首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Mild extractions were used as indicators of easily decomposable organic matter (OM). However, the chemical composition of extracted OM often remained unclear. Therefore, the composition of cold and hot water–extractable OM was investigated in the O horizons (Oi, Oe, Oa) of a 170 y old beech stand (Fagus sylvatica) in the Ore Mtns., SE Germany. To simulate litter decomposition, the O horizon samples were incubated for 1 week under defined conditions. Cold‐ and hot‐water extracts were analyzed and chemically characterized by pyrolysis–field ionization mass spectrometry (Py‐FIMS). The C and N concentrations were always lower in the cold‐(C: 2.69 to 3.95 g kg–1; N: 0.14 to 0.29 g kg–1) than in the hot‐water extracts (C: 13.77 to 15.51 g kg–1; N: 0.34 to 0.83 g kg–1). The C : N ratios of both extracts increased with increasing depth. Incubation increased the concentrations of C and N in all water extracts, while C : N ratios of extracts decreased. The molecular‐chemical composition of cold and hot water–extracted OM revealed distinct differences. Generally, cold water–extracted OM was thermally more stable than hot water–extracted OM. The mass spectra of the hot water–extracted organic matter revealed more intensive signals of carbohydrates, phenols, and lignin monomers. Additionally, the n‐C28 fatty acid and the n‐C38–to–n‐C52 alkyl monoesters clearly distinguished the hot‐ from the cold‐water extract. A principle‐component analysis visualized (1) alterations in the molecular‐chemical composition of cold‐ and hot‐water extracts due to previous incubation of the solid O horizon samples and (2) a decomposition from the Oi to the Oh horizon. This provides evidence that the macromorphological litter decomposition was reflected by the chemical composition of water extracts, and that Py‐FIMS is well‐suited to explain at the molecular level why OM decomposability is correlated with water‐extracted C.  相似文献   

2.
Dissolved organic matter (DOM) is involved in many important biogeochemical processes in soil. As its collection is laborious, very often water‐soluble organic matter (WSOM) obtained by extracting organic or mineral soil horizons with a dilute salt solution has been used as a substitute of DOM. We extracted WSOM (measured as water‐soluble organic C, WSOC) from seven mineral horizons of three forest soils from North‐Rhine Westphalia, Germany, with demineralized H2O, 0.01 M CaCl2, and 0.5 M K2SO4. We investigated the quantitative and qualitative effects of the extractants on WSOM and compared it with DOM collected with ceramic suction cups from the same horizons. The amounts of WSOC extracted differed significantly between both the extractants and the horizons. With two exceptions, K2SO4 extracted the largest amounts of WSOC (up to 126 mg C kg–1) followed by H2O followed by CaCl2. The H2O extracts revealed by far the highest molar UV absorptivities at 254 nm (up to 5834 L mol–1 cm–1) compared to the salt solutions which is attributed to solubilization of highly aromatic compounds. The amounts of WSOC extracted did not depend on the amounts of Fe and Al oxides as well as on soil organic C and pH. Water‐soluble organic matter extracted by K2SO4 bore the largest similarity to DOM due to relatively analogue molar absorptivities. Therefore, we recommend to use this extractant when trying to obtain a substitute for DOM, but as WSOM extraction is a rate‐limited process, the suitability of extraction procedures to obtain a surrogate of DOM remains ambiguous.  相似文献   

3.
The capability of water‐extractable humic substances (WEHS) to solubilize Fe from sparingly soluble Fe‐hydroxide was studied. Addition of WEHS (1.7 mmol organic C l—1) to a dialysis tube containing labeled insoluble Fe‐hydroxide caused an increase in the amount of 59Fe measured in the external solution. The humic fraction was also able to solubilize Fe from soil samples, with levels comparable to those obtained using a solution containing 100�μM DTPA. By measuring the amount of 59Fe eluted from soil columns pre‐loaded with 59Fe‐WEHS it was possible to evaluate the mobility of Fe complexed to the humic molecules. The recovery of 59Fe varied from 2% to 25% in respect to the soil type used. The ability of Fe‐WEHS to serve as an Fe source for the phytosiderophore hydroxy‐mugineic acid (HMA) was also analyzed. The removal of 59Fe from the Fe‐WEHS complex by HMA was demonstrated by adding the phytosiderophore to a dialysis tube containing the 59Fe‐WEHS complex. The observations suggested a ligand exchange between the phytosiderophore and the humic fraction. The results indicate that WEHS is able to increase the amount of Fe present in the soil solution, possibly by forming mobile complexes with the micronutrient. These complexes could act as easily available Fe sources in Fe acquisition processes by both monocot and dicot plants, playing an important role particularly in soils with low available Fe.  相似文献   

4.
Dolomite (CaMg(CO3)2) constitutes half of the global carbonates. Thus, many calcareous soils have been developing rather from dolomitic rocks than from calcite (CaCO3)‐dominated limestone. We developed a physical fractionation procedure based on three fractionation steps, using sonication with subsequent density fractionation to separate soil organic matter (SOM) from dolomite‐derived soil constituents. The method avoids acidic pretreatment for destruction of carbonates but aims at separating out carbonate minerals according to density. The fractionation was tested on three soils developed on dolostone parent material (alluvial gravel and solid rock), differing in organic‐C (OC) and inorganic‐C (IC) concentrations and degree of carbonate weathering. Soil samples were suspended and centrifuged in Na‐polytungstate (SPT) solutions of increasing density, resulting in five different fractions: two light fractions < 1.8 g cm–3 (> 20 μm and < 20 μm), rich in OC and free of carbonate, and two organomineral fractions (1.8–2.4 g cm–3 and 2.4–2.6 g cm–3), containing 66–145 mg g–1 and 16–29 mg g–1 OC. The organomineral fractions consist of residual clay from carbonate weathering such as clay minerals and iron oxides associated with SOM. The fifth fraction (> 2.6 g cm–3) was dominated by dolomite (85%–95%). The density separation yielded fractions differing in mineral compositions, as well as in SOM, indicated by soil‐type‐specific OC distributions and decreasing OC : N ratios with increasing density of fractions. The presented method is applicable to a wide range of dolomitic and most likely to all other calcareous soils.  相似文献   

5.
Soil organic matter (SOM) in Alu‐andic Andosols and Alu‐humic Umbrisols is believed to accumulate because of the protection caused by binding to aluminium (Al). We investigated soils that differed in the abundance of organo‐Al complexes to determine the effect of such binding on SOM chemistry. For this, the surface horizons of three types of acid soils in the Basque Country (northern Spain) under forest stands were studied: (i) Alu‐andic Andosols (AND soils) on basalts and trachytes, (ii) Umbrisols or so‐called ‘aluminic’(ALU) soils also on basalts and trachytes and (iii) soils with a podzolizing trend (POD), on quartzites. Values of Al extractable with sodium pyrophosphate (Alp) in the surface horizons of these soils ranged between 8.5 and 13.1, 1.9 and 9.3, and 0.8 and 3.7 g kg?1 dry weight, for the AND, ALU and POD soils respectively. For POD and ALU soils, surface horizons were sampled at two depths, 0–5 and 5–20 cm, whereas the AND soils were sampled at different depths down to the B horizon. NaOH‐extractable SOM from three AND soils, 12 ALU soils and 12 POD soils was studied by pyrolysis‐gas chromatography/mass spectrometry. The POD soils had the largest loads of plant‐derived markers (lignin, long‐chain alkanes and alkenes, methyl ketones, fatty acids); SOM of the AND soils had the smallest amounts of plant‐derived SOM and the largest amounts of microbial products (microbial sugars and N‐compounds) of the soils studied. ALU soils had an intermediate pattern, as expected. The results indicate that the SOM of Alu‐andic Andosols, developed from basalt and trachyte rocks, is essentially dissimilar to that of soils derived from quartz‐rich parent material, under the same climate conditions and similar forest stands. The dominance of secondary (microbial‐derived) SOM in Alu‐andic Andosols, also observed in previous research on Sil‐andic Andosols (these are dominated by short‐range ordered Si compounds in contrast to the dominance of organo‐Al complexes in Alu‐andic Andosols), reveals the small contribution of primary (plant‐derived) material to SOM in soils with andic properties.  相似文献   

6.
The cycling of soil organic matter (SOM) by microorganisms is a critical component of the global carbon cycle but remains poorly understood. There is an emerging view that much of SOM, and especially the dissolved fraction (DOM), is composed of small molecules of plant and microbial origin resulting from lysed cells and released metabolites. Unfortunately, little is known about the small molecule composition of soils and how these molecules are cycled (by microbes or plants or by adsorption to mineral surfaces). The water-extractable organic matter (WEOM) fraction is of particular interest given that this is presumably the most biologically-accessible component of SOM. Here we describe the development of a simple soil metabolomics workflow and a novel spike recovery approach using 13C bacterial lysates to assess the types of metabolites remaining in the WEOM fraction. Soil samples were extracted with multiple mass spectrometry-compatible extraction buffers (water, 10 mM K2SO4 or NH4HCO3, 10–100% methanol or isopropanol/methanol/water [3:3:2 v/v/v]) with and without prior chloroform vapor fumigation. Profiling of derivatized extracts was performed using gas chromatography/mass spectrometry (GC/MS) with 55 metabolites identified by comparing fragmentation patterns and retention times with authentic standards. As expected, fumigation, which is thought to lyse microbial cells, significantly increased the range and abundance of metabolites relative to unfumigated samples. To assess the types of microbial metabolites from lysed bacterial cells that remain in the WEOM fraction, an extract was prepared from the soil bacterium Pseudomonas stutzerii RCH2 grown on 13C acetate. This approach produced highly labeled metabolites that were easily discriminated from the endogenous soil metabolites. Comparing the composition of the fresh bacterial extract with what was recovered following a 15 min incubation with soil revealed that only 27% of the metabolites showed >50% recovery in the WEOM. Many, especially cations (polyamines) and anions, showed <10% recovery. These represent metabolites that may be inaccessible to microbes in this environment and would be most likely to accumulate as SOM presumably due to binding with minerals and negatively-charged clay particles. This study presents a simple untargeted metabolomics workflow for extractable organic matter and an approach to estimate microbial metabolite availability in soils. These methods can be used to further our understanding of SOM and DOM composition and examine the link between metabolic pathways and microbial communities to terrestrial carbon cycling.  相似文献   

7.
The objective was to develop and adapt a versatile analytical method for the quantification of solvent extractable, saturated long‐chain fatty acids in aquatic and terrestrial environments. Fulvic (FA) and humic (HA) acids, dissolved organic matter (DOM) in water, as well as organic matter in whole soils (SOM) of different horizons were investigated. The proposed methodology comprised extraction by dichloromethane/acetone and derivatization with tetramethylammonium hydroxide (TMAH) followed by gas chromatography/mass spectrometry (GC/MS) and library searches. The C10:0 to C34:0 methyl esters of n‐alkyl fatty acids were used as external standards for calibration. The total concentrations of C14:0 to C28:0 n‐alkyl fatty acids were determined in DOM obtained by reverse‐osmosis of Suwannee river water (309.3 μg g—1), in freeze‐dried brown lake water (180.6 μg g—1), its DOM concentrate (93.0 μg g—1), humic acid (43.1 μg g—1), and fulvic acid (42.5 μg g—1). The concentrations of the methylated fatty acids (n‐C16:0 to n‐C28:0) were significantly (r2 = 0.9999) correlated with the proportions of marker signals (% total ion intensity (TII), m/z 256 to m/z 508) in the corresponding pyrolysis‐field ionization (FI) mass spectra. The concentrations of terrestrial C10:0 to C34:0 n‐alkyl fatty acids from four soil samples ranged from 0.02 μg g—1 to 11 μg g—1. The total concentrations of the extractable fatty acids were quantified from a Podzol Bh horizon (26.2 μg g—1), Phaeozem Ap unfertilized (48.1 μg g—1), Phaeozem Ap fertilized (57.7 μg g—1), and Gleysol Ap (66.7 μg g—1). Our results demonstrate that the method is well suited to investigate the role of long‐chain fatty acids in humic fractions, whole soils and their particle‐size fractions and can be serve for the differentiation of plant growth and soil management.  相似文献   

8.
9.
Soil test indicators are needed to predict the contribution of soil organic N to crop N requirements. Labile organic matter (OM) fractions containing C and N are readily metabolized by soil microorganisms, which leads to N mineralization and contributes to the soil N supply to crops. The objective of this study was to identify labile OM fractions that could be indicators of the soil N supply by evaluating the relationship between the soil N supply, the C and N concentrations, and C/N ratios of water extractable OM, hot‐water extractable OM, particulate OM, microbial biomass, and salt extractable OM. Labile OM fractions were measured before planting spring wheat (Triticum aestivum L.) in fertilized soils and the soil N supply was determined from the wheat N uptake and soil mineral N concentration after 6 weeks. Prior to the study, fertilized sandy loam and silty clay soils received three annual applications of 90 kg available N (ha · y)?1 from mineral fertilizer, liquid dairy cattle manure, liquid swine manure or solid poultry litter, and there was a zero‐N control. Water extractable organic N was the only labile OM fraction to be affected by fertilization in both soil types (P < 0.01). Across both test soils, the soil N supply was significantly correlated with the particulate OM N (r = 0.87, P < 0.001), the particulate OM C (r = 0.83, P < 0.001), and hot‐water extractable organic N (r = 0.81, P < 0.001). We conclude that pre‐planting concentrations of particulate OM and hot‐water extractable organic N could be early season indicators of the soil N supply in fertilized soils of the Saint Lawrence River Lowlands in Quebec, Canada. The suitability of these pre‐planting indicators to predict the soil N supply under field conditions and in fertilized soils from other regions remains to be determined.  相似文献   

10.
The influence of selective removal of organically bonded metals and organic matter on soil microstructure was investigated. Two samples of soils with different mineralogical, chemical and mechanical composition were treated with acetylacetone in both polar and non-polar solvents to dissolve amorphous organic iron and aluminium, and with hydrogen peroxide to destroy organic matter. Transmission electron micrographs of ultrathin sections and scanning electron micrographs of <5?μm fractions of the extracted soils showed distinct changes of microstructure of clays after successive removal of cementing agents. Although untreated soils showed flocculent or honeycomb structure, soils with organic matter and organically bonded metals removed showed turbostratic domain structure with stepped clusters. The changes in microstructure of soils following extraction were confirmed by determination of pore-size distribution and total cumulative volume of pores using the mercury porosimetry method. In addition, the surface area of the extracted soils was determined by water adsorption. The results showed that organically bonded iron and aluminium and organic matter distinctly influence the fabric of microstructure as flocculating agents.  相似文献   

11.
Although considerable research has been conducted on the importance of recent litter compared with older soil organic matter as sources of dissolved organic carbon (DOC) in forest soils, a more thorough evaluation of this mechanism is necessary. We studied water‐extractable organic carbon (WEOC) in a soil profile under a cool‐temperate beech forest by analysing the isotopic composition (13C and 14C) of WEOC and its fractions after separation on a DAX‐8 resin. With depth, WEOC became more enriched in 13C, which reflects the increasing proportion of the hydrophilic, isotopically heavier fraction. The 14C content in WEOC and its fractions decreased with depth, paralleling the 14C trend in soil organic matter (SOM). These results indicate a dynamic equilibrium of WEOC and soil organic carbon. The dominant process maintaining the WEOC pool in the mineral soil appears to be the microbial release of water‐soluble compounds from the SOM, which alters in time‐scales of decades to centuries.  相似文献   

12.
A mildly leached soil and a calcareous clay soil were dispersed using ultrasound. In the mildly leached soil, organic carbon, nitrogen and ATP (which was used as a guide of the soil microbial biomass) were concentrated in the finer fractions. In the calcareous clay, organic carbon and nitrogen were concentrated in the silt fraction.When slurries of the same soils were shaken vigourously in a wrist action shaker the soils were more completely dispersed but the recovery of ATP was only 30% compared with 90% after ultrasonic dispersion. It is concluded that the vigorous shaking of a soil slurry is destructive with respect to the biomass and smears cell contents, including ATP, across the colloidal fractions.The use of 14C showed that organisms, and metabolic products after incubation of [14C]glucose, existed mainly in larger aggregates (> 250 μm dia), silt and clay sized materials. Following physical dispersion the 14C shifted to silt and clay fractions.It is concluded that while fine clay may be a source of the metabolic products of organisms, the silt fraction a source of cells, and macroorganic matter contains most of the plant debris, the association of microorganisms with inorganic colloids is such that “clean” fractionations of biological components in soils cannot be realized.  相似文献   

13.
Improved information on water‐extractable soil P (Pw) and its distribution in various forms is needed to assess its bioavailability and environmental impact. This study investigated Pw in a fluvo‐aquic soil solution in relation to the continuous application of inorganic fertilizer (NPK) and wheat straw–soybean‐based compost for 15 y. Phosphatase‐hydrolysis techniques were used to fractionate organic P (Po) in water extracts of soil into phosphomonoester (Pom) and phosphodiester (Pod). In comparison with the noncomposted treatments, compost application significantly increased the levels of inorganic P (Pi) and Po. Pom was the main form in water‐extractable soil Po (71%–88%), in which sugar phosphate (Pos) occupied 48%–75%, inositol hexakisphosphate (Pop) comprised 13%–23%, and Pod only accounted for a small percentage (11%–26%). Long‐term compost application significantly increased the content of Pom, Pos, and Pod, but decreased the Pop content; the ratio of Pom to Po increased significantly in compost‐treated soil, but the ratio of Pop to Po and Pod to Po significantly decreased. Thus, the equilibrium of phosphatase involved P transformations shifted to Pi in compost‐treated soil. The phosphomonoesterase and phosphodiesterase activities were significantly higher in compost‐treated soil, which favored the transformations of Pod into Pom and Pom into Pi. The ratio of Po to Pw in water extracts of compost‐treated soil was similar to that of control soils with no fertilizer input (CK), but was significantly lower than in NPK treatment, which demonstrated that a larger increase occurred for soil Pi in water extracts of compost‐treated soil. Long‐term compost application in the fluvo‐aquic soil changed the composition of Pw, promoted the rate of P transformations in soil solution, and significantly increased soil P bioavailability.  相似文献   

14.
15.
The aim of this work was to compare the kinetic parameters of acid phosphatase (EC 3.1.3.2.) extracted from two forest soils under oak or pine. Soil was extracted with 4 mM CaCl2 and the extract was divided into two fractions by filtration: one >0.2 μm containing microbial cells and soil particulates, and the other <0.2 μm containing fine particles and dissolved organic compounds of soil. The >0.2 μm fraction had higher Km (0.26–0.82 vs. 0.12–0.39) and Vmax (0.07–0.79 vs. 0.06–0.16) values than the <0.2 μm fraction, indicating a higher enzyme-substrate affinity and smaller amount of enzyme in fine particles and dissolved organic matter.  相似文献   

16.
Abstract

A neutral phosphate buffer (NPB) extraction method has been used to estimate the amount of available N in soil. However, the properties of soil NPB-extractable organic N have not been fully elucidated. The purpose of the present study was to characterize the properties of organic matter in the NPB extracts of soils. The NPB extracts were obtained from three soil samples, and the organic matter in the extracts was separated into three fractions according to its solubility in acid and adsorption onto polyvinylpyrrolidone (PVP). High-performance size exclusion chromatography (HPSEC) with ultraviolet (UV) and fluorescence detections was applied to the NPB extracts and their fractions. The HPSEC analysis of the NPB extract revealed the presence of a single broad peak, irrespective of the detection methods. The broad peak was identified as humic substances using the on-flow measurements of UV absorption spectra and fluorescence emission spectra. Among the fractions, the PVP-non-adsorbed fulvic acid (FA) fraction accounted for the largest proportion of organic C or N in the NPB extract, followed by the PVP-adsorbed FA and humic acid (HA) fractions. The peak of humic substances was observed for all fractions using HPSEC with the on-flow measurement of UV absorption and fluorescence emission spectra. The molecular weight of the humic substances varied with each fraction. When the Coomassie Blue-reactive substances (CBRS) were quantified using a Bradford protein assay, they were detected in the NPB extract and almost half were distributed in the PVP-non-adsorbed FA fraction. However, humic substances were considered to be the main constituents of CBRS in the soil NPB extract because of their reactivity with Coomassie Blue and the absence of proteinaceous materials. Furthermore, an incubation experiment revealed that the organic matter available to microorganisms was included in the HA and PVP-non-adsorbed FA fractions. Based on the HPSEC analysis of the NPB extracts and their fractions, it was observed that the humic substances in the NPB extract, particularly in the HA and PVP-non-adsorbed FA fractions, were available to microorganisms.  相似文献   

17.
The objective of this study was to determine to what extent the attenuation or loss of andic soil properties caused by land use change – from forest (FOR, average C content 118.2 ± 23.7 g kg?1) to agricultural land (AGR, average C content 55.7 ± 16.7 g kg?1) use – is reflected in soil organic matter (SOM) at the molecular level. For this, NaOH‐extractable SOM of A horizons from 17 soils developed on amphibolitic parent material in NW Spain was studied by pyrolysis gas chromatography spectrometry (Py‐GC/MS). We also included two buried andic A horizons (PAL, 2200 cal yr BP in age) on the same parent material, as a reference for the molecular composition of SOM from soils without recent litter additions. Organic matter of PAL soils had a composition largely different from that of superficial soils (FOR and AGR), with an important relative contribution of microbial polysaccharides and N‐compounds, and an absence of compounds that characterize fresh plant litter (e.g. lignins). In the superficial soils, the relative contribution of lignin‐derived compounds was greater in AGR than in FOR soils. Differences were also observed in the relative contribution of aliphatic compounds, FOR soils being enriched in this type of components compared with AGR soils. The results indicated that land use change from FOR to AGR, which was accompanied by a decrease in total SOM, resulted in an enrichment in primary SOM. The smaller relative abundance of primary SOM derivatives in andic FOR soils indicates that these compounds were quickly degraded in Andisols.  相似文献   

18.
Sustainable agricultural land use requires an assessment of degradable soil organic matter (SOM) because of its key function for soil fertility and plant nutrition. Such an assessment for practical land use should consider transformation processes of SOM and its sources of different origin. In this study, we combined a 120‐day incubation experiment with thermal decay dynamics of agricultural soils altered by added organic amendments. The aim was to determine the abilities and limits of thermal analysis as a rapid approach revealing differences in the degradability of SOM. The carried out experiments based on two independent sampling sets. The first sample set consisted of soil samples taken from non‐fertilized plots of three German long‐term agricultural field experiments (LTAEs), then artificially mixed with straw, farmyard manure, sheep faeces, and charcoal equal to 60 Mg ha?1 under laboratory conditions. The second sample set based on soil samples of different treatments (e.g., crop type, fertilization, cultivation) in LTAEs at Bad Lauchstädt and Müncheberg, Germany. Before and after the incubation experiment, thermal mass losses (TML) at selected temperatures were determined by thermogravimetry indicating the degradability of organic amendments mixed in soils. The results confirmed different microbial degradability of organic amendments and SOM under laboratory conditions. Thermal decay dynamics revealed incubation‐induced changes in the artificial soil mixtures primarily at TML around 300°C in the case of applied straw and sheep faeces, whereas farmyard manure showed mainly changes in TML around 450°C. Charcoal did not show significant degradation during incubation, which was confirmed by TML. Detailed analyses of the artificial soil mixtures revealed close correlations between CO2‐C evolution during incubation and changes in TML at 300°C with R2 > 0.96. Results of the soils from LTAEs showed similar incubation‐induced changes in thermal decay dynamics for fresh plant residues and farmyard manure. We conclude that the practical assessment of SOM could be facilitated by thermal decay dynamics if modified sample preparation and evaluation algorithms are used beyond traditional peak analysis.  相似文献   

19.
In urban conditions, the widescale availability of organic matter to be recycled and the necessity for soil reconstitution (Technosol) has led to the input of very large quantities of organic matter (up to 50% v/v). The long‐term degradation of these large quantities of organic matter in the soil is not well known. We monitored, over a 60‐month period, the total carbon (C) content and the particulate and biochemical fractions of reconstituted soils placed in 600‐litre boxes under natural conditions. The top layer was a sandy loam amended with 20 or 40% of sphagnum peat or organic compost (sewage sludge, wood chip compost or green waste compost) lying on a layer of sandy loam. We measured C mineralization over time under controlled conditions and built a long‐term model to simulate carbon dynamics where exogenous organic carbon (EOC) was divided into two biodegradable compartments. The model yielded the proportions of EOC that either resisted degradation or contributed to soil organic C storage by mineralization and/or humification. Organic matter degradation was linked to its maturity and to its contents in certain particulate and biochemical fractions but was independent of how much of a given organic matter was introduced. We found a good correlation between the degradable organic compartment and the lignin and cutin‐like, hemicellulose and cellulose‐like fractions larger than 1 mm. The model showed that a large part of initial EOC was still present in the soil after 5 years in a potentially biodegradable but resistant compartment. The degradation of that compartment by mineralization or humification is therefore expected to take longer.  相似文献   

20.
Abstract

The analysis of extractable trace elements was carried out on 434 soils using 0.1 N HC1 as the extractant for copper, manganese, iron, zinc and cobalt, 0.2 M ammonium oxalate at pH 3.0 for molybdenum and boiling water for boron. Results indicated that on the average from about 1 to 20 percent of the total element content of the soil uas extractable, the percentage varying with the element. Comparing the amount of extractable elements in the 0–15 cm and 15–30 cm layers indicated that only manganese, zinc and boron were significantly different.

Correlation studies showed that the pH significantly influenced the quantity of manganese, iron, zinc and boron extracted, while organic matter influenced copper, manganese, zinc, cobalt and boron and clay content the copper, manganese, iron, zinc, cobalt and boron.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号