首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
蔬菜种子的干燥动力学特性与变温干燥机理   总被引:4,自引:0,他引:4  
以蔬菜种子为对象,建立了物料的非稳态干燥动力学简化方程,并以不同供热方式(恒温与变温)进行了对比干燥实验和变温干燥工艺的模拟,结合种子的生物结构特性探讨了物料传热传质机理,为蔬菜种子干燥新技术与新工艺提供了理论依据。  相似文献   

2.
蔬菜种子的强化传热传质机理与综合干燥技术研究   总被引:5,自引:2,他引:3  
综合工程热物理和种子生理的研究方法,选用白菜与菜豆种子在固定床与振动流化床中进行了干燥动力学实验研究以及种子生理的同步测试,阐明了蔬菜种子干燥的强化传热传质机理,并在此基础上研制了辐射-对流-导热-振动综合传热的优质,高效,节能的螺旋提升振动流化床蔬菜种子干燥机。  相似文献   

3.
根据干燥动力方程、质量和能量的传递方程、渗透速度方程,对同时具有传热传质特点的干燥过程的强化方法,进行理论分析。在此基础上,提出了干燥过程的强化途径。最后,给出了干燥强化过程的评价方法。  相似文献   

4.
本文介绍了一种应用氯化锂转轮除湿进行蔬菜种子干燥的方法,阐述了这种方法的机理,并在实践应用中验证了这种方法的可行性。  相似文献   

5.
豆渣干燥试验及数学模型   总被引:2,自引:0,他引:2  
利用热传导干燥法,测定出豆渣的干燥曲线和干燥速率曲线;探讨了加热介质温度、物料层厚度二因素对豆渣干燥特性的影响规律。研究结果表明,加热介质温度是影响干燥特性的主要因素。根据试验结果,建立了与加热温度、料层厚度相关的豆渣干燥曲线方程,并对干燥机理作了初步探讨  相似文献   

6.
利用循环热风干燥装置对五味子热风干燥进行了研究,通过多种不同干燥条件的试验,获得五味子的干燥特性曲线。试验表明:在热风温度为60℃、热风风速为0.3m/s、铺料密度为15kg/m2时干燥效果较佳。通过对基于不同方程建立的3个干燥模型进行了比较,确立了基于Page方程的五味子热风干燥模型。该干燥模型可以为五味子热风干燥过程的设计和操作提供可靠的理论依据。  相似文献   

7.
玉米过热蒸汽薄层干燥数学模型   总被引:4,自引:2,他引:4  
在自行设计的过热蒸汽干燥试验台上进行了各种工况下玉米的薄层干燥试验,用数理统计中优化的方法,建立了薄层干燥方程,用来定量地描述玉米对热蒸汽干燥规律。结果表明,尽管过热蒸汽和热风为不同的干燥介质,薄层干燥方程仍可用与热风干燥相同的方法来建立。  相似文献   

8.
苹果介电常数与干燥特性相关性研究   总被引:1,自引:0,他引:1  
王颖  郭玉明 《农业机械学报》2010,41(Z1):182-185
使用HIOKI LCR测量仪及配套电极测量了热风干燥过程中苹果及苹果与空气混合物的相对介电常数,通过介电常数与干燥特性指标的拟合,分别建立了苹果、苹果与空气混合物介电常数与相对含水率、干燥速率的关系方程。结果表明,介电常数与干燥特性指标均显著相关,且混合物介电常数与干燥特性指标相关性更好。  相似文献   

9.
苹果片变温压差膨化干燥特性与动力学研究   总被引:5,自引:0,他引:5  
探讨了膨化初始含水率和抽真空干燥温度对苹果片变温压差膨化干燥特性的影响,建立了苹果片变温压差膨化干燥动力学模型。结果表明:苹果片变温压差膨化干燥过程分为加速干燥、恒速干燥和减速干燥3个阶段,干燥过程大部分处于减速干燥;不同干燥条件下的苹果片变温压差膨化干燥满足Page方程;苹果片有效扩散系数在1.52×10-9~8.87×10-9m2/s范围内。所建模型可以预测干燥条件下的苹果片变温压差膨化干燥过程中含水率的变化,特定系数k、n与膨化初始含水率和抽真空干燥温度呈线性关系,相关系数r2分别为0.845、0.997。  相似文献   

10.
利用真空微波干燥设备对胡萝卜进行正交回归干燥试验,得出各指标之间的相互影响关系及其干燥曲线,进而得到回归方程,对其进行方程的显著性检验以及参数综合优化,提出了胡萝卜真空微波干燥工艺参数的最佳组合。  相似文献   

11.
粮食干燥工艺分析与探讨   总被引:1,自引:0,他引:1  
粮食干燥是一个复杂的传热传质过程,采用相应的干燥工艺与技术手段,通过控制粮食的温度、湿度等因素,在不损害粮食品质的前提下,降低粮食中的含水量。选择合适的粮食干燥工艺,是保证在粮食干燥时既能提高干燥速率,又能获得较高干燥品质的基础。为此,讨论了粮食干燥工艺的分类,分析了影响粮食干燥工艺选取的诸多因素,提出了选择粮食干燥工艺的常用方法,并介绍了常用粮食干燥机采用的粮食干燥工艺。  相似文献   

12.
介绍了日本大型谷物干燥工程的现状以及采用不同的新技术设计建造的大型谷物干燥系统。这些系统大多集贮藏与干燥功能于一体。在大量收获的季节,特别是在收获含有高水分的谷物时,日本研究实施了半干贮存二段干燥的工艺。  相似文献   

13.
为了探索开发适宜缩短红枣干燥时间、提高红枣干燥品质的技术与装备,综述了红枣单一与联合干燥发展现状与研究进展,并在此基础上进行了红枣干燥技术与装备的对比分析.同时,阐述了预处理对红枣干燥特性的影响,以期为在研究红枣干燥特性和干燥装备现状的基础上,对不同红枣干制品实施适宜的干燥加工技术与研制新型干燥装备提供理论依据与技术支...  相似文献   

14.
油茶籽热风干燥动力学研究   总被引:3,自引:0,他引:3  
为研究油茶籽热风干燥特性,探讨热风温度、初始干基含水率对油茶籽干燥速率的影响,在不同初始干基含水率、不同热风温度条件下分别对油茶籽进行干燥,并比较了9种数学模型在油茶籽热风干燥中的适用性。结果表明,油茶籽热风干燥过程并没有出现恒速干燥段,干燥主要发生在降速干燥阶段。物料初始干基含水率、温度是影响干燥的主要因素,初始干基含水率越低、干燥温度越高,干燥到目标含水率所用时间越短。干燥过程中,有效水分扩散系数随温度升高而增大,热风温度从50℃升高到80℃,其有效水分扩散系数由1.3132×10-9m2/s增大到3.9223×10-9m2/s,油茶籽的干燥活化能为33.6193kJ/mol;通过比较决定系数R2、均方根误差eRMSE以及卡方检验值χ2得出,Lewis模型为描述油茶籽热风薄层干燥的最优模型,预测值与试验值的均方误差为1.36%,最大相对误差小于4%,表明模型预测的干燥曲线和试验干燥曲线一致性较好。  相似文献   

15.
荔枝微波干燥的试验研究   总被引:3,自引:0,他引:3  
为探讨荔枝微波干燥新技术,利用自制的微波干燥试验测试系统,进行了较系统的荔枝微波干燥试验。测试分析了荔枝微波干燥的失水特性,找出了干燥过程中荔枝果肉内部温度的分布规律;分析了干燥条件对干燥过程的影响;并确定了荔枝微波薄层干燥的数学模型。  相似文献   

16.
为明确微波干燥条件对高粱含水率和籽粒温度等干燥特性的影响,以粳高粱“龙杂10”为原料,在隧道式微波干燥机上进行连续式干燥试验。并利用HFSS软件仿真分析试验用干燥机的磁控管排布方式和微波作用距离对高粱干燥均匀性的影响。结果表明:随着单位质量功率在2~6 W/g范围内逐渐增加,含水率下降幅度先加快后渐缓,籽粒温度有所下降;每循环干燥时间在1.02~5.0 min范围内逐渐增加,含水率下降幅度显著增强,籽粒温度增加显著;排湿风速在0.0~2.0 m/s范围增加,含水率下降幅度有减小趋势,籽粒温度略有下降。仿真分析表明干燥机磁控管采用“三二三排布方式”、微波作用距离为250 mm时电磁场分布的均匀性更好,从理论上表明本试验采用的隧道式微波干燥机对高粱干燥均匀性是有利的。研究结果将为高粱微波干燥产业化应用提供理论和数据支持。  相似文献   

17.
真空冷冻干燥和微波干燥在切花月季干燥中的应用   总被引:16,自引:0,他引:16  
分别应用真空冷冻干燥技术和微波干燥技术对切花月季进行干燥,得到花材的冻干曲线和微波干燥速率曲线。通过数据分析确定真空冷冻干燥的最佳干燥工艺为:加热板温度35~C,干燥室压强40Pa;微波干燥的最佳工艺为加热10S、间歇45S。对不同干燥方法得到的花材进行感官评价,确定真空冷冻干燥的花材与10%的酒石酸溶液护色后再微波干燥的花材在颜色和外观上接近。  相似文献   

18.
我国是粮食生产和消费大国,粮食的安全生产尤其重要.阐述了粮食烘干机械化的发展现状,分析了粮食烘干机械化存在的问题,提出几点发展措施建议,以期进一步促进粮食烘干机械化发展.  相似文献   

19.
稻谷干燥是水稻生产中的重要组成部分,每年因未能及时干燥到安全存储含水率而造成的粮食霉变损失达到5%,自然晾晒已经不能满足稻谷干燥需求,稻谷机械化烘干需求日益增长.机械化干燥是提高稻谷烘干效率、均匀含水率、提升稻米口感的重要手段.本文通过阐述稻谷机械化干燥技术要点、目前国内主要稻谷烘干机型工作原理及其特点,为农业生产经营...  相似文献   

20.
作为取之不尽且对环境无污染的能源,太阳能在农业干燥方面有着广泛的用途。为此,利用自主研制的整体式太阳能果蔬干燥装置,进行了太阳能干燥试验,研究了在不同处理方式、温度和风速条件下小白杏的干燥特性,得出不同条件下的干燥特性曲线。水洗处理可提高卫生指标,切分处理可提高干燥速度,提高干燥箱内热空气温度,可显著提高干燥速率,但温度不宜超过85℃;风速为5.5m/s时对干燥速率的影响不显著。最优条件:温度65℃、风速为11.5m/s下,用32h可将小白杏的含水率从79%降低至18%。该项先进的设备和技术还可用于其他果蔬干燥。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号