首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 906 毫秒
1.
[目的]研究热解温度对滤泥生物炭性质特征的影响,为制糖废弃物处理提供参考依据.[方法]将滤泥置于200~600℃下热解制备生物炭,对生物炭进行工业分析、pH和元素含量测定,以及傅里叶红外光谱、扫描电镜、比表面积和碘值吸附分析.[结果]随着热解温度的升高,生物炭产率和挥发分含量下降、灰分含量上升,pH不断增加,表面的C-O和C-O-C等活性官能团及-CH3和-CH2逐渐消失,H/C、O/C和(N+O)/C的原子比降低,表明生物炭芳香性及稳定性增强,亲水性和极性减弱;生物炭的孔隙结构丰富,随着热解温度的升高,生物炭中孔隙数量增加,比表面积增大,孔径和孔容有所增加,对碘值的吸附能力持续上升,热解温度为500℃时,比表面积、孔容和对碘值吸附量均达最大值,分别为83.71 m2/g、0.027 m3/g和170.38 mg/g.[结论]在500℃下热解制备滤泥生物炭,其产率相对较高,结构更稳定,且比表面积及孔容最大,对碘的吸附效果最佳,可作为一种优异的吸附材料.  相似文献   

2.
以蒙古栎人工林新鲜地表可燃物为原料,制备生物炭,研究其产率、元素质量分数、碳组分以及化学性质、速效养分、官能团类型。采用单因素方差分析、最小显著差异法(LSD)分析各指标组间差异性,为森林可燃物资源再利用提供新途径。结果表明:生物炭产率、去灰分净产率随温度升高而下降;但灰分质量分数、氢元素质量分数、氧元素质量分数、稳定性碳质量分数、pH则随温度升高而上升;不同炭化时间时,生物炭碳质量分数、不溶性碳质量分数、铵氮质量分数表现出不同的变化趋势。氮质量分数、阳离子交换量、硝氮质量分数、速效磷质量分数随温度升高呈先上升后下降趋势。与原生物质材料相比,生物炭电导率显著降低,但其随温度升高表现出缓慢上升趋势。生物炭表面的O—H基团随温度升高而降低,而C—H、—COO、Si—O—Si基团随温度升高逐渐消失,C—O—C、C=C基团随热解温度升高呈先升高后降低趋势。制备过程中的不同温度、炭化时间均影响蒙古栎新鲜地表可燃物生物炭的理化性质,制备温度、炭化时间对各性质及官能团质量分数的影响不同,制备温度对生物炭理化性质影响较炭化时间更明显。  相似文献   

3.
为系统研究不同炭化温度条件下猪粪水热炭化规律,本研究以猪粪和发酵猪粪为供试材料,采用水热炭化工艺在系列温度条件下(180、240℃和300℃)制备生物炭,对其元素含量、热稳定性、孔隙结构、表面官能团等理化性质进行表征,并对水热炭化残液进行成分分析。结果表明,猪粪生物炭和发酵猪粪生物炭均具有发达的孔隙结构、丰富的表面官能团等优良特性,其H/C原子比和热失重率均随炭化温度升高而减小,表明热化学稳定性随炭化温度升高而增强。水热炭化残液的成分主要包括有机酸、醇、酯、醛、吡嗪、苯酚等物质,较高炭化温度条件下残液中化合物种类更丰富。与猪粪相比,发酵猪粪水热炭化残液的成分仍然以酚、烯、酮类物质为主,但呋喃、吡啶、吡嗪类毒性化合物消失。研究表明,发酵猪粪在300℃条件下水热炭化的残液用作液态肥料的安全性更高,在资源化利用方面更具优势。  相似文献   

4.
聚氨醋基泡沫炭吸附材料的制备   总被引:2,自引:0,他引:2  
为克服活性炭不易回收、易造成粉尘污染的问题,以聚氨酯为骨架,在聚氨酯泡沫成型过程中加人颗粒活性炭,再经炭化制得泡沫炭吸附材料.以低温液氮吸附测定泡沫炭的孔径结构、SEM观测表面形貌、TG-DTA分析聚氨酯骨架热分解过程,并以亚甲基蓝值、碘值和苯酚吸附容量评价泡沫炭吸附性能.结果表明:随着热处理温度的升高,泡沫炭比表面积...  相似文献   

5.
以葡萄籽、山楂籽、樱桃籽为原材料,在氩气保护下,设置不同温度采用程序升温法制备生物炭,并进行理化性质表征及对Pb2+最大吸附量试验,研究制备温度对3种果核类生物炭的理化性质及其特性的影响。结果表明,随着热解温度的升高,3种果核类生物炭的pH值、灰分含量、比表面积及碳含量均逐渐增大,产率及氢、氧、氮含量逐渐减小;在650、450、350℃条件下制备出的葡萄籽、山楂籽、樱桃籽生物炭对Pb2+吸附效果最佳。随炭化温度升高,生物炭的比表面积逐渐增加,孔隙数量增加,结构发展更完整;脂肪族基团数量逐渐减少,芳香族基团数量逐渐增加,芳香化程度增强。  相似文献   

6.
蛭石改性水稻秸秆生物炭在土壤中的短期降解   总被引:1,自引:0,他引:1  
稳定性是生物炭发挥固碳功能的基础,探究生物炭在土壤中的降解特征具有重要的现实意义。以水稻秸秆为生物质原料,在不同炭化温度和蛭石改性条件下制得一系列生物炭,探索其稳定性变化规律,并通过实验室恒温培养试验,研究了蛭石改性和未改性水稻秸秆生物炭在红壤、水稻土中的短期降解行为及其影响因素。水稻秸秆生物炭的碳含量随炭化温度的升高而增加,经蛭石改性后降低了20.3%~32.6%。当炭化温度从300℃升高至700℃时,生物炭的可溶性有机碳(DOC)含量表现为先增后减的变化趋势,在400℃时为最大值,700℃时为最小值。蛭石改性降低了所有生物炭的DOC含量。生物炭的H/C随炭化温度升高而降低,且经蛭石改性后有所降低。与300℃生物炭相比,700℃未改性和蛭石改性生物炭的热损失量分别降低了56.1%和56.8%。蛭石改性使生物炭的热损失量降低14.8%~45.6%。水稻秸秆生物炭的含碳官能团主要由芳香碳、烷氧碳与非取代脂肪烃组成,其中芳香碳含量最高;随着炭化温度的升高,生物炭中的芳香碳含量增加,烷氧碳与非取代脂肪烃含量下降;蛭石改性增加了生物炭中的芳香碳含量。与红壤相比,水稻土中生物炭的碳含量更低;与淹水条件相比,干旱条件下土壤中生物炭的碳含量更低。结果表明,蛭石改性在降低生物炭中碳含量的同时增加了生物炭的稳定性。相比于红壤,生物炭在水稻土中的碳降解速度更快;相比于淹水条件,干旱条件下生物炭的碳降解速度更快。综合来看,蛭石改性为显著影响生物炭在土壤中发生碳素降解的最主要因素,其次为土壤类型,水分状况的影响相对较弱。  相似文献   

7.
研究了在不同温度下制备的3种芦苇生物炭的基本理化性质及表观性能,以及不同时间、初始溶液pH值、初始溶液Pb2+浓度下这3种生物炭吸附率的变化。结果表明:对于3种生物炭的制备,随着温度升高,生物炭产率降低,灰分升高,pH值升高;随着热解温度升高,芦苇生物炭的C、N含量随之增加,而O、H含量随之降低;BET比表面积、Langmuir比表面积、T-plot微孔比表面积、BJH吸附累积比表面积均表现为L500L700L300;从生物炭对氮气吸附的量上看,存在L500L700L300的规律;吸附试验表明,500℃下制备的生物炭L500的吸附效果最佳,最佳吸附条件是初始溶液pH值为6,吸附时间为150 min,吸附温度为25℃。  相似文献   

8.
温度梯度对秸秆炭化物质产率及特性的影响   总被引:1,自引:0,他引:1  
在300~700℃温度区间,玉米秸秆、水稻秸秆以每100℃为间隔,大豆秸秆以200℃为间隔,研究炭化热解,量化对比产物。结果表明,秸秆热解炭比表面积、总孔容积、pH和碱式官能团随温度升高而增加,孔径和酸式官能团随温度升高而降低;热解液随热解温度升高,酸度降低;热解气中氢气和甲烷含量随温度升高而增加。热解温度平均每升高100℃,热解炭产率平均减少9.31%,热解液产率平均增加4.55%,热解气产率平均增加4.35%。玉米秸秆热解炭、热解液和热解气产率拐点分别为600、611和666℃,水稻秸秆热解炭、热解液和热解气产率拐点分别为666、600和666℃。量化参数可为优化秸秆炭化工艺提供技术支持。  相似文献   

9.
热解温度对油菜秸秆炭理化特性及孔隙结构的影响   总被引:2,自引:0,他引:2  
以农业废弃物油菜秸秆为原料,采用低氧升温炭化法,在不同热解温度(300,400,500,600,700℃)下分别炭化2 h,制备生物炭,收集并测定固体产物生物炭特性及孔隙结构。结果表明,随着热解温度的升高,油菜秸秆生物炭p H值逐渐增加,当温度达到400℃及400℃以上时呈碱性甚至强碱性。热解温度高于400℃时,油菜秸秆生物炭的矿质元素含量相对富集,表面碱性含氧官能团增加、酸性含氧官能团减少。阳离子交换量在400~500℃条件下达到较高水平,为77.39~80.00 cmol·kg-1。红外光谱表明,热解温度高于300℃时,油菜秸秆的芳香基团开始形成。随着热解温度的升高,油菜秸秆生物炭的比表面积和比孔容均是先变大后变小,在400~500℃条件下孔隙结构的发育和孔体积的形成比较好,具有较大的比表面积和比孔容,生物炭产出率相对较高,养分损失少,生物炭的理化性能、养分利用及孔隙结构均达到最优。  相似文献   

10.
生物炭在修复污染土壤、持留土壤养分和促进农作物增产等方面的应用日益得到重视,被认为是未来的一种新型的环境和农业功能材料。本试验以米糠和麦麸为原料,研究了不同热解温度下(300~700℃)制备的生物炭理化性质的变化及对硒等温吸附的影响。结果表明:米糠与麦麸的炭化率随着温度的升高而降低;在300~550℃,pH随着温度的升高先升高,进一步增加温度变化不显著;电导值(EC)随着温度的升高先升高而后下降;生物炭比表面积(BET)随着温度的升高呈增加的趋势。SEM图谱显示炭化米糠及麦麸是成碎片化的状态。红外测定图谱(FTIR)显示随着热解温度的升高,米糠及麦麸的官能团逐渐减少。热重分析(TG-DTG)图显示米糠及麦麸的热解温度主要集中在300℃左右。炭化米糠和麦麸在低硒浓度下(0~50mg·L~(-1))对硒的吸附量随着溶液中硒浓度的升高逐渐增大,当浓度进一步增大时(50~300mg·L~(-1)),生物炭吸附硒的吸附量趋于平衡。通过Langmuir和Freundlich模型拟合比较发现米糠和麦麸生物炭的硒吸附近似单分子层吸附,并且对硒均具有有效的吸附能力,炭化米糠和炭化麦麸均在700℃具有最大吸附量,分别为49.2和54.7mg·g-1。表明炭化麦麸对硒的吸附效果整体优于炭化米糠对硒的吸附效果。  相似文献   

11.
不同生物质原料水热生物炭特性的研究   总被引:8,自引:3,他引:5  
以木屑、小麦秸秆和玉米秸秆为原料,采用水热法制备生物炭,研究不同生物质水热生物炭特性,分析了水热生物炭的产率、元素组成、表面特性、多环芳烃含量及表面官能团的变化。结果表明:以木屑为原料制备的水热生物炭产率最高(54.66%),C含量(52.59%)较水热小麦和玉米秸秆生物炭(分别为43.73%和43.93%)高,但O含量(41.56%)明显低于水热小麦和玉米秸秆生物炭(分别为49.94%和50.95%)。扫描电镜显示水热木屑生物炭表面光滑,孔状结构较多且排列整齐,水热小麦生物炭表面粗糙孔隙较少,而水热玉米生物炭孔隙结构不明显。傅里叶红外光谱分析显示原料经水热炭化后官能团种类差异不大,但相对含量发生了变化:水热小麦和玉米秸秆生物炭有机官能团含量相对增加,而无机矿物(如SiO2)含量略有减少;水热木屑生物炭有机官能团和无机矿物的含量均明显增加。采用气质联用仪(GC-MS)分析水热生物炭多环芳烃含量,结果表明三种水热生物炭总多环芳烃含量依次为水热小麦秸秆生物炭水热木屑生物炭水热玉米秸秆生物炭,并以菲和萘为主。  相似文献   

12.
以稻草为原料,通过FT-IR(傅里叶变换-红外光谱)、XRD(X射线衍射)、元素分析等研究225~300 ℃温度条件下稻草水热炭化过程。结果表明,40 min以内为稻秸主要的失重阶段,伴随可溶性化合物的大量溶出和半纤维素的破坏,炭产物中C含量升高,表面OH、C-O-C官能团的IR吸收峰强度在短时增加后逐渐降低。在随后的反应中,水热炭的产率、表面主要官能团IR吸收峰强度及O/C随着反应进程呈现周期性的起伏变化,说明稻秸水热炭化具有多轮沉积反应的特点,即在发生聚合、芳构化反应的同时通常会伴随新一轮水解、裂解反应的发生,产生足够的可溶性底物时,又诱发新一轮的聚合沉积反应。整个反应过程中,较高的反应温度有利于加快水热炭化进程,但会导致炭产物产率降低和表面含氧官能团不同程度的损失。  相似文献   

13.
微生物固定化生物炭对水体铵态氮去除效果的研究   总被引:1,自引:0,他引:1  
为探究微生物固定化生物炭对水体铵态氮(NH_4~+-N)去除效果的影响,以花生壳生物炭(BC)为载体,通过吸附和包埋两种方法将脱氮副球菌(Paracoccus denitrificans)、假单胞菌(Pseudomonas)和拉乌尔菌(Raoultella)固定在生物炭上,然后将该微生物固定化生物炭投加到NH_4~+-N模拟废水中,结合表面微观结构表征,研究其对水体NH_4~+-N的去除性能。结果表明:吸附和包埋法均能将微生物固定到生物炭表面,并在生物炭表面呈饼状、杆状和粒状分布。吸附法固定脱氮副球菌和假单胞菌,分别缩小生物炭比表面积和孔容积5.5%~17.2%和5.4%~25.8%。吸附法固定拉乌尔菌,分别增大生物炭比表面积和微孔容积45%和43%,缩小介孔和大孔容积。包埋法引入—CH_2、C—H和C=O键等新的官能团,但由于带入包埋材料,使固定微生物生物炭比表面积减少87.3%~96.3%,孔容急剧缩小,其中介孔缩小84.1%~98.2%,微孔几乎全部被封堵。因此,吸附法制得的固定化微生物生物炭对水体NH_4~+-N去除速率较包埋法高1.16~3.44倍。研究表明,吸附法和包埋法均能将微生物固定在生物炭表面,包埋法对生物炭的孔隙结构和表面官能团影响更大,吸附法对水中NH_4~+-N的去除效率更高。  相似文献   

14.
生物炭老化及其对重金属吸附的影响机制   总被引:5,自引:2,他引:3  
生物炭具有丰富含氧官能团、多孔结构、阳离子交换量、芳香性结构等使其对重金属具有良好的固持作用,进而在重金属污染土壤修复中具有良好的应用前景。生物炭施入土壤中在与土壤接触过程中受物理、化学和生物作用而发生老化现象,致使生物炭特性发生改变。本文综述了原料来源、热解温度和老化方法对老化生物炭特性的影响,以及老化生物炭对重金属吸附的影响机制。老化作用对生物炭特性的改变主要体现在灰分、表面元素组成、含氧官能团、pH、形貌特征、孔隙结构及比表面积。老化生物炭表面含氧官能团、负电荷和CEC含量增加会促进其对重金属的吸附;而比表面积和pH的降低、酚羟基和芳香醚含量增加以及羧基数量减少则抑制其对重金属的吸附。  相似文献   

15.
不同生物质来源生物炭品质的因子分析与综合评价   总被引:2,自引:1,他引:1  
【目的】建立一套适合生物炭品质评价的方法,探求影响生物炭品质的主要影响因子。【方法】选用8种不同生物质材料,在3种温度下制备并获得24种生物炭材料(Y1~Y24),测定16项相关品质指标,采用隶属函数法对各项指标数据进行转化,采用软件SPSS19.0进行因子分析,采用四次方最大旋转法获得因子载荷矩阵,计算样品每个公因子分值与相应权重之积的累加和,得到综合评价分值。对16项指标进行相关性分析和因子分析,建立基于因子分析的生物炭品质的综合评价体系,并根据综合评价得分对生物炭进行优良度排序。【结果】24种生物炭16个品质指标经因子分析,提取了5个特征根1的公因子,累计方差贡献率达到77.910%,第1公因子以C含量、阳离子交换量(CEC)和pH贡献率较大,达到31.090%,第2公因子以比表面积和孔容贡献率较大,达到19.878%,第3公因子以H原子含量贡献率较大,达到12.819%,第4公因子以磷、钾含量贡献率较大,达到7.479%,第5公因子以NH4+-N吸附量贡献率较大,达到6.643%。【结论】因子分析方法可以作为评价生物炭品质的方法,根据因子分析评价方法,确定影响生物炭品质最关键的因子是化学性质因子(C含量、C/N比、C/H比、pH、CEC)、物理性质因子(比表面积和孔容)、活化能量因子(H原子含量)、营养因子(P和K含量)和氨态氮吸附能力因子。  相似文献   

16.
不同生物质来源生物炭对Pb(Ⅱ)的吸附特性   总被引:10,自引:5,他引:5  
以水稻秸秆、小麦秸秆、荔枝树枝为原料,在300、400、500、600℃下制备生物炭,并表征其理化性质,考察热解温度、初始p H、矿物组分等因素对生物炭吸附Pb(Ⅱ)的影响。结果表明,不同热解温度对水稻和小麦秸秆炭吸附Pb(Ⅱ)的影响很小,而荔枝树枝生物炭对Pb(Ⅱ)的吸附量随热解温度升高而显著增大。在p H3.0~6.0的范围内,三种生物炭对溶液中Pb(Ⅱ)的吸附量呈上升趋势;在25℃时,三种生物炭的等温吸附曲线符合Freundlich吸附模型,荔枝树枝生物炭对Pb(Ⅱ)的吸附效果最佳。三种生物炭吸附Pb(Ⅱ)的主导机制可能是其与矿物组分的共沉淀作用,而荔枝树枝生物炭还可能存在Pb(Ⅱ)与-OH、-COOH之间的离子交换作用,C=C键中的π电子在吸附过程中也有一定的贡献。  相似文献   

17.
Cu/CuO改性碳纳米管对亚甲基蓝的吸附特征   总被引:1,自引:1,他引:0  
为探讨Cu/CuO改性碳纳米管对亚甲基蓝的吸附特征,采用Cu/CuO对碳纳米管进行了改性,通过SEM、XRD和比表面积-孔径分析仪对改性前后碳纳米管进行表征。以改性前后碳纳米管为吸附剂,研究了改性前后碳纳米管对亚甲基蓝的吸附动力学和吸附等温线,并且分析了环境因素包括温度、pH和离子强度对吸附的影响。结果表明:改性前后碳纳米管对亚甲基蓝的吸附过程符合准二级动力学方程,且在2 h左右达到吸附平衡,吸附等温线符合Freundlich模型,改性之后碳纳米管对亚甲基蓝的吸附能力增强。改性前后碳纳米管对亚甲基蓝的吸附量随温度的增加而降低,随pH和离子强度的增大而增大。研究表明,Cu/CuO改性碳纳米管对亚甲基蓝的吸附效果优于原始碳纳米管,Cu/CuO改性碳纳米管去除溶液中的亚甲基蓝主要通过疏水性相互作用、静电相互作用和铜与亚甲基蓝之间的络合作用。  相似文献   

18.
炭化温度是实现艾纳香加工废弃物转化成生物炭的重要因素。本文研究了炭化温度对艾纳香生物炭理化性质的影响,以期为艾纳香生物炭的利用奠定基础。本研究对比了300、500和700℃对艾纳香生物炭产率、比表面积、形貌特征、表面矿质组成及红外光谱特征等理化特性的影响。温度对艾纳香生物炭产率和理化特性影响较大,当炭化温度为300℃时,其产率最高,为45.52%,而且所产生的生物炭保有生物质炭应有C、O为主体;但当温度进一步升高时,其主体结果呈现片状、簇状脱落,直至其主体结构崩解,其C、O元素含量逐渐降低,Na、Mg、K、P、Cl等矿质元素逐渐提高;其来源于糖类、蛋白质、核酸等物质的羟基(-OH)、N-H基、C=O、-COOH等基团逐渐裂解消失,形成-C-C-、Si-O-Si等基团。300~500℃是艾纳香生物炭的最佳炭化温度,在该温度下制备形成的艾纳香生物炭不仅保持了生物炭所特有的比表面积大、多孔等共有形貌结构特征,还保护了艾渣中的C、O结构主体及K、Ca、Mg等矿质元素。  相似文献   

19.
Two variable charge soils were incubated with biochars derived from straws of peanut, soybean, canola, and rice to investigate the effect of the biochars on their chemical properties and Pb(II) adsorption using batch experiments. The results showed soil cation exchange capacity (CEC) and pH significantly increased after 30 d of incubation with the biochars added. The incorporation of the biochars markedly increased the adsorption of Pb(II), and both the electrostatic and non-electrostatic adsorption mechanisms contributed to Pb(II) adsorption by the variable charge soils. Adsorption isotherms illustrated legume-straw derived biochars more greatly increased Pb(II) adsorption on soils through the non-electrostatic mechanism via the formation of surface complexes between Pb(II) and acid functional groups of the biochars than did non-legume straw biochars. The adsorption capacity of Pb(II) increased, while the desorption amount slightly decreased with the increasing suspension pH for the studied soils, especially in a high suspension pH, indicating that precipitation also plays an important role in immobilizing Pb(II) to the soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号