首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
细鳞鲳肌肉营养成份分析   总被引:2,自引:0,他引:2  
对细鳞鲳成鱼肌肉中的水分、蛋白质、脂肪、灰分含量和氨基酸、脂肪酸组成及含量进行了分析,结果表明:细鳞鲳肌肉蛋白质和脂肪含量均较高,分别为19.54%和6.22%。肌肉中含有18种氨基酸,氨基酸总量为73.72%,其中必需氨基酸总量为35.66%;脂肪酸含有15种,其中高度不饱和脂肪酸含量为15.54%。  相似文献   

2.
对细鳞鲳成鱼肌肉中的水分、蛋白质、脂肪、灰分含量和氨基酸、脂肪酸组成及含量进行了分析,结果表明:细鳞鲳肌肉蛋白质和脂肪含量均较高,分别为19.54%6.22%。肌肉中含有18种氨基酸,氨基酸总量为73.72%;脂肪酸含有15种,其中高度不饱和脂肪酸含量为15.54%。  相似文献   

3.
异育银鲫卵巢,肌肉的生化成分和氨基酸组成特点   总被引:2,自引:0,他引:2  
分析了异育银鲫卵巢、肌肉的生化成分和氨基酸。结果表明,卵巢水分含量低于肌肉,而其蛋白质、脂肪、灰分、无氮浸出物及能值则高于肌肉,其中脂肪和无氮浸出物含量有明显差别。卵巢的17种氨基酸总量和7种必需氨基酸含量也都高于肌肉。卵巢氨基酸含量分布顺序与肌肉有一定区别,有13种氨基酸的含量是卵巢高于肌肉,差异明显的是甘氨酸、胱氨酸、丝氨酸和脯氨酸;有4种氨基酸是肌肉高于卵巢,差异较明显的是天门冬氨酸和赖氨酸  相似文献   

4.
李铸  如学  吴锦波  李刚 《畜禽业》2023,(8):12-14
目的 调查阿坝藏族羌族自治州标准化养殖出栏牦牛肉质指标含量特征及安全性。方法 试验在牦牛产区随机抽检了1份牦牛肌肉样本相关指标,并进行了分析。结果 样品EAA/TAA值为46.63%,EAA/NEAA值为87.37%;酸油酸含量为36.80%,不饱和脂肪酸相对含量为46.14%;样品中As、Pb、Cd、Cr含量低于限定值,未检出重金属Hg和各类药物残留。结论 抽查的牦牛肉营养价值高且未受有害物质污染。  相似文献   

5.
云南裂腹鱼肌肉生化成分分析与营养品质评价   总被引:2,自引:0,他引:2  
对采自洱海上游弥苴河的云南裂腹鱼Schizothorax yunnanensis肌肉营养组成进行分析与评价.结果表明,云南裂腹鱼肌肉蛋白质含量16.86%,脂肪含量1.15%;饱和脂肪酸含量27.92%,单不饱和脂肪酸含量42.44%,多不饱和脂肪酸含量15.35%,必需脂肪酸含量41.50%,二十碳五烯酸(C20:5)与二十二碳六烯酸(C22:6)总含量1.67%;氨基酸总量78.50 mg·100 mg-1,必需氨基酸总量36.86 mg·100 mg-1,呈味氨基酸总量27.95 mg·100 mg-1,赖氨酸(Lys)含量仅次于谷氨酸(Glu),高达8.66 mg·100 mg-1,必需氨基酸中蛋氨酸(Met)+胱氨酸(Cys)的氨基酸分和化学分最低,分别为89和66,为云南裂腹鱼肌肉中的限制性氨基酸.  相似文献   

6.
采用常规生化分析方法分析和评价内蒙古达里诺尔湖达里湖高原鳅Triplophysa dalaica肌肉的营养成分。结果表明:达里湖高原鳅全鱼和肌肉的水分、粗蛋白、粗脂肪、粗灰分含量分别为:(74.28±1.04)%和(78.30±0.23)%、(14.57±0.02)%和(17.77±0.05)%、(7.15±1.56)%和(1.77±0.03)%、(3.45±0.14)%和(1.14±0.05)%。达里湖高原鳅肌肉中共检测出18种氨基酸,总量(TAA)为(13.80±0.92)%,其中8种必需氨基酸(EAA)总量为(5.72±0.37)%,占氨基酸总量的(41.43±0.69)%,必需氨基酸总量(TEAA)/非必需氨基酸总量(TNEAA)为(70.76±1.99)%,其必需氨基酸比例符合FAO/WTO的理想模式。依据氨基酸评分标准(ASS),达里湖高原鳅的第一、第二限制性氨基酸分别为缬氨酸、色氨酸;依据化学评分标准(CS),达里湖高原鳅的第一、第二限制性氨基酸分别为色氨酸、蛋氨酸+胱氨酸,必需氨基酸指数(EAAI)为55.52。肌肉中鲜味氨基酸(DAA)总量为(5.29±0.24)%,占氨基酸总量的(38.40±1.07)%,支链氨基酸(BCAA)与芳香族氨基酸(AAA)的比值(F)为(2.48±0.16)。肌肉中共检测出22种脂肪酸,多不饱和脂肪酸(PUFA)总含量为(23.50±0.12)%,其中二十二碳六烯酸(DHA)+二十碳五烯酸(EPA)含量为(9.37±0.10)%,必需脂肪酸(EFA)含量为(10.07±0.29)%。分析结果表明,达里湖高原鳅具有合理的氨基酸和脂肪酸组成,是一种味道鲜美、营养价值丰富的淡水鱼类,具有良好的开发利用前景。  相似文献   

7.
对野生及人工养殖胭脂鱼的肌肉营养成分和营养品质进行了比较分析。结果表明:野生胭脂鱼肌肉中水分、粗灰分、粗蛋白含量均显著高于人工养殖胭脂鱼(P〈0.05),而含肉率和粗脂肪含量显著低于人工养殖胭脂鱼(P〈0.05)。野生和人工养殖胭脂鱼的氨基酸组成基本一致,均含有17种氨基酸(色氨酸未测),必需氨基酸指数(EAAI)分别...  相似文献   

8.
俄罗斯鲟肌肉营养成份的分析   总被引:5,自引:1,他引:5  
采用生化分析方法对工厂化养殖的1龄和2龄俄罗斯鲟的肌肉营养成份进行检测。结果表明,1龄鱼的水分含量为80.84%,蛋白质含量为16.10%,脂肪含量为2.14%,灰分含量为0.92%;2龄鱼的水分含量为79.96%,蛋白质含量为15.00%,脂肪含量为4.08%,灰分含量为1.26%;1龄俄罗斯鲟肌肉中蛋白质含量高于2龄,脂肪含量低于2龄,且差异均显著;1龄和2龄俄罗斯鲟肌肉蛋白质中都含有18种氨基酸,平均含量分别为15.60%、14.46%,其中8种人体必需氨基酸平均含量分别为6.30%、5.95%,4种呈味氨基酸的平均含量分别为6.70%、6.26%;1龄和2龄俄罗斯鲟肌肉中都包含有9类脂肪酸,脂肪酸总量及各类脂肪酸含量都非常接近。  相似文献   

9.
为了研究饥饿对大黄鱼(Larimichthys crocea)幼鱼肌肉中氨基酸和脂肪酸含量的影响,取大黄鱼幼鱼540尾,体重均值为(40.80±3.40)g,分组进行为期0 d(S0)、4 d(S4)、8 d(S8)、12 d(S12)、16 d(S16)、20 d(S20)的饥饿处理,测定背部肌肉的氨基酸和脂肪酸含量。结果显示,测定的大黄鱼背肌的16种氨基酸中,蛋氨酸含量在不同饥饿处理时间之间差异显著(P0.05),饥饿持续8 d其含量达到最小(0.48%±0.12%),16 d时达到最高(1.62%±0.23%);其余15种氨基酸含量的差异均不显著(P0.05),但均表现出随着饥饿时间延长先上升后下降的趋势,在16 d时达到最高,20 d时明显降低。非必需氨基酸、必需氨基酸、呈味氨基酸、鲜味氨基酸及氨基酸总量的变化趋势与上述15种氨基酸一致。在不同饥饿处理组的大黄鱼背肌中脂肪酸含量差异显著(P0.05)。其中,饱和脂肪酸(SFA)含量随着饥饿时间延长呈先升高后下降的趋势,在S8组达到最大,为30.90%±0.28%;单不饱和脂肪酸(MUFA)含量在不同处理组之间差异不显著(P0.05),但所有处理组均稍大于对照组(S0);多不饱和脂肪酸(PUFA)含量则呈先下降后升高的趋势,在S12组时达到最低,其值为31.87%±0.65%。由上可知,通过适当的饥饿处理,可以改变肌肉中氨基酸和脂肪酸含量,从而较好地改善大黄鱼的肉质风味。  相似文献   

10.
不同家系大黄鱼肌肉营养成分的比较   总被引:49,自引:2,他引:49       下载免费PDF全文
对同等养殖条件下所养成的大黄鱼[Pseudosciaena crocea(Richardson)]3个不同家系:WW家系[野生F1(♀)×野生F1(♂)]、WC家系[野生F1(♀)×养殖F8(♂)]和CC家系[养殖F8(♀)×养殖F8(♂)]成鱼肌肉营养成分进行测定,并以野生大黄鱼作为对照,从营养成分的角度分析和评价不同家系大黄鱼的品质。结果显示,野生大黄鱼粗蛋白含量、必需氨基酸以及鲜味氨基酸总量都明显高于家系大黄鱼,而必需脂肪酸含量则低于家系大黄鱼。3个家系之间,粗蛋白质含量、必需氨基酸总量、鲜味氨基酸总量及必需氨基酸指数排列次序由大到小依次为:WW、WC、CC;饱和脂肪酸总量由大到小的排序为:CC、WW、WC;不饱和脂肪酸总量由大到小依次为:WC、WW、CC。研究认为,家系之间主要营养成分指标存在一定差异,这是由遗传因素决定的,因此通过家系选择进行大黄鱼肉质改良是可能的,但是同时必须结合饲料营养成分的补充和调控以及养殖环境条件的改善,才能较快速地使养殖大黄鱼的品质达到或接近野生大黄鱼的水平。  相似文献   

11.
A study was conducted to investigate the muscle amino acid profiles of five species of marine fish, Pseudosciaena crocea (large yellow), Lateolabrax japonicus (common sea perch), Pagrosomus major (red seabream), Seriola dumerili (Dumeril's amberjack) and Hapalogenys nitens (black grunt). These carnivorous fishes, all of which belong to the Perciforms, were sampled from Xiamen Bay. Chemical analysis shows significant difference (P < 0.01) among the five species in the muscle total amino acids (TAA). Lateolabrax japonicus has the highest level of TAA in muscle tissues. Significant difference in muscle total essential amino acid (TEAA) and total non‐essential amino acid (TNEAA) were also found among the five species. Lateolabrax japonicus has the highest TEAA level, and H. nitens has the highest level of TNEAA level. Significant difference (P < 0.01) existed in specific EAA except for lysine (P > 0.05). The significant difference (P < 0.05) of the A/E ratios [(each essential amino acid content/total essential amino acid content including cystine and tyrosine) ×1000] based on the essential amino acid composition of muscle tissue from the five species were found in lysine, histidine, methionine, cystine, valine, leucine, isoleucine, and arginine, except for threonine, phenylalanine and tyrosine. These differences indicate that the amino acids profile is species specific for the five species and their essential amino acid requirements are greatly different although they were fed similar feed. In contrast to the reference amino acid profile recommended by FAO/WHO, muscle proteins of each fish were all rich in lysine, the S‐containing amino acids and threonine, but histidine, valine, leucine, isoleucine, phenylalanine and tyrosine were deficient for children's diets. The first limiting amino acid was histidine for P. crocea and L. japonicus, valine for P. major and H. nitens, leucine for S. dumerili. The amino acid score was 66.8, 76.7, 78.4, 84.0 and 95.7 for P. crocea, L. japonicus, P. major, H. nitens and S. dumerili, respectively. In the adult human diet the muscle protein of the five species of marine fish can almost fulfil the requirements of all essential amino acids except for the histidine of P. crocea and L. japonicus and thus can serve as supplemental source of protein in cereal‐based adults diets if we reinforce the histidine correspondingly. Therefore, increasing the proportion of marine fish in the diet of the people in the area where paddy rice and wheat are the main protein sources is an effective way to enhance the nutrition value of food and improve the nutrition status of the developing countries. Moreover, all of five marine fish species contained a comparatively high content of glutamic acid and arginine, which are beneficial to the patients under such conditions as trauma, burn injury, massive small‐bowel resection and renal failure.  相似文献   

12.
本研究利用常规生化和物理分析方法对红色斑点叉尾(鮰)(Red Ictalurus punctatus)(简称红(鮰))和黑色斑点叉尾(鮰)(Black Ictalurus punctatus)(简称黑(鮰))背部肌肉一般营养成分、质构特性、氨基酸和脂肪酸含量进行了分析,并对其营养价值进行了评价.结果显示:黑(鮰)水分显著高于红(鮰),粗脂肪含量显著低于红(鮰).红(鮰)肌肉咀嚼性显著高于黑(鮰).红(鮰)和黑(鮰)的氨基酸组成基本一致,均含有18种氨基酸(除色氨酸),总含量占鲜肉的15.75%和15.07%;其中7种人体必需氨基酸含量分别为6.18%和5.91%,占总氨基酸含量的39.24%和39.22%,必需氨基酸中均是赖氨酸含量最高,蛋氨酸含量最低,必需氨基酸指数分别为84.99和83.84;根据氨基酸评分(AAS),红(鮰)和黑(鮰)第一限制性氨基酸均为缬氨酸;根据化学评分(CS),红(鮰)和黑(鮰)第一限制性氨基酸均为蛋氨酸+胱氨酸;红(鮰)和黑(鮰)肌肉必需氨基酸构成比例均符合FAO/WHO的标准.红(鮰)∑MUFA、∑PUFA、EPA+DHA含量以及n-6/n-3 PUFA均高于黑(鮰).结果表明,红(鮰)和黑(鮰)都具有较高的营养价值,红(鮰)的营养价值略高于黑(鮰).  相似文献   

13.
研究分析了饲料组成对银鲳(Pampus argenteus)幼鱼特定生长率(SGR)及肌肉氨基酸与脂肪酸组成的影响。实验共设4组不同的饲料组成,依次为饲料A(鱼肉糜)、饲料B(鱼肉糜+配合饲料)、饲料C(鱼肉糜+配合饲料+蛏子肉糜)和饲料D(鱼肉糜+配合饲料+蛏子肉糜+桡足类)。实验用银鲳幼鱼的平均体重为4.80±0.11 g,每组饲料设3重复,实验周期为9周。研究结果显示,不同饲料组成可显著影响银鲳的特定生长率,饲料A组的特定生长率最低,并显著低于其它各饲料组;饲料D组的特定生长率最高,且显著高于饲料B、C组的特定生长率(P<0.05);但饲料B、C组间银鲳特定生长率无显著性差异(P>0.05)。银鲳肌肉氨基酸与脂肪酸的分析结果显示,4组饲料组成对银鲳肌肉氨基酸的组成及含量并无显著性影响(P>0.05),但可显著影响肌肉脂肪酸的组成及含量(P<0.05)。饲料D组的多不饱和脂肪酸(PUFA)、高度不饱和脂肪酸(HUFA)及n-3HUFA含量均分别显著高于饲料A、B和C组(P<0.05),饲料B和C组的PUFA、HUFA及n-3HUFA均分别显著高于饲料A组(P<0.05),但饲料B、C组间并无显著性差异(P>0.05)。综合分析得出,丰富的饲料组成以及饲料中较高的HUFA含量均有利于银鲳幼鱼的生长。  相似文献   

14.
比较分析了相同规格银鲳与翎鲳幼鱼肌肉必需氨基酸的组成模式。结果显示,银鲳与翎鲳肌肉中氨基酸均以谷氨酸含量最高,分别为2.91、2.77 g/100 g湿物质,色氨酸含量最低,分别为0.17、0.18 g/100 g湿物质;银鲳肌肉中氨基酸总量、必需氨基酸总量及呈味氨基酸总量分别为18.08、9.32与6.84 g/100 g湿物质,翎鲳肌肉中氨基酸总量、必需氨基酸总量及呈味氨基酸总量分别为17.25、8.80与6.60 g/100 g湿物质;银鲳肌肉中必需氨基酸的组成比例为缬氨酸∶蛋氨酸∶异亮氨酸∶亮氨酸∶苏氨酸∶苯丙氨酸∶组氨酸∶赖氨酸∶精氨酸∶色氨酸=6.02∶3.12∶5.66∶9.45∶4.33∶4.50∶2.56∶11.15∶7.06∶1.00,翎鲳肌肉必需氨基酸中缬氨酸∶蛋氨酸∶异亮氨酸∶亮氨酸∶苏氨酸∶苯丙氨酸∶组氨酸∶赖氨酸∶精氨酸∶色氨酸=5.64∶2.42∶5.18∶8.74∶4.12∶4.13∶2.46∶10.28∶6.65∶1.00。统计分析表明,银鲳与翎鲳间肌肉中氨基酸总量、必需氨基酸总量、呈味氨基酸总量以及必需氨基酸的组成模式并无显著性差异(P0.05)。  相似文献   

15.
南极磷虾粉营养成分的分析与比较   总被引:1,自引:0,他引:1  
对两种不同来源的南极磷虾粉营养成分进行了分析和评价,并与进口鱼粉的营养成分进行了比较。结果显示,上海开创远洋渔业有限公司开利轮产南极磷虾粉(磷虾粉S)粗蛋白含量为62.89%,高于辽宁远洋渔业有限公司安兴海轮产南极磷虾粉(磷虾粉D)和进口鱼粉的粗蛋白含量,两种磷虾粉粗蛋白质含量分别达到一级品和二级品指标。磷虾粉S、磷虾粉D和进口鱼粉18种氨基酸总量分别为66.36%、57.19%、67.24%,鲜味氨基酸含量较高分别为24.65%、20.69%和25.25%,8种必需氨基酸含量分别为31.43%、21.74%、25.62%,且磷虾粉S必需氨基酸含量明显高于磷虾粉D和鱼粉,磷虾粉S、磷虾粉D和进口鱼粉三种样品必需氨基酸指数(EAAI)分别为57.83、49.89、57.07;磷虾粉S、磷虾粉D和进口鱼粉三种样品脂肪酸中,多不饱和脂肪酸含量较高分别为43.28%、40.25%、46.58%,且磷虾粉S的EPA与DHA的总量(36.14%)高于磷虾粉D(31.30%)及鱼粉(27.65%)。分析结果表明,南极磷虾粉蛋白含量高,且氨基酸组成符合FAO/WHO推荐的蛋白质理想模式,含有丰富的多不饱和脂肪酸,营养价值较高,具有较大的开发利用前景。  相似文献   

16.
对黑斑蛙肌肉一般营养成分、氨基酸、脂肪酸和矿物元素进行测定,旨在比较分析野生与养殖黑斑蛙肌肉的营养品质。试验结果表明,养殖黑斑蛙肌肉粗蛋白与粗脂肪含量高于野生黑斑蛙,水分含量则低于野生黑斑蛙,但两者间差异不显著( P >0.05);野生与养殖黑斑蛙肌肉除谷氨酸和酪氨酸外的氨基酸含量均无显著性差异( P >0.05);野生黑斑蛙肌肉的总氨基酸、非必需氨基酸和鲜味氨基酸含量高于养殖黑斑蛙。根据氨基酸评分和化学评分结果,野生和养殖黑斑蛙肌肉中赖氨酸含量相对较高,第一限制性氨基酸均为蛋氨酸+胱氨酸,必需氨基酸指数分别为70.25和72.42。野生黑斑蛙饱和脂肪酸含量显著高于养殖黑斑蛙( P <0.05),而养殖黑斑蛙肌肉的多不饱和脂肪酸、必需脂肪酸、二十碳五烯酸、二十二碳六烯酸、n-3和n-6多不饱和脂肪酸含量均高于野生黑斑蛙( P >0.05)。野生与养殖黑斑蛙肌肉14种矿物元素中,锌、铝和硒含量有显著差异( P <0.05),重金属元素(砷、镉、铅)含量均在限量范围以内。由此可知,养殖黑斑蛙营养组成价值接近于野生黑斑蛙。  相似文献   

17.
为系统了解渔盐一体化生态养殖模式下中国明对虾(Fenneropenaeus chinensis)的营养价值,通过测定其肌肉基本营养成分(水分、粗蛋白、粗脂肪、灰分、总糖),蛋白质的氨基酸组成、脂肪酸组成、维生素和无机元素等,对其营养价值进行评价。结果显示:该养殖模式下,中国明对虾蛋白质含量较高,氨基酸种类齐全,必需氨基酸占氨基酸总量的39.03%,符合FAO/WHO的理想模式;呈味氨基酸含量高达43.73%;脂肪含量低;维生素B3和维生素E含量丰富;富含人体必需的钙、铁、锌、镁、硒等矿质元素,无重金属污染。研究表明:渔盐一体化生态养殖的中国明对虾是一种高蛋白、低脂肪、高矿物质、营养价值较高的优质海产虾类。  相似文献   

18.
渤海银鲳成熟卵巢生化成分分析   总被引:1,自引:0,他引:1  
采用现代生化分析方法,研究了渤海银鲳卵巢组织的生化成分。结果表明:卵巢水分平均含量为68.83%,蛋白质平均含量15.45%,脂肪平均含量12.37%,灰分平均含量1.21%,糖类(碳水化合物)平均含量1.82%;卵巢组织的17种氨基酸中以谷氨酸含量最高,天冬氨酸次之,赖氨酸居于第三位;卵巢脂质中的主要脂肪酸排列顺序如下:C18∶1(n9&7)>C16∶0>C22∶6n3>C16∶1n7>C20∶5n3,饱和脂肪酸(SFA)占脂肪酸总量的18.95%~25.28%,单烯酸(MUFA)占24.67%~31.87%,多不饱和脂肪酸(PUFA)占19.72%~24.26%,EPA和DHA之和占16.27%~20.08%。  相似文献   

19.
An experiment was conducted in a closed system to quantify the arginine requirement of juvenile silver perch Bidyanus bidyanus . Five experimental diets were formulated to contain 40% crude protein with five graded levels of arginine. The diets contained casein and gelatine as protein sources supplemented with crystalline L -amino acids to simulate the reference amino acid profile (except for arginine) of silver perch tissue protein. The experiment lasted 12 weeks and, based on growth data using broken-line analysis, the arginine requirement of juvenile silver perch was found to be 2.7 g 100 g−1 dry diet (or 6.8% of protein).
Based on whole-body amino acid composition, A/E ratios (essential amino acid/total essential amino acids + (cystine + tyrosine) × 1000) were estimated. Using the experimentally determined requirement for arginine and A/E ratios, the phenylalanine requirement of silver perch was predicted to be 5.5 g 100 g−1 protein. Another feeding trial was conducted to determine the phenylalanine require-ment of silver perch using a series of diets with various amounts of phenylalanine and a protocol similar to the previous one. It was found that the experimentally determined phenylalanine requirement of juvenile perch was similar to that predicted. The A/E ratios have been hitherto utilized for the estimation of essential amino acid requirements in three salmonids, common carp and channel catfish: the present findings extend the validity of the method to other fish species.  相似文献   

20.
In the present study, juvenile (live body weight, 54.3 ± 8.2 g), preadult (live body weight, 822.5 ± 33.9 g), and adult (live body weight, 1,562.8 ± 41.8 g) pacu, Piaractus mesopotamicus, were used to estimate their dietary essential amino acid (EAA) requirements using the whole-body amino acid (AA) pattern. The results showed that whole-body moisture, crude protein, total lipid, and ash contents expressed on a wet weight basis (%) were significantly different among the studied growth phases. No significant differences were observed in the dietary EAA requirements estimated for the three growth phases of pacu. These dietary EAA requirements were found to be different than those previously estimated for the same fish through its muscle AA pattern. Based on whole-body EAA to total EAA ratios {A/E ratios; [(each EAA/total EAA) × 1,000]}, EAA requirements were estimated to be histidine (0.42%), arginine (1.36%), threonine (0.82%), valine (0.90%), methionine (0.45%), isoleucine (0.83%), leucine (1.29%), phenylalanine (0.74%), lysine (1.64%), and tryptophan (0.14%) for pacu. These estimated requirements may serve as a reference line in the formulation of practical and experimental diets until dose–response-based optimum EAA requirements are available for pacu.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号