Context
Converting monocultures to mixed-species stands is thought to be a promising approach to increase forest productivity and resilience, while additionally providing other ecosystem goods and services (EGS). However, the importance of tree species composition and structure remains unclear, particularly beyond the stand scale due to the difficulty of conducting comprehensive, long-term experiments.Objectives
To compare the ability of different tree species mixtures to provide various EGS at the landscape scale.Methods
We used a dynamic forest landscape model to simulate all possible combinations of dominant tree species for two landscapes; a high-elevation alpine region (Dischma valley, Switzerland) and a lowland valley (Mt. Feldberg, Germany). We evaluated multiple EGS, including protection from gravitational hazards, aboveground biomass, and habitat quality, and examined trade-offs and synergies between them.Results
Mixed-species forests were usually better in providing multiple EGS, although monocultures were often best for single EGS. The simulation results also demonstrated how changing environmental conditions along an elevational gradient had a strong impact on the structure of different species combinations and therefore on the provisioning of EGS.Conclusion
Tree species diversity alone is not a good predictor of multifunctionality. Mixtures should be selected based on local environmental conditions, complementary functional traits, and the ability to provide the EGS of interest. Although our work focused on current climatic conditions, we discuss how the modelling framework could be employed to consider the impacts of climate change and disturbances to improve our understanding of how mixed-species stands could be used to cope with these challenges.John A. WiensEmail: |
Context
Understanding how rare species are distributed can be difficult due to heterogeneity between landscape units. Lack of statistical replication of landscapes can make it difficult to carry out testing. Model systems may be a solution.Objectives
We test whether lichen thalli along the trunk of a tree are analogous to habitat patches in a kilometers-extent landscape and hence can function as a model system. This model system allows for increased statistical power. We use this system to test whether landscapes with rare species are different from those without.Methods
We sampled macrolichen diversity along the trunk of 24 balsam fir trees in a stand on the Avalon Peninsula, Newfoundland, Canada, along with microclimate variables. We analysed difference in pattern by aspect and along the gradient of 1 m up the trunk as well as between trees containing the rare Erioderma pedicellatum and those without.Results
We found no difference in total patch richness or abundance between the micro-landscapes. We found significantly consistent patterns in lichen patches along the trunk. These patterns were similar on the trees with the rare species. Lichen species richness did not differ between trees containing the rare species versus those that did not.Conclusions
Lichen patch pattern is statistically similar between trees and as such, these can be considered as replicate landscape units. Thus, landscape ecologists can use micro-landscapes as model systems to conduct observational and manipulative experiments to test questions about spatial pattern and process, such as those concerning distribution of rare species.Context
The provision of multiple ecosystem services (ES) within a landscape is commonly referred to as landscape multifunctionality. Modifying landscapes to increase multifunctionality and reduce trade-offs with concurrent services bears the potential to enhance sustainability in human-dominated landscapes. Assessing landscape multifunctionality is thus crucial for land management and planning, but lack of a clear definition and operationalization of multifunctionality impedes comparisons of different study results.Objectives
We want to address how elements of the study design affect results of multifunctionality assessments. Furthermore, we want to quantify future multifunctionality in the European Union (EU) and indicate the role of land use change and land use diversity on multifunctionality.Methods
We analyzed diverging scenarios depicting land use change in the EU between 2000 and 2040 for their effects on landscape multifunctionality. We tested different multifunctionality indicators at various spatial scales based on the modelling of 12 ES and biodiversity indicators.Results
Particularly the analysis scale determines the interpretation of landscape multifunctionality. Coldspots identified by different indicators are in higher agreement than hotspots. We could not confirm links between land use diversity and landscape multifunctionality. While, at EU scale, multifunctionality slightly increases in future scenarios, agricultural intensification and (peri-)urban growth pose large threats to multifunctional landscapes.Conclusions
The choice of indicator and analysis scale strongly determine possible interpretations of the results. Rather than focusing on the impacts of land use change on multifunctionality, it is recommended to base land use policy on the impacts of location-specific change on ES supply and demands.Context
Integrated conservation decision-making frameworks that help to design or adjust practices that are cognisant of environmental change and adaptation are urgently needed.Objective
We demonstrate how a landscape vulnerability framework combining sensitivity, adaptive capacity, and exposure to climate change framed along two main axes of concern can help to identify potential strategies for conservation and adaptation decision-making, using a landscape in Madagascar’s spiny forest as a case-study.Methods
To apply such a vulnerability landscape assessment, we inferred the sensitivity of habitats using temporal and spatial botanical data-sets, including the use of fossil pollen data and vegetation surveys. For understanding adaptive capacity, we analysed existing spatial maps (reflecting anthropogenic stressors) showing the degree of habitat connectivity, matrix quality and protected area coverage for the different habitats in the landscape. Lastly, for understanding exposures, we used climate change predictions in Madagascar, together with a digital elevation model.Results
The fossil pollen data showed how sensitive arid-adapted species were to past climate changes, especially the conditions between 1000 and 500 cal yr BP. The spatial analysis then helped locate habitats on the two-dimensional axes of concern integrating sensitivity, adaptive capacity and climate change exposure. By identifying resistant, resilient, susceptible, and sensitive habitats to climate change in the landscape under study, we identify very different approaches to integrate conservation and adaptation strategies in contrasting habitats.Conclusion
This framework, illustrated through a case study, provides easy guidance for identifying potential integrated conservation and adaptation strategies, taking into account aspects of climate vulnerability and conservation capacity.Context
As global landscapes continue to change, the sustainability of the ecosystem services they support are increasingly coming into question. In the rapidly changing neotropics, multiple-use plants epitomize sources of ecosystem services. To sustain the relationship that exists between such plants and human populations, a sound understanding of their well-being is required.Objectives
Density data on multiple-use plants were compared across forest types and land tenure classes to understand the implications of these two spatial frames of reference for landscape sustainability.Methods
The density of an aggregate sample of seventeen multiple-use and a sub-sample of five species were examined relative to forest type and land tenure class across fourteen Rupununi, Southern Guyana, study sites. The examination of plant density based on the two sample sizes was used to make inferences on how the two frames of reference may impact landscape sustainability.Results
The mean density of the aggregate sample was highest in three of six forest types, but showed no statistical difference across land tenure classes. When individual species were considered mean densities showed no statistical difference across land tenure classes, but differences were observed for three species across forest types. Mean densities were highest in forest types within which swidden agriculture occurs and in the protected area where logging is prohibited.Conclusions
Our findings suggested that in changing tropical landscapes plant species distribution can be predicted by forest types, but land tenure classes may provide clearer signals as to where a species well-being and hence ecosystem services may be compromised.Functional connectivity of semiaquatic species is poorly studied despite that freshwater ecosystems are amongst the most threatened worldwide due to habitat deterioration. The Neotropical otter, Lontra longicaudis, is a threatened species that represents a good model to evaluate the effect of landscape-riverscape features on genetic structure and gene flow of freshwater species.
ObjectivesWe aimed to assess the spatial genetic structure of L. longicaudis and to evaluate the landscape-riverscape attributes that shape its genetic structure and gene flow at local sites (habitat patches) and between sites (landscape matrix).
MethodsWe conducted the study in three basins located in Veracruz, Mexico, which have a high degree of ecosystem deterioration. We used a non-invasive genetic sampling and a landscape genetics individual-based approach to test the effect stream hierarchical structure, isolation-by-distance, and isolation-by-resistance on genetic structure and gene flow.
ResultsWe found genetic structure that corresponded to the latitudinal and altitudinal heterogeneity of the landscape and riverscape, as well as to the hierarchical structure of the streams. Open areas and steep slopes were the variables affecting genetic structure at local sites, whereas areas with suitable habitat conditions, higher ecosystem integrity and larger streams enhanced gene flow between sites.
ConclusionsThe landscape-riverscape characteristics that maintain functional connectivity of L. longicaudis differed between the upper, middle, and lower basins. Our results have important implications for the conservation of the species, including the maintenance of larger suitable areas in Actopan and the necessity to improve connectivity in Jamapa, through the establishment of biological corridors.
相似文献