首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
A new sampling technique for measuring the concentrations of trace gases (CH4, CO2 and N2O) in the soil atmosphere from well‐defined depths is described. Probes are constructed from silicone tubing closed with silicone septa on both ends, thereby dividing an inner air space from the outer soil atmosphere without a direct contact. The gas exchanges between the inner and outer atmosphere only by diffusion through the walls of the silicone tube. Tests revealed that the gases N2O, CO2 and CH4 in the enclosed space reached 95% equilibrium with the surrounding atmosphere at 20°C within 7 h or faster. The probe measurements are reproducible: the standard deviation of samples taken from 26 probes stored in the laboratory atmosphere equalled that of a standard gas. The probes can easily be constructed and installed at specified depths in the soil. The method has the following advantages compared with other methods that use spaces with holes in them for gas exchange: (i) the silicone probe enables trace gases to be sampled in wet soils, including ones that are waterlogged or temporarily saturated; (ii) the sampling itself does not create low pressure and hence does not create mass flow in the soil matrix from undefined depths; and (iii) the probe can be made to take samples of gas of any required size. The silicone probes did not show ageing effects during 18 months of use in the field in a mineral soil under grass. The probes yielded comparable results: three probes inserted at 5 cm depth in a uniformly treated 100‐m2 plot provided nearly identical average trace gas concentrations within the measurement period.  相似文献   

2.
Forests are the largest C sink (vegetation and soil) in the terrestrial biosphere and may additionally provide an important soil methane (CH4) sink, whilst producing little nitrous oxide (N2O) when nutrients are tightly cycled. In this study, we determine the magnitude and spatial variation of soil–atmosphere N2O, CH4 and CO2 exchange in a Eucalyptus delegatensis forest in New South Wales, Australia, and investigate how the magnitude of the fluxes depends on the presence of N2-fixing tree species (Acacia dealbata), the proximity of creeks, and changing environmental conditions. Soil trace gas exchange was measured along replicated transects and in forest plots with and without presence of A. dealbata using static manual chambers and an automated trace gas measurement system for 2 weeks next to an eddy covariance tower measuring net ecosystem CO2 exchange. CH4 was taken up by the forest soil (?51.8 μg CH4-C m?2 h?1) and was significantly correlated with relative saturation (Sr) of the soil. The soil within creek lines was a net CH4 source (up to 33.5 μg CH4-C m?2 h?1), whereas the wider forest soil was a CH4 sink regardless of distance from the creek line. Soil N2O emissions were small (<3.3 μg N2O-N m?2 h?1) throughout the 2-week period, despite major rain and snowfall. Soil N2O emissions only correlated with soil and air temperature. The presence of A. dealbata in the understorey had no influence on the magnitude of CH4 uptake, N2O emission or soil N parameters. N2O production increased with increasing soil moisture (up to 50% Sr) in laboratory incubations and gross nitrification was negative or negligible as measured through 15N isotope pool dilution.The small N2O emissions are probably due to the limited capacity for nitrification in this late successional forest soil with C:N ratios >20. Soil–atmosphere exchange of CO2 was several orders of magnitude greater (88.8 mg CO2-C m?2 h?1) than CH4 and N2O, and represented 43% of total ecosystem respiration. The forest was a net greenhouse gas sink (126.22 kg CO2-equivalents ha?1 d?1) during the 2-week measurement period, of which soil CH4 uptake contributed only 0.3% and N2O emissions offset only 0.3%.  相似文献   

3.
Soil greenhouse gas (GHG) emissions are complex, and their study requires considerable sampling of field spatial and temporal differences. Manual and simple automated gas‐collection techniques used at multiple sites during specific time intervals are labor intensive. The objective of this work was to construct a device that can independently collect GHG samples with the accuracy and precision of manually drawn samples. An automated collector of terrestrial systems (ACTS) is a 24‐h, 7‐d/week programmable sampler used in the field for real‐time gathering and containment of soil GHG emissions. The sampler opens and closes an exterior soil gas chamber, mixes gases in the chamber by turning fans on/off, and utilizes programmable circuits to purge the system and draw a sample from the chamber with a pneumatic‐driven syringe. Each sample was stored in an evacuated vial held in a 30‐vial capacity carousel. Vial content was analyzed for carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) at the U.S. Department of Agriculture (USDA)–Agricultural Research Services (ARS) Agroecosystem Management Research Unit (AMRU). A Tracor MT‐220 gas chromatograph (GC) configured with a thermal conductivity detector (TCD) was used for CO2 analysis, and an automated gas‐sampling system (AGSS) attached to a Varian 3700 GC configured with flame ionization detection (FID) and electron capture detection (ECD) was used for CH4 and N2O analysis. Field and laboratory mean values and coefficients of variation (standards and field concentrations of CO2, CH4, and N2O ranging from ambient to 71 kg ha?1 d?1 had coefficients of variation ranging from 1.2 to 4.2%) were similar between ACTS and manually drawn samples. Results showed strong correlation (R2 = 0.81 to 1.00) between sampling methods. The sampler design provides a realistic and inexpensive approach for collecting emission samples while reducing human error associated with adverse sampling conditions and fatigue. The ACTS has potential for use in monitoring and comparing management practices in terrestrial systems to determine their contribution to GHG emissions.  相似文献   

4.
Tropical savanna ecosystems are a major contributor to global CO2, CH4 and N2O greenhouse gas exchange. Savanna fire events represent large, discrete C emissions but the importance of ongoing soil-atmosphere gas exchange is less well understood. Seasonal rainfall and fire events are likely to impact upon savanna soil microbial processes involved in N2O and CH4 exchange. We measured soil CO2, CH4 and N2O fluxes in savanna woodland (Eucalyptus tetrodonta/Eucalyptus miniata trees above sorghum grass) at Howard Springs, Australia over a 16 month period from October 2007 to January 2009 using manual chambers and a field-based gas chromatograph connected to automated chambers. The effect of fire on soil gas exchange was investigated through two controlled burns and protected unburnt areas. Fire is a frequent natural and management action in these savanna (every 1-2 years). There was no seasonal change and no fire effect upon soil N2O exchange. Soil N2O fluxes were very low, generally between −1.0 and 1.0 μg N m−2 h−1, and often below the minimum detection limit. There was an increase in soil NH4+ in the months after the 2008 fire event, but no change in soil NO3. There was considerable nitrification in the early wet season but minimal nitrification at all other times.Savanna soil was generally a net CH4 sink that equated to between −2.0 and −1.6 kg CH4 ha−1 y−1 with no clear seasonal pattern in response to changing soil moisture conditions. Irrigation in the dry season significantly reduced soil gas diffusion and as a consequence soil CH4 uptake. There were short periods of soil CH4 emission, up to 20 μg C m−2 h−1, likely to have been caused by termite activity in, or beneath, automated chambers. Soil CO2 fluxes showed a strong bimodal seasonal pattern, increasing fivefold from the dry into the wet season. Soil moisture showed a weak relationship with soil CH4 fluxes, but a much stronger relationship with soil CO2 fluxes, explaining up to 70% of the variation in unburnt treatments. Australian savanna soils are a small N2O source, and possibly even a sink. Annual soil CH4 flux measurements suggest that the 1.9 million km2 of Australian savanna soils may provide a C sink of between −7.7 and −9.4 Tg CO2-e per year. This sink estimate would offset potentially 10% of Australian transport related CO2-e emissions. This CH4 sink estimate does not include concurrent CH4 emissions from termite mounds or ephemeral wetlands in Australian savannas.  相似文献   

5.
Soil structure affects microbial activity and thus influences greenhouse gas production and exchange in soil. Structure is variable and increasingly vulnerable to compaction and erosion damage as agriculture intensifies and climate changes. Few studies have specifically related the impact of structure and its variability to greenhouse gas (GHG) emissions over a wide range of soils and management treatments. The objective of this study was to draw from research in Scotland, Japan and New Zealand, which examined how soil structures affected by wheel compaction, animal trampling, tillage and land‐use change influence GHG emissions in order to help identify key controlling properties. Nitrous oxide (N2O) is the main focus, though carbon dioxide (CO2), methane (CH4) and nitric oxide (NO) are included. Gas emissions were measured by using static chambers in the field or incubated intact cores. Poor structure, measured as small relative gas diffusivities and air permeabilities, restricted aeration, resulting in N2O emission or consumption dependent on mineral nitrogen contents. Structural damage (identifiable using the Visual Evaluation of Soil Structure) was especially important near the soil surface where microsites of microbial activity were exposed and aeration was impaired. Moist, well‐aerated soils favoured CH4 oxidation and CO2 exchange. N2O emissions were not necessarily increased in anaerobic soils because of possible N2O consumption and microbial adaptation. Soil matric potential, volumetric water content, relative diffusivity, air permeability and water‐filled pore space are relevant indicators for N2O and CH4 flux and aeration status. As pore continuity and size are so relevant, pore‐scale models are likely to have an increasing role in understanding mechanisms of GHG production, transport and release.  相似文献   

6.
Abstract

A comprehensive procedure has been developed and is reported here for (i) sampling air above a soil surface and (ii) analyzing it for the three greenhouse gases: methane (CH4), carbon dioxide (CO2), and nitrous oxide (N2O). The automated gas‐chromatography procedure simultaneously analyzes for CH4, CO2, and N2O and has a precision of 0.87, 2.17, and 0.74%, respectively. Method-detection limits are 0.04 ppm for CH4, 25.5 ppm for CO2, and 7.4 ppb for N2O. The procedure is used to monitor greenhouse gas exchanges at soil surfaces; its precision and automated ability to analyze large sample numbers produces quality data available for upscaling and modeling for inventory purposes; and it is used for developing a process‐based understanding of the mechanisms controlling greenhouse gas fluxes at the soil surface, which can then be applied to develop mitigation strategies.  相似文献   

7.
For evaluating the applicability of the soil gradient method as a substitute for CO2‐, CH4‐, and N2O‐flux measurements in steppe, we carried out chamber measurements and determined soil gas concentration at an ungrazed (UG99) and a grazed (WG) site in Inner Mongolia, China. The agreement of the concentration‐based flux estimates with measured chamber‐based fluxes varied largely depending on the respective GHG in the sequence CO2 > CH4 >> N2O. A calibration of the gas‐transport parameter used to calculate fluxes based on soil gas concentrations improved the results considerably for CO2 and CH4. After calibration, the average deviation from the chamber‐based annual cumulative flux for both sites was 11.5%, 10.5%, and 59% for CO2, CH4, and N2O. The gradient method did not constitute an adequate stand‐alone substitute for greenhouse‐gas flux estimation since a calibration using chamber‐based measurements was necessary and vigorous production processes were confined to the uppermost, almost water‐saturated soil layer.  相似文献   

8.
Abstract

As a means of economic disposal and to reduce need for chemical fertilizer, waste generated from swine production is often applied to agricultural land. However, there remain many environmental concerns about this practice. Two such concerns, contribution to the greenhouse effect and stratospheric ozone depletion by gases emitted from waste‐amended soils, have not been thoroughly investigated. An intact core study at Auburn University (32 36′N, 85 36′W) was conducted to determine the source‐sink relationship of three greenhouse gases in three Alabama soils (Black Belt, Coastal Plain, and Appalachian Plateau regions) amended with swine waste effluent. Soil cores were arranged in a completely random design, and treatments used for each soil type consisted of a control, a swine effluent amendment (112 kg N ha?1), and an ammonium nitrate (NH4NO3) fertilizer amendment (112 kg N ha?1). During a 2‐year period, a closed‐chamber technique was used to determine rates of emission of nitrous oxide (N2O)–nitrogen (N), carbon dioxide (CO2)–carbon (C), and methane (CH4)–C from the soil surface. Gas probes inserted into the soil cores were used to determine concentrations of N2O‐N and CO2‐C from depths of 5, 15, and 25 cm. Soil water was collected from each depth using microlysimeters at the time of gas collection to determine soil‐solution N status. Application of swine effluent had an immediate effect on emissions of N2O‐N, CO2‐C, and CH4‐C from all soil textures. However, greatest cumulative emissions and highest peak rates of emission of all three trace gases, directly following effluent applications, were most commonly observed from sandier textured Coastal Plain and Appalachian Plateau soils, as compared to heavier textured Black Belt soil. When considering greenhouse gas emission potential, soil type should be a determining factor for selection of swine effluent waste disposal sites in Alabama.  相似文献   

9.
The Lower Mississippi Alluvial Valley (LMAV) has favorable attributes for producing biofuels. Two study sites were established on retired agricultural fields in the LMAV to explore switchgrass (SWITCH) and eastern cottonwood (CTWD) as biofuel feedstocks. A soybean-sorghum rotation (CROP) was also established as a conventional cropping system. Soil efflux gas (carbon dioxide [CO2], methane [CH4], and nitrous oxide [N2O]), microbial biomass carbon (Cmic) and dehydrogenase activity were measured for two years. Cumulative growing-season soil CO2 efflux of SWITCH exceeded that of CROP; SWITCH had higher daily CO2 efflux than CTWD and CROP in some months. SWITCH and CTWD had greater Cmic than CROP at both sites. Soil CH4 and N2O efflux rates were low for much of the study, with only short-term differences in soil CH4 observed. Converting these retired agricultural sites to SWITCH increased soil CO2 efflux relative to CROP, with increases attributable to greater plant and microbial respiration.  相似文献   

10.
Soil fumigation is commonly used to control soil-borne pathogens and weeds. Our aim was to examine the effects of soil fumigation with chloropicrin (CP) and methyl isothiocyanate (MITC) on CH4, N2O and CO2 production and emission. These effects on a SE USA forest nursery soil were examined in field and laboratory experiments. Following field fumigation, CH4 surface emissions and concentrations in the soil atmosphere were unaffected. Both fumigants increased N2O emissions rates significantly compared to non-fumigated controls, and the effects were still evident after 48 d. These findings are in contrast to fertilizer-induced N2O emissions, which generally return to background within 2 wk after application. Depths of N2O production were different for the two fumigants as determined by soil gas sampling, suggesting fumigant-specific stimulation mechanisms. CO2 emissions (0-15 d) were not altered significantly, although sub-surface CO2 concentrations did increase following fumigation with CP or MITC and remained elevated for CP treatment on d 48. CP-induced N2O production was also stimulated in aerobic laboratory incubation studies, with surface soils exhibiting 10 to 100-fold greater production rates. MITC and a combination of CP/MITC also stimulated N2O production, but the effect was significantly less than for CP alone. MITC suppressed and CP did not effect CO2 production in the laboratory incubation. By comparing sterilized to non-sterile soils, >95% of these effects appear to be of biotic origin.  相似文献   

11.
A change in the European Union energy policy has markedly promoted the expansion of biogas production.Consequently,large amounts of nutrient-rich residues are being used as organic fertilizers.In this study,a pot experiment was conducted to simulate the high-risk situation of enhanced greenhouse gas (GHG) emissions following organic fertilizer application in energy maize cultivation.We hypothesized that cattle slurry application enhanced CO2 and N2O fluxes compared to biogas digestate because of the overall higher carbon (C) and nitrogen (N) input,and that higher levels of CO2 and N2O emissions could be expected by increasing soil organic C (SOC) and N contents.Biogas digestate and cattle slurry,at a rate of 150 kg NH4+-N ha-1,were incorporated into 3 soil types with low,medium,and high SOC contents (Cambisol,Mollic Gleysol,and Sapric Histosol,termed Clow,Cmedium,and Chigh,respectively).The GHG exchange (CO2,CH4,and N2O) was measured on 5 replicates over a period of 22 d using the closed chamber technique.The application of cattle slurry resulted in significantly higher CO2 and N2O fluxes compared to the application of biogas digestate.No differences were observed in CH4 exchange,which was close to zero for all treatments.Significantly higher CO2 emissions were observed in Chigh compared to the other two soil types,whereas the highest N2O emissions were observed in Cmedium.Thus,the results demonstrate the importance of soil type-adapted fertilization with respect to changing soil physical and environmental conditions.  相似文献   

12.
Production and consumption of greenhouse gases such as CO2, CH4 and N2O are key factors driving climate change. While CO2 sinks are commonly reported and the mechanisms relatively well understood, N2O sinks have often been overlooked and the driving factors for these sinks are poorly understood. We examined CO2, CH4 and N2O flux in three High Arctic polar deserts under both light (measured in transparent chambers) and dark (measured in opaque chambers) conditions. We further examined if differences in soil moisture, evapotranspiration, Photosynthetically Active Radiation (PAR), and/or plant communities were driving gas fluxes measured in transparent and opaque chambers at each of our sites. Nitrous oxide sinks were found at all of our sites suggesting that N2O uptake can occur under extreme polar desert conditions, with relatively low soil moisture, soil temperature and limited soil N. Fluxes of CO2 and N2O switched from sources under dark conditions to sinks under light conditions, while CH4 fluxes at our sites were not affected by light conditions. Neither evapotranspiration nor PAR were significantly correlated with CO2 or N2O flux, however, soil moisture was significantly correlated with both gas fluxes. The relationship between soil moisture and N2O flux was different under light and dark conditions, suggesting that there are other factors, in addition to moisture, driving N2O sinks. We found significant differences in N2O and CO2 flux between plant communities under both light and dark conditions and observed individual communities that shifted between sources and sinks depending on light conditions. Failure of many studies to include plant-mediated N2O flux, as well as, N2O soil sinks may account for the currently unbalanced global N2O budget.  相似文献   

13.
Prolonged summer droughts due to climate change are expected for this century, but little is known about the effects of drying and wetting on biogenic trace‐gas fluxes of forest soils. Here, the response of CO2, N2O, NO, and CH4 fluxes from temperate forest soils towards drying–wetting events has been investigated, using undisturbed soil columns from a Norway spruce forest in the “Fichtelgebirge”, Germany. Two different types of soil columns have been used for this study to quantify the contribution of organic and mineral horizons to the total fluxes: (1) organic horizons (O) and (2) organic and mineral soil horizons (O+M). Three drying–wetting treatments with different rewetting intensities (8, 20, and 50 mm of irrigation d–1) have been compared to a constantly moist control to estimate the influence of rainfall intensity under identical drying conditions and constant temperature (+15°C). Drought significantly reduced CO2, N2O, and NO fluxes in most cycles. Following rewetting, CO2 fluxes quickly recovered back to control level in the O columns but remained significantly reduced in the O+M columns with total CO2 fluxes from the drying–wetting treatment ranging approx. 80% of control fluxes. Fluxes of N2O and NO remained significantly reduced in both O and O+M columns even after rewetting, with cumulative fluxes from drying–wetting treatments ranging between 20% and 90% of the control fluxes, depending on gas and cycle. Fluxes of CH4 were small in all treatments and seem to play no significant role in this soil. No evidence for the release of additional gas fluxes due to drying–wetting was found. The intensity of rewetting had no significant effect on the CO2, N2O, NO, and CH4 fluxes, suggesting that the length of the drought period is more important for the emission of these gases. We can therefore not confirm earlier findings that fluxes of CO2, N2O, and NO during wetting of dry soil exceed the fluxes of constantly moist soil.  相似文献   

14.
While experimental addition of nitrogen (N) tends to enhance soil fluxes of carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O), it is not known if lower and agronomic-scale additions of urea-N applied also enhance trace gas fluxes, particularly for semi-arid agricultural lands in the northern plains. We aimed to test if this were true at agronomic rates [low (11 kg N ha−1), moderate (56 kg N ha−1), and high (112 kg N ha−1)] for central North Dakota arable and prairie soils using intact soil cores to minimize disturbance and simulate field conditions. Additions of urea to cores incubated at 21 °C and 57% water-filled pore space enhanced fluxes of CO2 but not CH4 and N2O. At low, moderate, and high urea-N, CO2 fluxes were significantly greater than control but not fluxes of CH4 and N2O. The increases in CO2 emission with rate of urea-N application indicate that agronomic-scale N inputs may stimulate microbial carbon cycling in these soils, and that the contribution of CO2 to net greenhouse gas source strength following fertilization of semi-arid agroecosystems may at times be greater than contributions by N2O and CH4.  相似文献   

15.
In the highlands of Madagascar, agricultural expansion gained on grasslands and cropping systems based on direct seeding with permanent vegetation cover are emerging as a means to sustain upland crop production. The objective of this study was to examine how such agricultural practices affect greenhouse‐gas emissions from a loamy Ferralsol previously used as a pasture. We conducted an experiment under controlled laboratory conditions combining cattle manure, crop residues (rice straw), and mineral fertilizers (urea plus NPK or di‐NH4‐phosphate) to mimic on‐field inputs and examined soil CO2 and N2O emissions during a 28‐d incubation at low and high water‐filled pore space (40% and 90% WFPS). Emissions of N2O from the control soil, i.e., soil receiving no input, were extremely small (< 5 ng N2O‐N (g soil)–1 h–1) even under anaerobic conditions. Soil moisture did not affect the order of magnitude of CO2 emissions while N2O fluxes were up to 46 times larger at high soil WFPS, indicating the potential influence of denitrification under these conditions. Both CO2 and N2O emissions were affected by treatments, incubation time, and their interactions. Crop‐residue application resulted in larger fluxes of CO2 but reduced N2O emissions probably due to N immobilization. The use of di‐NH4‐phosphate was a better option than NPK to reduce N2O emissions without increasing CO2 fluxes when soil received mineral fertilizers. Further studies are needed to translate the findings to field conditions and relate greenhouse‐gas budgets to crop production.  相似文献   

16.
In situ field measurements as well as targeted laboratory studies have shown that freeze–thaw cycles (FTCs) affect soil trace gas fluxes. However, most of past laboratory studies adjusted soil moisture before soil freezing, thereby neglecting that snow cover or water from melting snow may modify effects of FTCs on soil trace gas fluxes. In the present laboratory study with a typical semi-arid grassland soil, three different soil moisture levels (32 %, 41 %, and 50 % WFPS) were established (a) prior to soil freezing or (b) by adding fresh snow to the soil surface after freezing to simulate field conditions and the effect of the melting snow on CO2, CH4, and N2O fluxes during FTCs more realistically. Our results showed that adjusting soil moisture by watering before soil freezing resulted in significantly different cumulative fluxes of CH4, CO2, and N2O throughout three FTCs as compared to the snow cover treatment, especially at a relatively high soil moisture level of 50 % WFPS. An increase of N2O emissions was observed during thawing for both treatments. However, in the watering treatment, this increase was highest in the first thawing cycle and decreased in successive cycles, while in the snow cover treatment, a repetition of the FTCs resulted in a further increase of N2O emissions. These differences might be partly due to the different soil water dynamics during FTCs in the two treatments. CO2 emissions were a function of soil moisture, with emissions being largest at 50 % WFPS and smallest at 32 % WFPS. The largest N2O emissions were observed at WFPS values around 50 %, whereas there were only small or negligible N2O emissions from soil with relatively low soil water content, which indicates that a threshold value of soil moisture might exist that triggers N2O peaks during thawing.  相似文献   

17.
The availability of O2 is one of the most important factors controlling the chemical and biological reactions in soils. In this study, the effects of different aeration conditions on the dynamics of the emission of trace gases (CO2, N2O, CH4) and the leachate composition (NO3, DOC, Mn, Fe) were determined. The experiment was conducted with naturally structured soil columns (silty clay, Vertisol) from a well aerated forest site. The soil monoliths were incubated in a microcosm system at different O2 concentrations (0, 0.001, 0.005, 0.01, 0.05, and 0.205 m3 m‐3 in the air flow through the headspace of the microcosms) for 85 days. Reduced O2 availability resulted in a decreased CO2 release but in increased N2O emission rates. The greatest cumulative N2O emissions (= 1.6 g N2O‐N m‐2) were observed at intermediate O2 concentrations (0.005 and 0.01 m3 m‐3) when both nitrification and denitrification occurred simultaneously in the soil. Cumulative N2O emissions were smallest (= 0.05 g N2O‐N m‐2) for the aeration with ambient air (O2 concentration: 0.205 m3 m‐3), although nitrate availability was greatest in this treatment. The emission of CH4 and leaching of Mn and Fe were restricted to the soil columns incubated under completely anoxic conditions. The sequence of the reduction processes under completely anoxic conditions complied with the thermodynamic theory: soil nitrate was reduced first, followed by the reduction of Mn(IV) and Fe(III) and finally CO2 was reduced to CH4. The re‐aeration of the soil columns after 85 days of anoxic incubation terminated the production of CH4 and dissolved Fe and Mn in the soil but strongly increased the emission rates of CO2 and N2O and the leaching of NO3 probably because of the accumulation of DOC and NH4+ during the previous anoxic period.  相似文献   

18.
Recently, large areas of tropical peatland have been converted into agricultural fields. To be used for agricultural activities, peat soils need to be drained, limed and fertilized due to excess water, low nutrient content and high acidity. Water depth and amelioration have significant effects on greenhouse gas (GHG) production. Twenty-seven soil samples were collected from Jabiren, Central Kalimantan, Indonesia, in 2014 to examine the effect of water depth and amelioration on GHG emissions. Soil columns were formed in the peatland using polyvinyl chloride (PVC) pipe with a diameter of 21 cm and a length of 100 cm. The PVC pipe was inserted vertically into the soil to a depth of 100 cm and carefully pulled up with the soil inside after sealing the bottom. The treatments consisting of three static water depths (15, 35 and 55 cm from the soil surface) and three ameliorants (without ameliorant/control, biochar+compost and steel slag+compost) were arranged using a randomized block design with two factors and three replications. Fluxes of carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) from the soil columns were measured weekly. There was a linear relationship between water depth and CO2 emissions. No significant difference was observed in the CH4 emissions in response to water depth and amelioration. The ameliorations influenced the CO2 and N2O emissions from the peat soil. The application of biochar+compost enhanced the CO2 and N2O emissions but reduced the CH4 emission. Moreover, the application of steel slag+compost increased the emissions of all three gases. The highest CO2 and N2O emissions occurred in response to the biochar+compost treatment followed by the steel slag-compost treatment and without ameliorant. Soil pH, redox potential (Eh) and temperature influenced the CO2, CH4 and N2O fluxes. Experiments for monitoring water depth and amelioration should be developed using peat soil as well as peat soil–crop systems.  相似文献   

19.
Soil processes and global change   总被引:43,自引:0,他引:43  
 Contributors to the Intergovernmental Panel on Climate Change (IPCC) generally agree that increases in the atmospheric concentration of greenhouse trace gases (i.e., CO2, CH4, N2O, O3) since preindustrial times, about the year 1750, have led to changes in the earth's climate. During the past 250 years the atmospheric concentrations of CO2, CH4, and N2O have increased by 30, 145, and 15%, respectively. A doubling of preindustrial CO2 concentrations by the end of the twenty-first century is expected to raise global mean surface temperature by about 2  °C and increase the frequency of severe weather events. These increases are attributed mainly to fossil fuel use, land-use change, and agriculture. Soils and climate changes are related by bidirectional interactions. Soil processes directly affect climatic changes through the production and consumption of CO2, CH4, and N2O and, indirectly, through the production and consumption of NH3, NOx, and CO. Although CO2 is primarily produced through fossil fuel combustion, land-use changes, conversion of forest and grasslands to agriculture, have contributed significantly to atmospheric increase of CO2. Changes in land use and management can also result in the net uptake, sequestration, of atmospheric CO2. CH4 and N2O are produced (30% and 70%, respectively) in the soil, and soil processes will likely regulate future changes in the atmospheric concentration of these gases. The soil-atmosphere exchange of CO2, CH4, and N2O are interrelated, and changes in one cycle can impart changes in the N cycle and resulting soil-atmosphere exchange of N2O. Conversely, N addition increases C sequestration. On the other hand, soil processes are influenced by climatic change through imposed changes in soil temperature, soil water, and nutrient competition. Increasing concentrations of atmospheric CO2 alters plant response to environmental parameters and frequently results in increased efficiency in use of N and water. In annual crops increased CO2 generally leads to increased crop productivity. In natural systems, the long-term impact of increased CO2 on ecosystem sustainability is not known. These changes may also result in altered CO2, CH4, and N2O exchange with the soil. Because of large temporal and spatial variability in the soil-atmosphere exchange of trace gases, the measurement of the absolute amount and prediction of the changes of these fluxes, as they are impacted by global change on regional and global scales, is still difficult. In recent years, however, much progress has been made in decreasing the uncertainty of field scale flux measurements, and efforts are being directed to large scale field and modeling programs. This paper briefly relates soil process and issues akin to the soil-atmosphere exchange of CO2, CH4, and N2O. The impact of climate change, particularly increasing atmospheric CO2 concentrations, on soil processes is also briefly discussed. Received: 1 December 1997  相似文献   

20.
The purpose of this study was to monitor the dynamics of gases such as CO2 and CH4 in a soil profile with sufficient temporal resolution to observe possible diurnal variations. A computer-controlled device called a membrane probes array (MPA) was developed that consisted of 9-12 individual membrane probes installed at various soil depths. Each probe was made of a stainless steel pipe with a 1 mm orifice covered with a silicone membrane. Soil gases diffuse through the membrane at a rate proportional to the ambient soil gas concentration. To measure diffusion rates, the probes are flushed with N2 one-by-one at regular time intervals and accumulated gas is detected as a spike with IR and FID analyzers. The longer the period between flushings the higher the gas accumulation and the lower the detection limit for a particular soil gas. The developed MPA agreed well with conventional manual gas sampling in West-Siberian mesotrophic fen. In peat cores with intact Carex-Sphagnum vegetation incubated under constant temperature, water level and artificial light:dark (14:10) cycles, regular diurnal oscillations of soil CO2 and CH4 occurred in the upper part of the peat core down to 19 cm. Gas content in the top layer (3 cm) grew during the light phase, and returned back during the dark phase. In layers further down in the soil, the same events were observed but with progressively increased time delay and lower amplitude. The obtained data agreed with the hypothesis that diurnal variations in soil CO2 and CH4 content are caused by periodic changes in intensity of root exudation that provide a major C- and energy source for soil microorganisms including methanogens. At a soil depth of 23 cm, where the peak of gas bubbles occurred, the signal for both gases became chaotic and not related to the light:dark cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号