首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The quality of dissolved organic matter (DOM) is highly variable and little information is available on the relation of DOM quality to the structure and composition of its parent soil organic matter (SOM). The effect of increasing N inputs to forest soils on the structure and composition of both SOM and DOM also remains largely unclear. Here we studied the release of DOM, its specific UV absorption and two humification indices (HIX) derived from fluorescence spectra from Oa material of 15 North- and Central-European Norway spruce (Picea abies (L.) Karst.) stands. The Oa material was incubated aerobically at 15 °C and water holding capacity over a period of 10 months and extracted monthly with an artificial throughfall solution. Soil respiration was determined weekly. The influence of mineral N inputs on composition of DOM and on respiration rates was investigated on periodically NH4NO3-treated Oa samples of eight selected sites. Release of dissolved organic carbon (DOC) from untreated Oa material samples ranged from 0.0 to 58.6 μg C day−1 g C−1 and increased with increasing C-to-N ratio. One HIX and UV absorption of DOM were negatively correlated to the degree of oxidation of lignin-derived compounds and positively to the C-to-N ratio and – HIX only – to the aromatic C content of SOM. Mineral N addition had no distinct effect on respiration rates. In six of eight samples the N-treatment caused an increase in specific UV absorption or one HIX of DOM. However, these effects were not statistically significant. Addition of mineral N did not affect the rates of DOM release. Our results show that properties of SOM largely determine the amount and quality of DOM in forest floors. Changes of DOM quality due to mineral N additions are likely, but we cannot confirm significant changes of DOM release.  相似文献   

2.
The aim of this study was to investigate the relationship between dissolved organic matter and chemical constituents of percolation water collected at 5, 20 and 40 cm depths from 13 ionbalance sampling plots located along lines extending through Finnish Lapland from Cu-Ni smelters in the Kola Peninsula, Russia. All the monitoring plots have as uniform as possible stand and site characteristics. The plots were located in Scots pine stands on dry and dryish sites with genetic horizons characteristic of Fe-humus podsols. The soil type on most of the sites was sorted fine sand or sand. Significant positive correlations were found between dissolved organic matter (DOM) and total dissolved Al concentrations at 5 and 20 cm, but not at 40 cm. A significant negative correlation was found between DOM and pH at 5 cm, but not at 20 or 40 cm. The anion deficit was positively correlated with DOM at 5 cm in the percolation water. Organic matter thus plays an important role as an anioh in percolation water, and regulates water pH in the surface soil. A high proportion of dissolved Al was in the form of organic complexes. Total dissolved Al levels were well below the toxic limits for pine.  相似文献   

3.
Soil organic matter effects on plant available and water soluble phosphorus   总被引:1,自引:1,他引:1  
The degree of phosphorus saturation (DPS) has been shown to be a suitable initial indicator of P loss potential from agricultural soils to surface waters. In addition, several agronomic soil tests have been evaluated as environmental predictive tools. The objectives of this study were: (1) to evaluate the modified Morgan soil test, used on acid, high-aluminum soils of the northeastern United States, as a predictor of water-soluble P and (2) to determine the effect of soil organic matter (SOM) on the ability of both DPS and soil test P to predict water-soluble P. The soils were divided into three SOM classifications depending on their loss-on-ignition contents and analyzed for water-soluble P, modified Morgan soil test P, and oxalate-extractable P, Al, and Fe. The relationship between DPS and water-soluble P showed a change point at about 15% DPS, as did the relationship between DPS and modified Morgan soil test P. A DPS of 15% corresponded to about 14 mg kg−1, a threshold above which water-soluble P could be expected to increase more rapidly with additional P loading. The slopes of the regression lines of water-soluble P as a function of soil test P were 0.050, 0.036, and 0.021 (mg water-soluble P kg−1 soil/mg soil test P kg−1) for the low, medium, and high SOM classification groups, respectively. SOM level had a less significant effect on the relationship between DPS and water-soluble P. Higher levels of SOM were associated with higher levels of oxalate-extractable Fe and Al and, therefore, higher P sorption capacities and lower DPS values, resulting in less P in solution at all soil test levels.  相似文献   

4.
The effect of spruce swamp forest (SSF) drainage and water regime restoration on soil organic matter (SOM) quality and soil microbial heterotrophic activities was studied in pristine, drained and restored SSF in the Bohemian Forest, Czech Republic. Sequential chemical SOM fractionation using cold and hot water and hot acid was used to separate SOM fractions according to their mobility and potential lability/recalcitrance, and Fourier transform infrared spectra were used for SOM characterization. Soil physicochemical parameters and heterotrophic microbial activities were also determined. Drainage of SSF had significant long‐term effects (more than 50 yr) on plant communities and SOM quality. On drained sites, cover of sphagnum moss and sedge was much smaller than on pristine locations. A greater proportion of recalcitrant compounds and a smaller proportion of labile compounds were found in drained SSF as compared to pristine sites, which first led to an energy limitation and was followed by a decrease in microbial biomass and heterotrophic microbial activities (CO2 production, methanogenesis and methanotrophy). Restoration resulted in slow progressive changes in the vegetation cover, including the spread of sphagnum mosses, retreat of mosses typical of drier conditions and increased sedge cover compared with drained SSF. Moreover, soil physicochemical parameters (pH and bulk density), hot‐water‐extractable C and methanotrophic activity tended to evolve towards the pristine SSF and seem to be good indicators of the restoration process. No other SOM fractions changed significantly after restoration. Thus, to change significantly overall SOM quality and most microbial heterotrophic activities following restoration, more than 7 yr are required.  相似文献   

5.
Field and laboratory studies combined with destructive and nondestructive analytical methods were used to characterize dissolved organic matter (DOM) in acid forest soils. DOM is produced in significant amounts in the forest canopy and in the forest floor. A major part of the organic solutes are lignocellulose-degradation products being strongly microbially altered in the course of ligninolysis. The release of lignin-derived moieties into the soil solution is controlled by their degree of biooxidation. Microorganisms contribute also directly to the organic solutes through the release of microbial metabolites. DOM released from the forest floor passes the upper mineral soil almost conservatively, whereas in the subsoil most DOM is removed from solution. Immobilization of DOM is mainly due to sorption on Fe and Al oxides. The highly oxidized lignin-derived moieties are preferentially removed from the soil solution whereas the saccharides are relatively enriched. We conclude that DOM in the forest soil output to the hydrosphere is a result of (1) the release of microbially degraded lignocellulose compounds and of microbial metabolites into the forest floor solution and (2) selective sorptive removal of the lignin-derived constituents in the subsoil.  相似文献   

6.
可溶性有机物对土壤中绿麦隆吸附与解吸的影响   总被引:7,自引:0,他引:7  
A batch equilibrium techniques was used to examine the effect of dissolved organic matter (DOM) extracted from both non-treated sludge (NTS) and heat-expanded sludge (HES) on the sorption and desorption of chlorotoluron (3-(3-chloro-p-tolyl)-1,1-dimethylurea) in two types of soils, a yellow fluvo-aquic and a red soil from China. Without DOM,sorption of chlorotoluron was significantly greater (P 〈 0.05) in the red soil than in the yellow fluvo-aquic soil. However,with DOM the effect was dependent on the soil type and nature of DOM. Chlorotoluron sorption was lower in the yellow fluvo-aquic soil than in the red soil, suggesting that with the same DOM levels the yellow fluvo-aquic soil had a lower sorption capacity for this herbicide. Application of DOM from both NTS and HES led to a general decrease in sorption to the soils and an increase in desorption from the soils. Desorption of chlorotoluron also significantly increased (P 〈 0.05) with an increase in the DOM concentration. Additionally, for sorption and desorption, at each DOM treatment level the NTS treatments were significantly lower (P 〈 0.05) than the HES treatments. This implied that non-treated sludge had a greater effect on the sorption and desorption of chlorotoluron than heat-expanded sludge.  相似文献   

7.
We investigated the importance of physico‐chemical mechanisms responsible for the release of dissolved organic matter (DOM) from a peaty soil. Columns containing peat aggregates (embedded within a sand matrix) provided an experimental system in which both convective and diffusive processes contributed to DOM leaching. The use of aggregated peat avoided the problems associated with traditional batch equilibration experiments in which soil structure is destroyed. Biotic and abiotic processes operating in the columns were manipulated by working with two unsterilized columns (at 5°C and 22°C) and one gamma irradiation‐sterilized column (5°C). Continuous solute flows (< 80 hours) and periods of flow interruption (five interruptions of 6 hours to 384 hours) were applied to the columns (using a 1‐mm NaCl electrolyte) to investigate mechanisms of diffusion‐controlled release of DOM. For all columns, dissolved organic carbon and nitrogen (DOC and DON) effluent concentrations increased after resumption of flow and the maximum concentrations increased with increased flow‐interruption duration. Measurements of effluent UV absorbance (λ= 285 nm) showed that the DOM leached immediately after the flow interruptions contained fewer aromatic moieties of lower molecular weight than the DOM leached after periods of steady flow. The sterilized column had larger DOC and DON effluent concentration spikes than those from the unsterilized column at 5°C (38 mg C dm−3 and 6.5 mg N dm−3 versus 13 mg C dm−3 and 6.5 mg N dm−3 after the 384 hours flow interruption). This result suggested that the concentrations of DOM resulting from physico‐chemical release mechanisms (sterilized column) were attenuated by biological activity (unsterilized columns). Our results indicate that the peat’s microporous structure provides reservoirs of DOM that interact with solute in transport pores via abiotic, rate‐controlled mass transport. Hence, diffusion can influence the quantity and composition of DOM leached from peat in the field depending on intensity and duration of rainfall.  相似文献   

8.
Dong  Xinliang  Li  Mozhi  Lin  Qimei  Li  Guitong  Zhao  Xiaorong 《Journal of Soils and Sediments》2019,19(3):1120-1129
Purpose

There is little knowledge on the organic matter fractions of salt-affected soil aggregates. This study aimed at investigating characteristics of salt-affected soil organic carbon components and the relationships between soil salt concentration and soil organic carbon component content.

Materials and methods

Five typical salt-affected soils in Hetao region China were collected and analyzed for light (LF) and heavy fraction (HF) in different water-stable aggregates. And the soil organic carbon components were measured by Fourier transform infrared (FTIR) and pyrolysis-gas chromatography/mass spectrometer (Py–GC/MS).

Results and discussion

The results showed that the salt-affected soils were dominant in 53–10-μm water-stable aggregates, 61–80% in the bulk soil, and very low in >?250-μm macro-aggregates, less than 7.06% in the bulk soil. The proportions of >?250-μm macro-aggregates and the mean weight diameter (MWD) were negatively correlated to Na+ concentration (p?<?0.05). Furthermore, the macro-aggregates were generally higher in total organic carbon (TOC) and accordingly higher C/N ratio than those in micro-aggregates. Heavy fractions (HF) from both >?53 μm and <?53-μm soil aggregates accounted for 99.30–99.83% of the bulk soil and contained 89.6–98.5% lower TOC and accordingly 49.2–84.8% lower C/N ratio than those in light fractions (LF). The LFs were high in lignin (7.27–34.02% in total pyrolysis products, 19.89% on average) and alkane/alkene-derived compounds (9.51–37.21%, 23.18% on average), but low in N-containing compounds (0–3.64%, 1.71% on average), while HFs were high in both alkane/alkene (4.38–27.46%, 15.06% on average) and N-containing compounds (7.45–26.45%, 13.98% on average), but low in lignin-derived compounds (1.13–8.75%, 3.86% on average).

Conclusions

The tested salt-affected soils were predominant in 53–10-μm micro-aggregates, which was caused by the Na+ dispersion effect on soil aggregates. Most SOM was stored in HF that contained high N-containing compounds and low C/N ratios. Our results suggested that the components of SOM were mainly controlled by the soil Na+ concentration.

  相似文献   

9.
In Eastern Canada, cereal yields are often restricted by soil acidity and low fertility. Continuous cereal production can also lead to soil structural degradation. The addition of lime and fertilizers and the adoption of conversation tillage practices are proposed solutions which may have a positive impact on soil quality. The objective of the present work was to assess the impact of 3 years of different tillage practices and P additions, and of a single lime addition on organic C and total N, microbial biomass C, and on N mineralization at the surface layer (0–7.5 cm) of a Courval sandy clay loam (Humic Gleysol). The easily mineralizable N, total amount of N mineralized in 22.1 weeks, the rate of N mineralization, and microbial biomass C were significantly greater in the minimum tillage than in the moldboard plow treatment. Chisel plow treatment showed intermediate values. The ratios of potentially mineralizable N and of easily mineralizable to total soil N were also significantly larger under minimum tillage and chisel plowing than under moldboard plowing. The lime and P treatments had no significant effect on the measured soil quality parameters. The total amount of N mineralized per unit of biomass C decreased as the tillage intensity increased, suggesting a decrease in the efficiency of the biomass in transforming organic N into potentially plant-available forms and thus a loss in soil organic matter quality. The results of this study indicate that conservation tillage practices such as rototilling and chisel plowing are efficient ways of maintaining soil organic matter quality when old pastures are brought back into cultivation.  相似文献   

10.
Water flow and transit in the soil are important to water supply and transport of chemical compounds. Flows through forested till soils are by vertical percolation in the upslope areas, groundwater flows along the slope to discharge in downslope sites. The flow is divided into slow and fast parts both in the unsaturated percolation and the saturated groundwater. Soil development influences the flow and in coarse grained and well drained soils groundwater flow is stable but in finer grained physically stratified soils, variations in flow are considerable. Large flows occur in the upper soil layers and small flows in deep layers. Chemical composition of soil water varies in a similar way. In the upper layers, water is more acid and has a lower content of base cations compared to deeper layers. In downslope areas discharging deep groundwater contributes to less acidic conditions also in the upper soil layers. This discharge and a dominating lateral water flow in the upper layers partly protect deep layers from acidification which is emphasised by slow water turnover in these layers.  相似文献   

11.
Retention and release of dissolved organic matter in Podzol B horizons   总被引:1,自引:0,他引:1  
The main objectives were to study the effects of pH on the retention and release of organic matter in acid soil, and to determine the main differences in results obtained from batch experiments and experiments in columns. We took soil material from the B horizons of a Podzol at Skånes Värsjö (southern Sweden). In batch experiments, soil was equilibrated with solutions varying in pH and concentration of dissolved organic C. In Bh samples, the release of dissolved C gradually increased with increase in pH. In the Bs1 material there was a minimum at pH 4.1, and in the Bs2 soil the minimum occurred at pH 4.6. The ability to retain added dissolved C increased in the order Bh < Bs1 < Bs2. The column experiment was run for 160 days under unsaturated flow conditions. Columns were packed with Bh, Bh + Bs1 or Bh + Bs1 + Bs2 samples to calculate mass balances for each horizon. Solutions either without any dissolved organic C or ones containing 49 mg C dm?3 with pH of 4.0 or 3.6 were used to leach columns. The pH of input solutions only little affected the concentration of dissolved C in the effluent. Relative proportions of hydrophobic substances decreased with increasing column length and decreasing pH. For input solutions containing dissolved C, near steady state was achieved for both the Bs1 and Bs2 horizons with approximately 25% dissolved organic matter retention. Thus, no maximum sorption capacity for dissolved C could be defined for these horizons. This behaviour could not have been predicted by batch data, showing that column experiments provide useful additional information on interactions between organic compounds and solid soil material.  相似文献   

12.
秸秆施用后土壤溶解性有机质的动态变化   总被引:11,自引:2,他引:11  
采用室内培养方法研究了水稻秸秆腐解对土壤溶解性有机质(Dissolved Organic Matter,DOM)含量及其化学组成的动态影响。结果表明,秸秆腐解的前7 d显著增加了土壤溶解性有机碳(DOC)含量,7 d后则无明显影响;同时,秸秆腐解增加了土壤中溶解性糖(DS)、溶解性酚酸(DP)以及芳香族化合物含量。随着腐解时间的延长,溶解性糖在DOC中所占比例下降,而芳香族化合物逐渐上升,表明秸秆腐解不同阶段DOM的化学组成发生了变化。溶解性总氮(TDN)的变化表明,秸秆腐解增加土壤氮素的固定。  相似文献   

13.
有机污染型灌溉水对土壤团聚体的影响   总被引:4,自引:0,他引:4  
为了评估灌溉水中有机污染物对农田土壤物理状态的影响,本研究以长期采用有机污染型水体灌溉的陕西交口灌区农田土壤为研究对象,以气候条件、土壤条件以及耕作制度基本一致,长期采用未污染的地下水灌溉的农田土壤为对照,分别用干筛和湿筛法测定了土壤团聚体和微团聚体组成等,分析了优势团聚体的变化情况。结果表明:长期采用有机污染水灌溉明显降低土壤中大于10 mm大团聚体和小于0.25 mm微团聚体的含量,显著增加了直径为1~5 mm范围内"(质量)优势团聚体"的含量;水稳性团聚体与土壤有机质含量呈显著正相关,而与机械组成的相关系数未达到显著水平;有机污染型水体灌溉可以显著改善微团聚体的特性,增大了土壤团聚度,降低其分散系数,从而改善了土壤结构状况。综合试验结果证明,灌溉水中的有机污染物质有助于显著地改善土壤结构状况和特性。  相似文献   

14.
Soil organic matter, effects on soils and crops   总被引:4,自引:0,他引:4  
Abstract. Manurial treatments and cropping history have remained unchanged for many years in classical and long-term experiments at Rothamsted and Woburn, in some cases for more than 100 years. Soil samples taken periodically have been analysed to follow changes in organic carbon content with time and treatment. Data presented here clearly show effects of carbon input and soil texture on equilibrium organic matter content.
Until recently increasing amounts of soil organic matter had little effect on yields of arable crops especially if fertilizer nitrogen dressings were chosen correctly. However the yield potential of many crops has increased and various agronomic inputs have become available to achieve that potential. Yields of many crops are now larger on soils with extra organic matter both on the sandy loam at Woburn and the silty clay loam at Rothamsted. Some of the effect appears to be related to extra water holding capacity, some to availability of nitrogen in ways which cannot be mimicked by dressings of fertilizer N, and some to improved soil physical properties. Responses to fertilizer N have been larger on soils with more organic matter.  相似文献   

15.
Effects of organic matter and calcium on soil structural stability   总被引:2,自引:0,他引:2  
The cationic bridging effect of the calcium ion (Ca2+) and the flocculating ability of clay and organic matter are crucial in the formation and stability of soil aggregates. They are therefore likely to influence the soil's saturated hydraulic conductivity ( K s). We tested the individual effects of these factors on aggregate stability and related hydraulic properties, and studied the influence of clay mineralogy also. Samples from the surface (0–10 cm) of three contrasting soils in Trinidad were used. The soils were treated with three levels of Ca2+ and three levels of organic matter in a 3 × 3 × 3 factorial design and incubated for 14 days. Both aggregate stability and saturated hydraulic conductivity were influenced by all factor combinations. Interactions between soil type and Ca2+ revealed the importance of polyvalent cations in aggregate stability of soils with low activity minerals. The influence of organic matter varied with quantity; the more there was, the more stable the soil became, particularly in the soil containing little clay. Clay dispersion and slaking of expanding minerals occurred even with large additions of Ca2+ and organic matter, emphasizing the overall influence of mineralogy in determining the response of soils to stability treatments.  相似文献   

16.
Comprehensive studies of the properties and processes of nonirrigated soils at different hierarchical levels of their organization are carried out and regularities of their changes under the effect of irrigation are revealed. It is shown that irrigated soils of weakly drained landscapes compared with drained change more rapidly as a result of humidization, leading to acceleration and intensification of the mutual influence of processes at all levels of their organization. Positive and negative phenomena are noted under irrigation, the rate and extent of which depend on soil type, degree of drainage of the landscape, changes in the water regime and moisture content of the soils, quality of the irrigation water, and level of agrotechnologies.  相似文献   

17.
V.O. Polyakov  R. Lal 《Geoderma》2008,143(1-2):216-222
Soil organic carbon (SOC) is an important component of the global carbon cycle. Its dynamics depends upon various natural and anthropogenic factors including soil erosion. A study on Miamian silty clay loam soil in central Ohio was conducted to investigate the effect of soil erosion on SOC transport and mineralization. Runoff plots 10, 20 and 30 m long on a 7% slope under natural rainfall were used. Total soil loss, evolution of CO2 from the displaced aggregates of various fractions, and total SOC concentrations were determined. It was shown that the primary ways of SOC loss resulted from two processes: 1) mechanical preferential removal of SOC by overland flow and 2) erosion-induced mineralization. Significant amounts of SOC mobilized by erosion at the upper part of the slope during the season (358 kg ha? 1) could be lost to the atmosphere within 100 days (15%) and transported off site (44%). Breakup of initial soil aggregates by erosive forces was responsible for increased CO2 emission. During the initial 20 days of incubation the amount of CO2 released from coarse size sediment fractions (0.282 g C kg? 1 soil d? 1) was 9 times greater than that in fine fractions (0.032 g C kg? 1 soil d? 1) due to the greater initial amount of SOC and its exposure to the environment. Sediment size distribution as well as its residence time on the site was the primary controllers of CO2 loss from eroded soil.  相似文献   

18.
Chen  Yanlong  Shi  Jianglan  Tian  Xiaohong  Jia  Zhou  Wang  Shaoxia  Chen  Juan  Zhu  Wenling 《Journal of Soils and Sediments》2019,19(2):774-784
Purpose

Crop straw return into arable land is a common method of disposing of excess straw in China and can improve soil dissolved organic matter (DOM) that is known to modify soil zinc (Zn) extractability and mobility.

Materials and methods

We conducted a soil box (internal dimensions, 160?×?140?×?80 mm3) experiment to evaluate the response of Zn extractability and transfer by diffusion to DOM after maize straw amendment (St, 0 and 15 g kg?1) in calcareous soil treated with ZnSO4·7H2O (Zn, 0 and 20 mg kg?1). Soil treated with St0Zn0 (control), St15Zn0, St0Zn20, or St15Zn20 was isolated in the 10-mm center of the box, and untreated soil was placed in compartments at either side.

Results and discussion

Results revealed that addition of St0Zn20 or St15Zn20 increased the concentration of Zn extracted with diethylenetriaminepentaacetic acid (DTPA-extractable Zn) in the central layer compared with control or addition of St15Zn0. Over the course of 45 days, transfer of DTPA-extractable Zn into the adjacent untreated soil was detected at 15–20 mm in soil with St15Zn20 but at 10–15 mm with St0Zn20 and only 0–5 mm with St15Zn0. Additionally, a higher amount of DTPA-extractable Zn transfer into the adjacent untreated soil also occurred in St15Zn20. This increased DTPA-extractable Zn transfer may be associated with the formation of Zn-fulvic acid complexes with the provision of DOM derived from straw.

Conclusions

Soluble Zn combined with straw return may be a promising strategy for improving both Zn mobility and extractability in calcareous soil.

  相似文献   

19.
 The effect of long-term waste water irrigation (up to 80 years) on soil organic matter, soil microbial biomass and its activities was studied in two agricultural soils (Vertisols and Leptosols) irrigated for 25, 65 and 80 years respectively at Irrigation District 03 in the Valley of Mezquital near Mexico City. In the Vertisols, where larger amounts of water have been applied than in the Leptosols, total organic C (TOC) contents increased 2.5-fold after 80 years of irrigation. In the Leptosols, however, the degradability of the organic matter tended to increase with irrigation time. It appears that soil organic matter accumulation was not due to pollutants nor did microbial biomass:TOC ratios and qCO2 values indicate a pollutant effect. Increases in soil microbial biomass C and activities were presumably due to the larger application of organic matter. However, changes in soil microbial communities occurred, as denitrification capacities increased greatly and adenylate energy charge (AEC) ratios were reduced after long-term irrigation. These changes were supposed to be due to the addition of surfactants, especially alkylbenzene sulfonates (effect on denitrification capacity) and the addition of sodium and salts (effect on AEC) through waste water irrigation. Heavy metals contained in the sewage do not appear to be affecting soil processes yet, due to their low availability. Detrimental effects on soil microbial communities can be expected, however, from further increases in pollutant concentrations due to prolonged application of untreated waste water or an increase in mobility due to higher mineralization rates. Received: 28 April 1999  相似文献   

20.
再生水是农业灌溉重要的水资源,但作为灌溉用水,因其所富含的营养物质含量和有害物质浓度不同,其对土壤基本物理性质及土壤内部孔隙的影响也存在一定差异,为探明不同水质再生水灌溉下土壤的退化情况,该研究进行了为期1.5a的室外大田灌溉试验,对比4种不同水质(W1:预处理后的生活污水,W2:再生水1,W3:再生水2,W4:自来水)灌溉后土壤的多项基本理化性质的变化情况,包括:pH值、电导率(electrical conductivity,EC)、钠吸附比(sodium adsorption ratio, SAR)及土壤大孔隙和大孔隙结构等。结果表明:1)再生水灌溉1.5a后与淡水灌溉相比,土壤SAR和Na+含量等理化指标均有一定提高,但除SAR及pH值指标有显著提高外,其他指标变化差异并不显著(P<0.05)不同水质再生水短期灌溉均不会造成表层土壤盐碱化。2)再生水灌溉后土壤的总孔隙度变化并不显著,但不同水质再生水灌溉显著增加了表层土壤的大孔隙度和大孔隙连通性(P<0.05),较W4处理,W1、W2和W3处理的大孔隙度(等效孔隙直径D>50 μm)分别增加了120.76%、131.23%和49.69%,连通孔隙占比和连通性指数也均有所增加,但再生水灌溉也显著堵塞土壤内微小孔隙,进而影响土壤水力性质。3)土壤孔隙网络模型结果表明,再生水灌溉后土壤连通性出现了明显改善,孔隙间的连接通道数量显著提高,孔隙网络发育更加复杂,土壤透气性有所增强。综上所述,短期再生水灌溉并不会导致土壤的严重退化,但从长远灌溉发展的角度看,W1水质处理对土壤是有害的,而适当的调低水质标准,对土壤的负面影响并不显著,甚至在一定程度上改善了土壤的通气性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号