首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
This study reports on the phenotypic and genetic (co)variance components for reproductive traits in Zandi sheep, using between 1,859 and 2,588 records obtained from 577 ewes. The data were collected from the Khojir Breeding Station of Zandi sheep in Tehran, Iran from 1994 to 2008. The basic traits were litter size at birth (LSB), litter size at weaning (LSW), litter mean weight per lamb born (LMWLB), and litter mean weight per lamb weaned (LMWLW), and the composite traits were total litter weight at birth (TLWB) and total litter weight at weaning (TLWW). Genetic analyses were carried out using the restricted maximum likelihood method that was explored by fitting the additive direct genetic effects and permanent environmental effects of the ewes as random effects and the ewe age at lambing and lambing year as fixed effects for all of the investigated traits. Akaike’s information criterion was used to choose the most appropriate model. LSB, LSW, LMWLB, LMWLW, TLWB, and TLWW direct heritability estimates were 0.07, 0.05, 0.12, 0.10, 0.08, and 0.14, respectively. The estimated fractions of variance due to the permanent environmental effects of the ewe ranged from 0.03 for LMWLB to 0.08 for LMWLW and TLWW. Corresponding repeatability estimates ranged from 0.10 for LSW to 0.22 for TLWW. Direct genetic correlations varied from ?0.61 for LSB–LMWLB to 0.88 for LSB–LSW and LSB–TLWB. Results indicate that genetic change depends not only on the heritability of traits, but also on the observed phenotypic variation; therefore, improvement of non-genetic factors should be included in the breeding programs.  相似文献   

2.
For the first time, the current study reports the genetic and phenotypic correlations between growth and reproductive traits in Zandi sheep. The data were comprised of 4,309 records of lamb growth traits from 1,378 dams and 273 sires plus 2,588 records of reproductive traits from 577 ewes. These data were extracted from available performance records at Khojir Breeding Station of Zandi sheep in Tehran, Iran, from 1993 to 2008. Correlations were estimated from two animal models in a bivariate analysis using restricted maximum likelihood procedure between lamb growth traits [birth weight (BW), weaning weight at 3 months of age (WW), as well as six-month weight (6 MW)] and ewe reproductive traits [litter size at birth (LSB), litter size at weaning (LSW), total litter weight at birth (TLWB), and total litter weight at weaning (TLWW)]. The genetic correlations between BW and reproductive traits varied from low to high ranges from 0.10 for BW–LSB to 0.86 for BW–TLWB. WW was moderately (0.37) to highly (0.96) correlated with all the reproductive traits. Moreover, the genetic correlations were observed between 6 MW and reproductive traits, varied from 0.19 to 0.95. Relationships between growth and reproductive traits ranged from 0.01 for BW–LSW to 0.28 for BW–TLWB in phenotypic effects. Results indicated that selection to improve WW would have high effect on genetic response in TLWW, and also, these results could be effective for all of the reproductive traits in Zandi sheep.  相似文献   

3.
Estimates of repeatability and heritability were obtained for the following productivity traits of ewes: litter weight at birth (LWB) and weaning (LWW), litter size at birth (LSB), litter size alive at birth (NBA), litter size at weaning (LSW), neonatal survival rate (SRB) and preweaning survival rate (SRW). Phenotypic and genetic correlations were estimated for litter traits. The data set contained 6,394 ewe breeding records from three state stations over 10 yr on 1,731 ewes that were the progeny of 488 sires among three breeds (Columbia, Suffolk and Targhee). Pooled intra-station estimates of repeatability ranged from .11 to .22 for LWB and LWW among the three breeds. For litter size at birth, number born alive and litter size at weaning these estimates varied from .09 to .17 and for the survival traits (SRB and SRW) the variation was from .11 to .20. Intra-station estimates of heritability for the three breeds varied from .12 to .28 for LWB and LWW, and for LSB, NBA and LSW estimates varied from .05 to .35. Heritability estimates for survival traits (SRB and SRW) were low, ranging from .00 to .14. Phenotypic correlations among LWB, LWW, NBA and LSW ranged from .35 to .92 among the breed-station subclasses, with higher correlations occurring where a part-whole relationship existed. The study suggests that selection of ewes with high litter size at birth or at weaning and(or) litter weight at birth or at weaning will genetically improve total litter weight at weaning per ewe lambing.  相似文献   

4.

This study used pedigree information and data collected from 1979 to 2012 at the Raeini Cashmere goat breeding station, located in Baft City in Kerman Province in southeastern Iran. Genetic and phenotypic parameters for early reproductive traits of breeding does, including total numbers of kids born at first kidding (LSB1), total numbers of kids weaned at first kidding (LSW1), total birth weight of all kids born at first kidding (LWB1), total weaning weight of all kids weaned at first kidding (LWW1), and age at first kidding (AFK), were estimated using a Bayesian approach via Gibbs sampling. Posterior means for heritability estimates of LSB1, LSW1, LWB1, LWW1, and AFK were statistically significant, with values of 0.12, 0.23, 0.17, 0.15, and 0.46, respectively. Low-to-moderate additive genetic variation was present for the studied reproductive traits. Estimated genetic correlations among LSB1, LSW1, LWB1, and LWW1 were statistically significant and ranged from 0.12 between LWB1 and LWW1 to 0.72 between LSB1 and LSW1. Corresponding phenotypic correlation estimates were also statistically significant and ranged from 0.04 between LWB1 and LWW1 to 0.55 between LSB1 and LSW1. Posterior means of genetic and phenotypic correlations between AFK and other studied traits were statistically significant only for LSB1 and LWB1. For LSB1, LSW1, LWB1, and LWW1, we conclude that genetic and phenotypic improvement in any of these traits in Raeini Cashmere does would favorably influence all of the other traits. However, does that first kidded at younger ages have smaller litters at birth and lower litter birth weights at their first parity.

  相似文献   

5.
Genetic parameters for prolificacy traits for Columbia (COLU), Polypay (POLY), Rambouillet (RAMB), and Targhee (TARG) breeds of sheep were estimated with REML using animal models. Traits were number of live births (LAB), litter size at birth (LSB) and weaning (LSW), and litter weight weaned (LWW). Numbers of observations ranged from 5,140 to 7,095 for prolificacy traits and from 5,101 to 8,973 for litter weight weaned for the four breeds. For single-trait analyses, ewes were classified as young (1 yr old), middle-aged (2 and 3 yr old), or older (> 3 yr old). After single-trait analyses, three-trait analyses were done for each characteristic with traits defined by age class. Generally, heritability estimates from single-trait analyses were low and ranged from .01 to .17 for LAB and LSB and from .00 to .10 for LSW. Heritability estimates obtained for LWW ranged from low to moderate (.00 to .25) and were less for older ewes. Heritability estimates from the three-trait analyses were generally similar to estimates from single-trait analyses. Heritabilities for LAB and LSB were similar, and, for three-trait analyses, they ranged across age groups from .07 to .13 for COLU, .13 to .16 for POLY, .10 to .16 for RAMB, and .01 to .16 for TARG. Estimates for LSW from three-trait analyses ranged from .07 to .12 for COLU, .04 to .09 for POLY, .01 to .11 for RAMB, and .03 to .11 for TARG. For LWW, heritabilities ranged from .00 to .21 for COLU, .05 to .08 for POLY, .12 to .15 for RAMB, and .18 to .29 for TARG. Genetic correlations for LAB, LSB and LSW among age-defined traits ranged from .25 to 1.00. Genetic correlations for LAB and LSB between young and middle and between young and older age classes were less than .80 in COLU, POLY, and RAMB breeds. Only genetic correlations between middle and older age classes for these breeds were greater than .80. For TARG, genetic correlations among all age classes were greater than .80 (.88 to 1.00) for those traits. All genetic correlations among ages for LSW were greater than .80 for POLY and TARG. For RAMB, only the correlation between young and older age classes for LSW was less than .80 (.45). None was greater than .80 for COLU. For LWW, genetic correlations among all age classes in POLY and RAMB were greater than .80 (.82 to 1.00). For COLU, genetic correlation between young and middle was low (.07), between young and older was high (.88), and between middle and older classes was moderately high (.54). For TARG, genetic correlations were .49, .65, and .98 for young-middle, young-older, and middle-older age classes, respectively. Results indicate that more progress could be made in selection programs for prolificacy traits in some sheep breeds by considering age of ewe as a part of the trait rather than by simply adjusting for ages of ewes.  相似文献   

6.
The main objectives of this study were to estimate genetic and phenotypic parameters for growth traits and prolificacy in the Raeini Cashmere goat. Traits included, birth weight (BWT), weaning weight (WWT), 6-month weight (6WT), 9-month weight (9WT), 12-month weight (12WT), average daily gain from birth to weaning (ADG1), average daily gain from weaning to 6WT (ADG2), average daily gain from 6WT to 12WT (ADG3), survival rate (SR), litter size at birth (LSB) and litter size at weaning (LSW) and total litter weight at birth (LWB). Data were collected over a period of 28 years (1982-2009) at the experimental breeding station of Raeini goat, southeast of Iran. Genetic parameters were estimated with univariate models using restricted maximum likelihood (REML) procedures. In addition to an animal model, sire and threshold models, using a logit link function, were used for analyses of SR. Age of dam, birth of type, sex and of kidding had significant influence (p < 0.05 or 0.01) all the traits. Direct heritability estimates were low for prolificacy traits (0.04 ± 0.01 for LSB, 0.09 ± 0.02 for LSW, 0.16 ± 0.02 for LWB and 0.05 ± 0.02 for SR) and average daily gain (0.12 ± 0.03 for ADG1, 0.08 ± 0.02 for ADG2, and 0.07 ± 0.03 for ADG3) to moderate for production traits (0.22 ± 0.02 for BWT, 0.25 ± 0.02 for WWT, 0.29 ± 0.04 for 6WT, 0.30 ± 0.02 for 9WT, 0.32 ± 0.05 for 12WT). The estimates for the maternal additive genetic variance ratios were lower than direct heritability for BWT (0.17 ± 0.03) and WWT (0.07 ± 0.02).  相似文献   

7.
Total litter weight weaned at 120 d postpartum per ewe lambing is often believed to be a measure of range ewe productivity. Genetic correlations for litter weight weaned at 120 d with prolificacy, growth, and wool traits for Columbia, Polypay, Rambouillet, and Targhee sheep were estimated using REML with animal models. Observations per breed ranged from 5,140 to 7,083 for litter weight weaned, from 5,140 to 7,095 for prolificacy traits, from 7,750 to 9,530 for growth traits, and from 4,603 to 18,443 for wool traits. Heritability estimates for litter weight weaned were low and ranged from 0.02 to 0.11. Fraction of variance due to permanent environmental effects averaged 0.05 and, due to effects of mates, averaged 0.01. Estimates of genetic correlations with litter weight weaned varied from breed to breed. The ranges were as follows: 0.42 to 0.65 with litter size born, 0.80 to 0.99 with litter size weaned, -0.22 to 0.28 with birth weight, -0.07 to 0.23 with average daily gain to weaning, -0.56 to 0.19 with fleece weight, -0.15 to 0.02 with fleece grade, and -0.11 to 0.08 with staple length. Results suggest that, if selection were practiced on litter weight weaned, the average correlated responses would be expected to be favorable or neutral for prolificacy, growth, and wool traits although responses might vary from breed to breed.  相似文献   

8.
We estimated genetic parameters in Landrace and Large White pig populations for litter traits at farrowing (total number born, number born alive, number stillborn, total litter weight at birth (LWB), and mean litter weight at birth) and those at weaning (litter size at weaning (LSW), total litter weight at weaning (LWW), mean litter weight at weaning (MWW), and survival rate from farrowing to weaning). We analyzed 65,579 records at farrowing and 6,306 at weaning for Landrace, and 52,557 and 5,360, respectively, for Large White. Single‐trait and two‐trait repeatability animal models were exploited to estimate heritability and genetic correlation respectively. Heritability estimates of LSW were 0.09 for Landrace and 0.08 for Large White. Genetic correlations of LSW with MWW were –0.43 for Landrace and –0.24 for Large White. Genetic correlations of LSW with LWW and LWB ranged from 0.5 to 0.6. The genetic correlation of MWW with LWW was positive, but that with LWB was negligible. The results indicate that utilizing LWW or LWB could improve LSW efficiently, despite the antagonistic genetic correlation between LSW and MWW.  相似文献   

9.
Genetic breed differences, heterosis, recombination loss, and heritability for reproduction traits, lamb survival and growth traits to 90 days of age were estimated from crossing D'man and Timahdite Moroccan breeds. The crossbreeding parameters were fitted as covariates in the model of analysis. The REML method was used to estimate (co)variance components using an animal model. The first estimation of crossbreeding effects for Timahdite and D'man breeds shows that breed differences in litter traits are mainly of maternal genetic origin: +1.04 lambs, +1.88 kg, +0.60 lambs, and +2.23 kg in favour of D'man breed for litter size at lambing, litter weight at lambing, litter size at weaning, and litter weight at 90 days, respectively. The breed differences in lamb growth and survival are also of maternal genetic origin for the majority of traits studied, but in favour of the Timahdite breed: +3.48 kg, +45 g day−1 and +0.19 lambs for weight at 90 days, for average daily gain between 30 and 90 days of age, and for lamb survival to 90 days, respectively. The D'man direct genetic effect was low and negative for survival and birth weight of lambs during the first month of life. All traits studied showed positive heterosis effects. Recombination loss effects were not significant. Therefore, crossbreeding of Timahdite with D'man breeds of sheep can result in an improved efficiency of production of saleable lambs. Heritability estimates were medium for litter size but low for the other reproduction traits. Direct heritabilities were low for body weights and lamb survival at 90 days and the corresponding maternal heritabilities showed, however, low to moderate estimates. For litter traits, the estimates of genetic and phenotypic correlations were positive and particularly high for genetic correlations.  相似文献   

10.
Genetic parameters from both single-trait and bivariate analyses for prolificacy, weight, and wool traits were estimated using REML with animal models for Targhee sheep from data collected from 1950 to 1998 at the U.S. Sheep Experiment Station, Dubois, ID. Breeding values from both single-trait and seven-trait analyses calculated with the parameters estimated from the single-trait and bivariate analyses were compared across years of birth with respect to genetic trends. The numbers of observations were 38,625 for litter size at birth and litter size at weaning, 33,994 for birth weight, 32,715 for weaning weight, 36,807 for fleece weight and fleece grade, and 3,341 for staple length. Direct heritability estimates from single-trait analyses were 0.10 for litter size at birth, 0.07 for litter size at weaning, 0.25 for birth weight, 0.22 for weaning weight, 0.54 for fleece weight, 0.41 for fleece grade, and 0.65 for staple length. Estimate of direct genetic correlation between litter size at birth and weaning was 0.77 and between birth and weaning weights was 0.52. The estimate of genetic correlation between fleece weight and staple length was positive (0.54), but was negative between fleece weight and fleece grade (-0.47) and between staple length and fleece grade (-0.69). Estimates of genetic correlations were near zero between birth weight and litter size traits and small and positive between weaning weight and litter size traits. Fleece weight was slightly and negatively correlated with both litter size traits. Fleece grade was slightly and positively correlated with both litter size traits. Estimates of correlations between staple length and litter size at birth (-0.14) and litter size at weaning (0.05) were small. Estimates of correlations between weight traits and fleece weight were positive and low to moderate. Estimates of correlations between weight traits and fleece grade were negative and small, whereas estimates between weight traits and staple length were positive and small. Estimated breeding values averaged by year of birth from both the single- and seven-trait analyses for the prolificacy and weight traits increased over time, whereas those for fleece weight decreased slightly and those for the other wool traits were unchanged. Estimated changes in breeding values over time did not differ substantially for the single-trait and seven-trait analyses, except for traits highly correlated with another trait that was responding to selection.  相似文献   

11.
This study was conducted in a four‐year rabbit project that aimed to develop a synthetic line named Moshtohor (M) by crossing Sinai Gabali breed (G) with the Spanish V‐line (V). The G, V, F1 (G × V), F2 (G × V)2 and M line were analysed. Traits of doe body weight at delivery (DBW), litter size at birth (LSB) and at weaning (LSW), milk production during the first, second, third and fourth week of lactation and total milk yield (TMY) were recorded. Data were analysed using a repeatability uni‐trait animal model to estimate the genetic parameters and estimable functions of genetic group effects. Based on them and the matrix of their variance–covariance, the crossbreeding parameters were also estimated. Estimates of heritabilities for all the studied traits were low ranging from 0.06 to 0.11 for DBW, LSB and LSW and from 0.0 to 0.06 for milk production traits. Permanent environmental effects were very low ranging from 0.0 to 0.10 for all the traits, except for DBW (0.41). Least square means of V line were superior (p < 0.05) in DBW (3253 versus 3037 g) and LSB (6.71 versus 6.28 young) relative to G breed. M line had superiority in LSB (6.94 young) compared with G breed. M line and G breed were better than V line for milk production traits (3415 and 3236 versus 2893 g for TMY). Significant effects of direct additive were observed for most traits studied (ranged from ?6.8 to 20.7%). Effects of individual heterosis for most milk production traits were significant and ranged from 2.1 to 13.9%, but they were not significant for DBW, LSB and LSW. On the opposite side, effects of maternal heterosis for all the traits were not significant.  相似文献   

12.
Mean and genetic variability for ewe performance of two composite populations were compared with those of their contemporary parent lines to assess relative potential for continued response from selection. Data were from the U.S. Meat Animal Research Center, 1973 to 1983. The 4,415 ewes by 508 sires of Finnsheep (F), Rambouillet (R), Dorset (D), and Composite 1 (C1 = F/2 + R/4 + D/4) lines were mated in April, August, and December of each year. The 1,763 ewes by 320 sires of Finnsheep (F), Suffolk (S), Targhee (T), and Composite 2 (C2 = F/2 + S/4 + T/4) were mated in October only. Data were adjusted for effects of year, season, and age of ewe at breeding, plus interval between lambings, for the accelerated lambing lines and for year and age at breeding for the annual lambing lines. Superiority of composite over parent lines in lambs weaned per ewe exposed was 36% for accelerated and 44% for annual lambing lines; that superiority arose largely from dominant heterotic effects for fertility and viability. Weighted mean paternal half-sib estimates of heritability for mean lifetime ewe performance of composite vs parental lines were 32 vs 23% for litter birth weight, 25 vs 28% for lamb birth weight, 26 vs 11% for number born, 11 vs 23% for conception rate, 5 vs 10% for number weaned, -1 vs 19% for lamb weight at 42-d weaning, but 6 vs 23% for number and 8 vs 28% for litter weight weaned per ewe exposed. Heritability was higher in composites than in parental lines for numbers born, but it was lower for the more heterotic traits (fertility, lamb viability) and, hence, for total weaned lamb output, without change in phenotypic variation. Thus, even an equal response in composites from continuing selection for weaned lamb output may depend mainly on more intense selection permitted by a higher reproductive rate.  相似文献   

13.
The reproduction of 2,846 crossbreed ewes with 7,899 records is reported. The ewes were progeny of mainly Merino dams and 91 sires from several maternal sire breeds including Border Leicester, East Friesian, Finnsheep, Coopworth, Corriedale, Booroola Leicester, and several others. There were 3 cohorts of ewes at each of 3 sites that were bred naturally to meat-type rams for each of 3 yr to evaluate reproduction and lamb production. At 2 sites, the ewes were mated in the autumn, first at 7 mo of age, and at 2 sites the ewes were mated in the spring, first at 14 or 17 mo of age. The cohorts of ewes and sites were genetically linked by 3 common sires. Mixed linear models were used to analyze ultrasound scanned pregnancy rate, fetal number, fertility (ewes lambing), litter size, lamb survival, number of lambs born (NLBj), number of lambs weaned (NLWj), and total weight of lamb weaned (TWWj) per ewe bred. Fixed effects included sire breed (1 to 10), environment (1 to 4, site and season of breeding: autumn, spring), breeding (1 to 3), cohort (1 to 3), and their interactions. The REML procedures were used to estimate (co)variance components. Ewe sire breed effects were significant (P < 0.01) for all the reproductive traits and breed means ranged from 0.75 to 0.96 for fertility, 1.22 to 2.08 for litter size, 0.70 to 0.90 for lamb survival, 0.99 to 1.66 for NLBj, 0.87 to 1.26 for NLWj, and 22.9 to 33.8 kg for TWWj, with the ranking of sire breeds varying for different traits. For all traits except lamb survival, the contrast between breeding 1 vs. 2 and 3 was considerably greater than the contrast between breeding 2 vs. 3, with significant environment x breeding interactions (P < 0.01). Estimates of heritability for the components of reproduction ranged from 0.03 +/- 0.02 for lamb survival to 0.19 +/- 0.05 for litter size, and those for the composite traits were 0.17 +/- 0.04 for NLBj, 0.13 +/- 0.04 for NLWj, and 0.17 +/- 0.04 for TWWj, with repeatability ranging from 0.10 to 0.19. Genetic and phenotypic correlations among the traits are reported. The significant variation among sire breeds of the crossbred ewes can be used to improve reproduction, although there was a change in the rank of the breeds for the various traits. There was considerable overlap between the breeds, and additional improvement could be achieved by exploiting the genetic variation between sires within breeds for all the ewe reproductive traits.  相似文献   

14.
A five-years crossing scheme involving the Spanish V line (V) and Saudi Gabali (S) rabbits was practiced to produce 14 genetic groups: V, S, 1/2V1/2S, 1/2S1/2V, 3/4V1/4S, 3/4S1/4V, (1/2V1/2S)2, (1/2S1/2V)2, (3/4V1/4S)2, (3/4S1/4V)2, ((3/4V1/4S)2)2, ((3/4S1/4V)2)2, Saudi 2 (a new synthetic line) and Saudi 3 (another new synthetic line). A total of 3496 litters from 1022 dams were used to evaluate litter size at birth (LSB) and weaning (LSW), litter weight at birth (LWB), litter weight at 21 d (LW21) and litter weight at weaning (LWW), pre-weaning litter mortality (PLM), milk yield at lactation intervals of 0–7 d (MY07), 0–21 d (MY021), 0–28 d (TMY) and milk conversion ratio as g of litter gain per g of milk suckled during 21 d of lactation (MCR021). A generalized least squares procedure was used to estimate additive and heterotic effects (direct, maternal, and grand-maternal).The comparison among V, S, Saudi 2 and Saudi 3 showed a complementarity between V and S. Line V was superior for LSB, LSW, LWB, PLM, MY07, MY021 and TMY, while line S was superior for the other traits (LW21, LWW and MCR021). Saudi 2 and Saudi 3 had the means equal to or higher than the founder lines (V or S) for all traits. Saudi 2 showed better values in litter size and pre-weaning litter mortality compared to Saudi 3 with no significant differences for the other traits. Concerning crossbreeding parameters, direct additive effects were significant for all traits, ranging between 12.3% and 31.8% relative to the average of the means of V and S. All estimates for direct heterosis except LWB and MCR021 were significant and ranged from 5.3% to 27.5%. No estimates for maternal additive effects and grand-maternal additive and heterotic effects were significant. Only estimates for maternal heterotic effects of LSB and LSW were significant (8.6% and 10.6%, respectively).  相似文献   

15.
Genetic parameters for lifetime production for cows with the opportunity to produce from 2 through 7 yr of age, as measured by the number of calves born (NB2, ..., NB7), the number of calves weaned (NW2, ..., NW7), and cumulative weaning weight (CW2, ..., CW7), were estimated using data from 3,064 Hereford cows from a selection experiment with a control line (CTL) and three lines selected for weaning weight (WWL), yearling weight (YWL), and an index of yearling weight and muscle score (IXL). Weaning weights were adjusted to 200 d of age and for sex and age of dam. Estimates of heritability and genetic and environmental correlations were obtained by restricted maximum likelihood with bivariate animal models, with year of birth of the cow as a fixed effect and direct genetic and residual as random effects. Genetic trends were estimated by regressing means of estimated breeding values by year of birth and line on birth year. Estimates of heritability (SE) for opportunity groups of 2 to 7 yr of age ranged from 0.08 (0.03) to 0.16 (0.05) for NB; from 0.05 (0.02) to 0.16 (0.05) for NW; and from 0.06 (0.02) to 0.16 (0.05) for CW. Estimates of genetic correlations (SE) among NB traits ranged from 0.60 (0.14) to 1.00 (0.00), and estimates of environmental correlations (SE) ranged from 0.67 (0.02) to 0.99 (0.00). For NW, estimates of genetic and environmental correlations ranged from 0.98 (0.11) to 1.00 (0.00) and from 0.65 (0.02) to 0.99 (0.00), respectively. Estimates of genetic correlations (SE) among CW traits ranged from 0.94 (0.08) to 1.00 (0.00). Estimates of environmental correlations (SE) ranged from 0.66 (0.02) to 0.99 (0.00). Estimates of genetic correlations for NB2 with all definitions of NW ranged from 0.47 (0.18) to 0.71 (0.12), and with all definitions of CW ranged from 0.55 (0.16) to 0.80 (0.11). Estimates of genetic correlations between NW2 and all definitions for CW ranged from 0.95 (0.02) to 0.99 (0.06). Estimates of annual genetic (SE) change were negligible for NB2, NB6, NW2, and NW6 for all lines. Estimates of annual genetic (SE) change for CW2 were 0.85 (0.11), 0.79 (0.14), 0.51 (0.10), and 0.52 (0.18) kg/yr, and for CW6 were 5.01 (1.25), 2.64 (1.75), 3.67 (1.16), and 3.33 (2.37) kg/yr for WWL, YWL, IXL, and CTL, respectively. Selection for lifetime production as measured by NB, NW, or CW could be effective but would be relatively slow due to low estimates of heritability and to increased generation intervals.  相似文献   

16.
Twenty-seven crosses of mice derived from three random-mating, unselected strains (SWO, J. PGH) with 16 matings/pureline or cross were cohabited continuously and monogamously for a 365-d reproduction period to evaluate lifetime reproductive performance of the parents. Data from 3,249 litters born (2,792 surviving to weaning) were analyzed to study the effects of parity (number of litters) and type of cross (pureline, two-way, backcross, three-way) on certain traits measured at weaning (21 d). The traits evaluated were 1) weaning to weaning interval (WWI), 2) litter size at weaning (LSW), 3) fraction alive at weaning (FAW)-the ratio of LSW to number born alive, 4) total litter weight at weaning (LWT), 5) pup weight at weaning (PWT), 6) weaning weight per pup observed alive at birth (WPP), 7) parental feed consumption per day (FPD) and 8) parental costs (PCT). Cost per live weanling animal was estimated as the ratio of cumulative parental costs to cumulative number weaned. Cost per unit of weaning weight was defined as the regression of cumulative parental costs on cumulative litter weight. Parity effects were important (P less than .01) for all traits measured. Type of cross effects were noted for LSW, LWT, PWT, WPP, FPD (P less than .01) and PCT (P less than .05). A parity X cross-type interaction was expressed for WWI, LSW, PWT, WPP, FPD (P less than .01) and FAW (P less than .05). Three-way crosses were more productive than backcrosses, two-way crosses and pureline matings for all traits studied. Three-way crosses displayed the smallest cost per animal weaned and smallest cost per unit of weaning weight. The influence of parity on traits measured at weaning was less than for traits measured at birth. Weight per pup born alive (WPP) was found to be a better indicator of reproduction and lactation ability than LWT because WPP accounts for preweaning mortality.  相似文献   

17.
Data from 1170 records of fattening calves were collected on growth and carcass traits from a Japanese Black cattle herd located in Miyagi prefecture, Japan. The objective was to determine direct and maternal heritabilities, direct and maternal genetic correlations and phenotypic correlations between bodyweight at the beginning of the fattening period (BWS), bodyweight at the end of the fattening period (BWF), carcass weight (CW), average daily gain during the fattening period (ADG), rib eye area (REA), rib thickness, subcutaneous backfat thickness (SFT), yield estimate (YE) and beef marbling score (BMS). Direct heritability estimates of 0.16 (SFT) and 0.07 (BMS) were low, whereas estimates of the other traits were medium to high and ranged between 0.44 (REA) and 0.78 (CW). Direct genetic correlations were all positive, except those that were between BWS and SFT, and between BWS and YE (?0.49 and ?0.14, respectively). The lowest positive genetic correlation was between BWS and BMS (0.04) and the highest was between BWF and CW (0.99). The phenotypic correlation coefficients ranged between ?0.41 (between SFT and YE) and 0.96 (between BWF and CW). Maternal heritability estimates were generally low and ranged between 0.00 for BMS and 0.08 for BWS, CW and ADG. Selection programs comprising information on growth and carcass traits of calves and maternal traits of dams were suggested.  相似文献   

18.
The objective of this study was to obtain heritability estimates for longevity (length of life, length of productive life, number of litters) and lifetime productivity traits (lifetime pig production, lifetime pig efficiency, lifetime litter efficiency) and genetic correlation between them and litter size at first farrowing, growth (ADG), backfat thickness (BF), loin depth, lean meat percentage (LMP), phenotypic selection index (PSI), and exterior in 19423 Polish Landrace (L) and 16049 Polish Large White (LW) sows. Heritabilities for longevity and lifetime productivity traits were 0.10–0.13 for L sows and 0.09–0.11 for LW sows depending on the trait definition. The genetic correlations among these traits were all high and positive, ranging from 0.76 to 0.99. Antagonistic genetic correlations (?0.21 to ?0.26) were found between longevity traits and PSI and LMP in LW sows, while in L sows the respective parameters were lower and not significant for length of productive life. The number of live‐born piglets in the first litter was positively correlated with lifetime pig production and lifetime pig efficiency in both breeds. The genetic correlations of longevity and lifetime pig production with ADG, BF, loin depth and exterior were small, and in most cases, not significant.  相似文献   

19.
Genetic and phenotypic variation in sources of preweaning lamb mortality   总被引:1,自引:0,他引:1  
Information on causes of mortality to 8 wk weaning for 16,881 lambs of 10 line-breed groups by 594 sires born over a 5-yr period was analyzed by least squares procedures to estimate sire variance and covariance components within line and year-season. Heritability estimates were approximately 5% for total mortality in the binomial scale and near 10% when converted to a normal scale. Average heritability estimates in the binomial and normal scale were, respectively, 4 and 12% for perinatal and 3 and 7% for postnatal mortality. The heritability estimates for respiratory problems were inconsistent; binomial-scale estimates ranged from 0 to 7% in different populations. Regression adjustment for effects of variation in litter size and birth weight caused only minor changes in the heritability estimates. Comparison of covariances among half-sibs vs full-sibs indicated very large maternal effects on perinatal mortality but smaller and less consistent effects on sources of postnatal mortality. Phenotypic correlations among sources of mortality indicated a 26% greater influence of postnatal than perinatal mortality on variation in total mortality, but both the genetic and phenotypic correlations between those two components were slightly negative. These results suggest that the use of family and progeny test selection for transmitted effects on both perinatal and postnatal lamb viability should be effective.  相似文献   

20.
Data on litter size, weaning weights at 60, 90, and 120 d, postweaning gains from weaning to 120 or 365 d of age, fleece weight, and fiber diameter from Targhee, Suffolk, and Polypay flocks participating in the U.S. National Sheep Improvement Program were used to estimate genetic parameters for litter size and genetic relationships between early-life traits and future litter size. Records on 7,591 lambings by 3,131 Targhee ewes, 10,295 lambings by 5,038 Suffolk ewes, and 6,061 lambings by 2,709 Polypay ewes were used. Heritability estimates for litter size ranged from .09 to .11 across breeds; repeatability ranged from .09 to .13. Additive genetic effects on litter size were generally positively, and occasionally significantly, correlated with animal additive genetic effects on weaning weights and postweaning gains. Genetic correlations (r(a)) ranged from .08 to .48 in Targhee and from .17 to .43 in Suffolk but were close to 0 in Polypay (-.14 to .09). Additive maternal effects on weaning weight were positively associated with litter size in Suffolk and Polypay; this correlation was negative (-.23 to -.35), but not significant, in Targhee. Fleece weight was not strongly associated with litter size; (r(a) = -.09 to .21). However, fiber diameter had a significant undesirable correlation with litter size (.30) in Targhee. Estimates of phenotypic correlations of litter size with early-life traits were uniformly small (-.02 to .08). Thus, although occasional genetic antagonisms between litter size and early-life traits were observed in these data, none appeared large enough to prevent simultaneous genetic improvement in both traits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号