the vertical pattern of SOC distribution changed. The increase in nugget effects of C0 and k and the decrease in the relative contributions of the parent material, subgroup and distance-to-river indicate that extrinsic factors played increasing roles in the vertical variation of SOC content. Our study concludes that rice planting has led to vertical variations of SOC content and decreased the effects of intrinsic factors on the vertical variation of SOC content of Chengdu Plain paddy soils over the past three decades.  相似文献   

13.
黄土高原沟壑区小流域土壤有机碳空间变异   总被引:21,自引:2,他引:21  
通过对砖窑沟流域不同地貌部位62个点的取样分析,运用地统计学方法研究了流域土壤有机碳的空间变异性特征,初步探讨了影响空间变异的复杂因素。结果表明:流域内土壤有机碳非常低,存在土壤养分贫瘠化现象。各层土壤有机碳含量的变异为中等程度,该变异主要是由空间自相关部分引起的。同层次内,沟坝地土壤有机碳含量比梁峁地高。垂直剖面上,土壤有机碳含量随深度增加而减少,表层含量值明显高于下部各层,60cm以上含量值随深度增加递减迅速,60cm以下含量值变化不大。不同地貌部位剖面土壤有机碳含量的变幅是:在80cm以上,沟坝地明显大于梁峁地;80cm以下,二者大体相当。土壤有机碳含量在空间上的分异主要受土壤动植物在土体中的分布、土壤含水量、水土流失及人类生产活动等因素的影响。  相似文献   

14.
张辉国  王合玲   《水土保持研究》2013,20(5):77-81,85
利用沿土壤深度方向的垂直滞后空间相关系数和经验正交函数分解方法研究了新疆艾比湖流域土壤有机质含量的垂直空间分布结构。结果表明:垂直滞后空间相关系数和经验正交函数分解方法能够有效分析空间区域土壤有机质垂直分布的相关性和空间异质性;垂直滞后空间正相关或负相关的集聚区域指示了相似或相反的有机质垂直分布模式,并且土壤有机质含量相关性随土层深度间隔增大而衰减;流域不同区域土壤有机质沿土层深度的垂直分布呈现分异特征,流域东部和西部地区有机质含量随土层深度增加而升高,但中部区域有机质含量随土层加深而降低,而且土壤有机质含量沿垂直方向递增或递减的速率在流域内亦表现出空间异质性。  相似文献   

15.
Land use change is a key factor driving changes in soil organic carbon (SOC) around the world. However, the changes in SOC following land use changes have not been fully elucidated, especially for deep soils (>100 cm). Thus, we investigated the variations of SOC under different land uses (cropland, jujube orchard, 7‐year‐old grassland and 30‐year‐old grassland) on hillslopes in the Yuanzegou watershed of the Loess Plateau in China based on soil datasets related to soils within the 0–100 cm. Furthermore, we quantified the contribution of deep‐layer SOC (200–1,800 cm) to that of whole soil profiles based on soil datasets within the 0–1,800 cm. The results showed that in shallow profiles (0–100 cm), land uses significantly (p  < 0·05) influenced the distribution of SOC contents and stocks in surface layer (0–20 cm) but not subsurface layers (20–100 cm). Pearson correlation analysis indicated that soil texture fractions and total N were significantly (p  < 0·05 or 0·01) correlated with SOC content, which may have masked effects of land use change on SOC. In deep profiles (0–1,800 cm), SOC stock generally decreased with soil depth. But deep soils showed high SOC sequestration capacity. The SOC accumulated in the 100–1,800 m equalled 90·6%, 91·6%, 87·5% and 88·6% of amounts in the top 100 cm under cropland, 7‐year‐old grassland, 30‐year‐old grassland and jujube orchard, respectively. The results provide insights into SOC dynamics following land use changes and stressed the importance of deep‐layer SOC in estimating SOC inventory in deep loess soils. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

16.
Research on how tillage‐induced soil redistribution affects soil properties is limited for complex slopes in nonmechanized agricultural areas. The objectives of this study are (1) to examine the vertical redistribution of soil organic C (SOC), extractable P and K induced by tillage on a complex slope, (2) to assess the effects of tillage erosion on soil profile properties, and (3) to elucidate the variations in soil properties induced by both vertical mixture and downslope transport of soil within the landscape. Simulated tillage was conducted in the Yangtze Three Gorges Reservoir Area, China. The 137Cs data showed that intense tillage caused the soil vertical mixture and downslope transport. The redistribution of 137Cs and soil constituents varied with the number of tillage passes and location in relation to curvature. SOC was completely depleted with the disappearance of soil profiles at the summit position, while SOC concentrations decreased by 26% for the till layer and increased by 29% for the sublayer at the toeslope position for the 15‐tillage operation, as compared with those of pretillage. The vertical redistribution of extractable P and K followed a similar pattern to that of SOC. The gap and variation in soil constituents between the till layer and sublayer declined after tillage, suggesting that the mixing effect of tillage attenuates the variability of soil properties in the vertical direction. Net loss and gain of soil constituents occurred at the summit and toeslope positions, respectively, suggesting that the downslope transport of soil induced by tillage accentuates the variability of soil properties in the lateral direction.  相似文献   

17.
Substitution of mineral fertilizers with organic soil amendments is postulated to improve productivity‐relevant soil properties such as aggregation and organic matter (OM) content. However, there is a lack of studies analyzing the effects of biochar and biogas digestate versus mineral fertilizer on soil aggregation and OM dynamics under temperate field conditions. To address this research gap, a field experiment was sampled four years after establishment on a sandy Cambisol in Germany where mineral fertilizer or liquid biogas digestate was applied with or without 3 or 40 Mg biochar ha?1 (produced at 650°C). Soil samples were analyzed for soil organic carbon (SOC) content, pH, cation exchange capacity, bulk density, water‐holding capacity, microbial biomass, aggregate size class distribution, and the SOC content associated with these size classes. 40 Mg biochar ha?1 significantly increased SOC content in all fractions, especially free particulate OM and the 2–0.25 mm fraction. The yield of small macroaggregates (2–0.25 mm) was increased by biochar, but cation exchange capacity, water‐holding capacity, and pH were not consistently improved. Thus, high‐temperature biochar applied to a sandy soil under temperate conditions is primarily recommended to increase SOC content, which could contribute to climate change mitigation if this C remains sequestered over the long‐term. Fertilizer type did not significantly affect SOC content or other measured properties of the sandy Cambisol, suggesting that replacement of mineral fertilizer with digestate has a neutral effect on soil fertility. Co‐application of biochar with digestate provided no advantages for soil properties compared to co‐application with mineral fertilizer. Thus, independent utilization of these organic amendments is equally suitable.  相似文献   

18.
Some studies on the relationship between soil erosion and subsequent redeposition of eroded soils in the same field and soil quality have been conducted in croplands, yet few studies have revealed this relationship in rangelands. We selected a toposequence with a slope of 30% and a horizontal length of 342 m from the rangeland in the northern Tibet Autonomous Region, China (31°16′N, 92°09′E) to determine the relationship between soil erosion, soil organic carbon (SOC) content and available P patterns within a hillslope landscape. Soil samples for the determination of 137Cs as well as SOC, available P and particle‐size fractions were collected at 20 m intervals along a transect of this hillslope. Soil redistribution was caused primarily by wind erosion at toe‐slope positions, but primarily by water erosion at the hillslope positions above the toe‐slope. In upper‐ and mid‐slope portions (0 m to 244 m horizontal length), SOC content is closely correlated to 137Cs concentration (r = 0.74, P < 0.01, n= 15), suggesting that SOC distribution along the slope was similar to 137Cs distribution, which itself was dependent on topographic changes. However, SOC contents in toe‐slope portions are less than those above the toe‐slope (i.e. upper‐ and mid‐slope portions), and the correlation between 137Cs and SOC in the toe‐slope portion is weaker than that above the toe‐slope. A highly significant correlation (r = 0.72, P < 0.001, n= 20) between 137Cs concentration and available P was found within the whole hillslope landscape, implying the distribution pattern of available P was somewhat different from that of SOC. We suggest that the distribution of SOC within the hillslope landscape is also affected by factors such as assimilation rates due to difference in grassland productivity at different points and different biological oxidation rates of carbon related to patterns of moisture distribution.  相似文献   

19.
In the antarctic summer 1996 top soils and whole profiles were collected systematically near the Australian Casey Station (Wilkes Land) in order to specify the carbon and nitrogen storage in permafrost-affected mineral soils (Cryosols) of coastal areas of Antarctica. Cryorthents, Cryaquepts and Haplocryods are the main soil units observed. The organic matter accumulation in mineral soils of the ice-free coastal Antarctic region is similar to that of comparable Arctic regions. A small-distance storage variation is mainly due to the patch pattern of topography, geomorphology and especially soil geography. Haplocryods are important sinks of carbon and nitrogen, whereas the storage in the Cryaquepts is of minor importance. In addition, large parts of the landscape are characterized by Lilhic Cryonhents. which store nearly 50% of the organic carbon and 40% of the nitrogen. A high variability in the C and N concentration and storage complicates a calculation of soil C and N storage of the total landscape necessary for developing ecosystem models. However, the survey on landscape level suggests that in 75% of the landscape sites the soil carbon and nitrogen stock is very similar, but a wide-spread podzolization and/or extraordinary organic matter accumulation increases the stocks to a great extent. For this reason a storage estimation could be improved by a proper soil survey.  相似文献   

20.
干旱半干旱区农田土壤碳垂直剖面分布特征研究   总被引:8,自引:0,他引:8  
以中国干旱半干旱区农田土壤为研究对象,通过收集自然农田和长期定位站点(178个剖面,0~100 cm土层)农田土壤碳的数据并对其进行整合,分析了农田土壤有机碳和无机碳含量的垂直剖面分布特征及其影响因素。结果表明,随土层深度增加,农田土壤有机碳呈下降趋势,表层含量高于底层;不同地区农田土壤无机碳含量变化趋势不一,随土壤深度增加整体呈现升高的趋势,但是也有一些地区呈现下降趋势。土壤剖面深度为100 cm的农田土壤有机碳和无机碳密度平均值分别为8.33和15.83 kg m-2,农田土壤无机碳储量大约是土壤有机碳的2倍。土壤深度为0~30 cm的有机碳占100 cm总有机碳含量的45%,无机碳仅占100 cm总无机碳含量的29%;土壤无机碳主要集中在30~100 cm土层,占100 cm总无机碳含量的71%,远高于有机碳在此土层占100 cm总有机碳含量的百分比(55%)。综合自然农田和长期定位站点农田土壤碳的数据,土壤容重与土壤p H是影响农田土壤有机碳和无机碳分布特征的重要因素:自然农田土壤有机碳与土壤p H(R2=0.61,p0.01)和土壤容重(R2=0.64,p0.01)呈显著负相关;长期定位站点土壤无机碳与土壤p H(R2=0.56,p0.01)和土壤容重(R2=0.63,p0.01)呈显著正相关。中国干旱半干旱区农田土壤有机碳和无机碳的分布特征与影响因素,将为陆地生态系统碳储量估算提供数据基础与理论支撑。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号