首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The mechanisms underlying experience-dependent plasticity in the brain may depend on the AMPA subclass of glutamate receptors (AMPA-Rs). We examined the trafficking of AMPA-Rs into synapses in the developing rat barrel cortex. In vivo gene delivery was combined with in vitro recordings to show that experience drives recombinant GluR1, an AMPA-R subunit, into synapses formed between layer 4 and layer 2/3 neurons. Moreover, expression of the GluR1 cytoplasmic tail, a construct that inhibits synaptic delivery of endogenous AMPA-Rs during long-term potentiation, blocked experience-driven synaptic potentiation. In general, synaptic incorporation of AMPA-Rs in vivo conforms to rules identified in vitro and contributes to plasticity driven by natural stimuli in the mammalian brain.  相似文献   

2.
The site of induction of long-term potentiation (LTP) at mossy fiber-CA3 synapses in the hippocampus is unresolved, with data supporting both pre- and postsynaptic mechanisms. Here we report that mossy fiber LTP was reduced by perfusion of postsynaptic neurons with peptides and antibodies that interfere with binding of EphB receptor tyrosine kinases (EphRs) to the PDZ protein GRIP. Mossy fiber LTP was also reduced by extracellular application of soluble forms of B-ephrins, which are normally membrane-anchored presynaptic ligands for the EphB receptors. The application of soluble ligands for presynaptic ephrins increased basal excitatory transmission and occluded both tetanus and forskolin-induced synaptic potentiation. These findings suggest that PDZ interactions in the postsynaptic neuron and trans-synaptic interactions between postsynaptic EphB receptors and presynaptic B-ephrins are necessary for the induction of mossy fiber LTP.  相似文献   

3.
Long-term potentiation (LTP) of synaptic transmission is a widely studied cellular example of synaptic plasticity. However, the identity, localization, and interplay among the biochemical signals underlying LTP remain unclear. Intracellular microelectrodes have been used to record synaptic potentials and deliver protein kinase inhibitors to postsynaptic CA1 pyramidal cells. Induction of LTP is blocked by intracellular delivery of H-7, a general protein kinase inhibitor, or PKC(19-31), a selective protein kinase C (PKC) inhibitor, or CaMKII(273-302), a selective inhibitor of the multifunctional Ca2+-calmodulin-dependent protein kinase (CaMKII). After its establishment, LTP appears unresponsive to postsynaptic H-7, although it remains sensitive to externally applied H-7. Thus both postsynaptic PKC and CaMKII are required for the induction of LTP and a presynaptic protein kinase appears to be necessary for the expression of LTP.  相似文献   

4.
Cerebellar long-term depression (LTD) is a model of synaptic memory that requires protein kinase C (PKC) activation and is expressed as a reduction in the number of postsynaptic alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) receptors. LTD was absent in cultured cerebellar Purkinje cells from mutant mice lacking the AMPA receptor GluR2 subunit and could be rescued by transient transfection with the wild-type GluR2 subunit. Transfection with a point mutant that eliminated PKC phosphorylation of Ser880 in the carboxy-terminal PDZ ligand of GluR2 failed to restore LTD. In contrast, transfection with a point mutant that mimicked phosphorylation at Ser880 occluded subsequent LTD. Thus, PKC phosphorylation of GluR2 Ser880 is a critical event in the induction of cerebellar LTD.  相似文献   

5.
PSD-95 is a neuronal PDZ protein that associates with receptors and cytoskeletal elements at synapses, but whose function is uncertain. We found that overexpression of PSD-95 in hippocampal neurons can drive maturation of glutamatergic synapses. PSD-95 expression enhanced postsynaptic clustering and activity of glutamate receptors. Postsynaptic expression of PSD-95 also enhanced maturation of the presynaptic terminal. These effects required synaptic clustering of PSD-95 but did not rely on its guanylate kinase domain. PSD-95 expression also increased the number and size of dendritic spines. These results demonstrate that PSD-95 can orchestrate synaptic development and are suggestive of roles for PSD-95 in synapse stabilization and plasticity.  相似文献   

6.
The activation of metabotropic glutamate receptors (mGluRs) leads to long-term depression (mGluR-LTD) at many synapses of the brain. The induction of mGluR-LTD is well characterized, whereas the mechanisms underlying its expression remain largely elusive. mGluR-LTD in the ventral tegmental area (VTA) efficiently reverses cocaine-induced strengthening of excitatory inputs onto dopamine neurons. We show that mGluR-LTD is expressed by an exchange of GluR2-lacking AMPA receptors for GluR2-containing receptors with a lower single-channel conductance. The synaptic insertion of GluR2 depends on de novo protein synthesis via rapid messenger RNA translation of GluR2. Regulated synthesis of GluR2 in the VTA is therefore required to reverse cocaine-induced synaptic plasticity.  相似文献   

7.
The PDZ protein interaction domain of neuronal nitric oxide synthase (nNOS) can heterodimerize with the PDZ domains of postsynaptic density protein 95 and syntrophin through interactions that are not mediated by recognition of a typical carboxyl-terminal motif. The nNOS-syntrophin PDZ complex structure revealed that the domains interact in an unusual linear head-to-tail arrangement. The nNOS PDZ domain has two opposite interaction surfaces-one face has the canonical peptide binding groove, whereas the other has a beta-hairpin "finger." This nNOS beta finger docks in the syntrophin peptide binding groove, mimicking a peptide ligand, except that a sharp beta turn replaces the normally required carboxyl terminus. This structure explains how PDZ domains can participate in diverse interaction modes to assemble protein networks.  相似文献   

8.
The stabilization of long-term memories requires de novo protein synthesis. How can proteins, synthesized in the soma, act on specific synapses that participate in a given memory? We studied the dynamics of newly synthesized AMPA-type glutamate receptors (AMPARs) induced with learning using transgenic mice expressing the GluR1 subunit fused to green fluorescent protein (GFP-GluR1) under control of the c-fos promoter. We found learning-associated recruitment of newly synthesized GFP-GluR1 selectively to mushroom-type spines in adult hippocampal CA1 neurons 24 hours after fear conditioning. Our results are consistent with a "synaptic tagging" model to allow activated synapses to subsequently capture newly synthesized receptor and also demonstrate a critical functional distinction in the mushroom spines with learning.  相似文献   

9.
Long-term potentiation (LTP) at glutamatergic synapses is considered to underlie learning and memory and is associated with the enlargement of dendritic spines. Because the consolidation of memory and LTP require protein synthesis, it is important to clarify how protein synthesis affects spine enlargement. In rat brain slices, the repetitive pairing of postsynaptic spikes and two-photon uncaging of glutamate at single spines (a spike-timing protocol) produced both immediate and gradual phases of spine enlargement in CA1 pyramidal neurons. The gradual enlargement was strongly dependent on protein synthesis and brain-derived neurotrophic factor (BDNF) action, often associated with spine twitching, and was induced specifically at the spines that were immediately enlarged by the synaptic stimulation. Thus, this spike-timing protocol is an efficient trigger for BDNF secretion and induces protein synthesis-dependent long-term enlargement at the level of single spines.  相似文献   

10.
Long-term potentiation (LTP), which approximates Hebb's postulate of associative learning, typically requires depolarization-dependent glutamate receptors of the NMDA (N-methyl-D-aspartate) subtype. However, in some neurons, LTP depends instead on calcium-permeable AMPA-type receptors. This is paradoxical because intracellular polyamines block such receptors during depolarization. We report that LTP at synapses on hippocampal interneurons mediating feedback inhibition is "anti-Hebbian":Itis induced by presynaptic activity but prevented by postsynaptic depolarization. Anti-Hebbian LTP may occur in interneurons that are silent during periods of intense pyramidal cell firing, such as sharp waves, and lead to their altered activation during theta activity.  相似文献   

11.
A pertussis toxin-sensitive G protein in hippocampal long-term potentiation   总被引:7,自引:0,他引:7  
High-frequency (tetanic) stimulation of presynaptic nerve tracts in the hippocampal region of the brain can lead to long-term synaptic potentiation (LTP). Pertussis toxin prevented the development of tetanus-induced LTP in the stratum radiatum-CA1 synaptic system of rat hippocampal slices, indicating that a guanosine triphosphate-binding protein (G protein) may be required for the initiation of LTP. This G protein may be located at a site distinct from the postsynaptic neuron (that is, in presynaptic terminals or glial cells) since maximal activation of CA1 neuronal G proteins by intracellular injection of guanosine-5'-O-(3-thiotriphosphate), a nonhydrolyzable analog of guanosine 5'-triphosphate, did not occlude LTP.  相似文献   

12.
Ge WP  Yang XJ  Zhang Z  Wang HK  Shen W  Deng QD  Duan S 《Science (New York, N.Y.)》2006,312(5779):1533-1537
Interactions between neurons and glial cells in the brain may serve important functions in the development, maintenance, and plasticity of neural circuits. Fast neuron-glia synaptic transmission has been found between hippocampal neurons and NG2 cells, a distinct population of macroglia-like cells widely distributed in the brain. We report that these neuron-glia synapses undergo activity-dependent modifications analogous to long-term potentiation (LTP) at excitatory synapses, a hallmark of neuronal plasticity. However, unlike the induction of LTP at many neuron-neuron synapses, both induction and expression of LTP at neuron-NG2 synapses involve Ca2+-permeable AMPA receptors on NG2 cells.  相似文献   

13.
Painful stimuli activate nociceptive C fibers and induce synaptic long-term potentiation (LTP) at their spinal terminals. LTP at C-fiber synapses represents a cellular model for pain amplification (hyperalgesia) and for a memory trace of pain. μ-Opioid receptor agonists exert a powerful but reversible depression at C-fiber synapses that renders the continuous application of low opioid doses the gold standard in pain therapy. We discovered that brief application of a high opioid dose reversed various forms of activity-dependent LTP at C-fiber synapses. Depotentiation involved Ca(2+)-dependent signaling and normalization of the phosphorylation state of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors. This also reversed hyperalgesia in behaving animals. Opioids thus not only temporarily dampen pain but may also erase a spinal memory trace of pain.  相似文献   

14.
The hypothesis that learning occurs through long-term potentiation (LTP)- and long-term depression (LTD)-like mechanisms is widely held but unproven. This hypothesis makes three assumptions: Synapses are modifiable, they modify with learning, and they strengthen through an LTP-like mechanism. We previously established the ability for synaptic modification and a synaptic strengthening with motor skill learning in horizontal connections of the rat motor cortex (MI). Here we investigated whether learning strengthened these connections through LTP. We demonstrated that synapses in the trained MI were near the ceiling of their modification range, compared with the untrained MI, but the range of synaptic modification was not affected by learning. In the trained MI, LTP was markedly reduced and LTD was enhanced. These results are consistent with the use of LTP to strengthen synapses during learning.  相似文献   

15.
Organelle transport by myosin-V is down-regulated during mitosis, presumably by myosin-V phosphorylation. We used mass spectrometry phosphopeptide mapping to show that the tail of myosin-V was phosphorylated in mitotic Xenopus egg extract on a single serine residue localized in the carboxyl-terminal organelle-binding domain. Phosphorylation resulted in the release of the motor from the organelle. The phosphorylation site matched the consensus sequence of calcium/calmodulin-dependent protein kinase II (CaMKII), and inhibitors of CaMKII prevented myosin-V release. The modulation of cargo binding by phosphorylation is likely to represent a general mechanism regulating organelle transport by myosin-V.  相似文献   

16.
Glial cells express a variety of neurotransmitter receptors. Notably, Bergmann glial cells in the cerebellum have Ca2+-permeable alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-type glutamate receptors (AMPARs) assembled without the GluR2 subunit. To elucidate the role of these Ca2+-permeable AMPARs, we converted them into Ca2+-impermeable receptors by adenoviral-mediated delivery of the GluR2 gene. This conversion retracted the glial processes ensheathing synapses on Purkinje cell dendritic spines and retarded the removal of synaptically released glutamate. Furthermore, it caused multiple innervation of Purkinje cells by the climbing fibers. Thus, the glial Ca2+-permeable AMPARs are indispensable for proper structural and functional relations between Bergmann glia and glutamatergic synapses.  相似文献   

17.
In neurons, individual dendritic spines isolate N-methyl-d-aspartate (NMDA) receptor-mediated calcium ion (Ca2+) accumulations from the dendrite and other spines. However, the extent to which spines compartmentalize signaling events downstream of Ca2+ influx is not known. We combined two-photon fluorescence lifetime imaging with two-photon glutamate uncaging to image the activity of the small guanosine triphosphatase Ras after NMDA receptor activation at individual spines. Induction of long-term potentiation (LTP) triggered robust Ca2+-dependent Ras activation in single spines that decayed in approximately 5 minutes. Ras activity spread over approximately 10 micrometers of dendrite and invaded neighboring spines by diffusion. The spread of Ras-dependent signaling was necessary for the local regulation of the threshold for LTP induction. Thus, Ca2+-dependent synaptic signals can spread to couple multiple synapses on short stretches of dendrite.  相似文献   

18.
Activation of N-methyl-d-aspartate subtype glutamate receptors (NMDARs) is required for long-term potentiation (LTP) and long-term depression (LTD) of excitatory synaptic transmission at hippocampal CA1 synapses, the proposed cellular substrates of learning and memory. However, little is known about how activation of NMDARs leads to these two opposing forms of synaptic plasticity. Using hippocampal slice preparations, we showed that selectively blocking NMDARs that contain the NR2B subunit abolishes the induction of LTD but not LTP. In contrast, preferential inhibition of NR2A-containing NMDARs prevents the induction of LTP without affecting LTD production. These results demonstrate that distinct NMDAR subunits are critical factors that determine the polarity of synaptic plasticity.  相似文献   

19.
Brief repetitive activation of excitatory synapses in the hippocampus leads to an increase in synaptic strength that lasts for many hours. This long-term potentiation (LTP) of synaptic transmission is the most compelling cellular model in the vertebrate brain for learning and memory. The critical role of postsynaptic calcium in triggering LTP has been directly examined using three types of experiment. First, nitr-5, a photolabile nitrobenzhydrol tetracarboxylate calcium chelator, which releases calcium in response to ultraviolet light, was used. Photolysis of nitr-5 injected into hippocampal CA1 pyramidal cells resulted in a large enhancement of synaptic transmission. Second, in agreement with previous results, buffering intracellular calcium at low concentrations blocked LTP. Third, depolarization of the postsynaptic membrane so that calcium entry is suppressed prevented LTP. Taken together, these results demonstrate that an increase in postsynaptic calcium is necessary to induce LTP and sufficient to potentiate synaptic transmission.  相似文献   

20.
Experiments with vesicles containing N-methyl-D-aspartate (NMDA) receptor 2B (NR2B subunit) show that they are transported along microtubules by KIF17, a neuron-specific molecular motor in neuronal dendrites. Selective transport is accomplished by direct interaction of the KIF17 tail with a PDZ domain of mLin-10 (Mint1/X11), which is a constituent of a large protein complex including mLin-2 (CASK), mLin-7 (MALS/Velis), and the NR2B subunit. This interaction, specific for a neurotransmitter receptor critically important for plasticity in the postsynaptic terminal, may be a regulatory point for synaptic plasticity and neuronal morphogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号