首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
棉花秸秆超声波碱预处理研究   总被引:2,自引:1,他引:1  
为了缓解能源危机,充分利用棉花秸秆制备燃料乙醇,采用超声波辅助碱处理方法对棉花秸秆进行预处理.通过单因素试验和Box-Behnken试验,分析超声波辅助碱预处理因素对处理效果的影响规律,建立预处理时间、氢氧化钠浓度、液固比与纤维素、木质素含量之间的回归关系,据以优化工艺条件.结果表明,所建回归模型显著,具有预测意义.各因素对棉花秸秆预处理效果影响主次顺序为处理时间>氢氧化钠浓度>液固比,超声波辅助碱预处理棉花秸秆的优化条件为超声波功率420W、氢氧化钠浓度3.5%、处理时间90 min、液固比21:1,处理后秸秆中纤维素含量达58.02%,比原秸秆提高了45.60%.处理前后棉花秸秆结构SEM观察,显示超声波辅助碱预处理可以溶出大量半纤维素和部分木质素,并且有效打破木质纤维素的结晶结构,具有显著效果.  相似文献   

2.
[目的]利用微波预处理破坏秸秆中半纤维素、纤维素和木质素复合物,改善秸秆质地和结构,提高其生物降解效率,为秸秆生物质能开发创造条件.[方法]通过Box-Behnken设计和响应面法对水稻秸秆进行微波预处理优化试验,并通过秸秆结构表征比对来考察微波处理对水稻秸秆酶解性能的影响.[结果]利用响应面法得到微波前处理的最佳操作参数:功率(MI) 700 W,反应时间(IT)28min,固液比(SC)75 g/L.在最优条件下,秸秆的还原糖收率为11.86%,比未处理时增长了47.33%,与秸秆结构的FTIR、电镜等表征结果相符.[结论]微波预处理会破坏秸秆表面的蜡质和硅化细胞,还可以部分分解木质素与半纤维素复合物,提高了水稻秸秆的生物降解性能,具有良好的应用前景.  相似文献   

3.
响应面优化玉米秸秆纤维素提取工艺   总被引:2,自引:2,他引:0  
李丹丹  周杰  刘文红 《安徽农业科学》2011,39(30):18781-18783,18820
[目的]应用响应面法优化玉米秸秆纤维素的提取工艺。[方法]以玉米秸秆为原料,采用酸碱水浴提取玉米秸秆纤维素,通过单因素试验,分别考察不同的酸、液固比、浸提液pH和提取时间对玉米秸秆纤维素得率的影响,并应用响应面法分析液固比、浸提液pH和提取时间对响应值的影响,确定玉米秸秆纤维素的最佳提取工艺。[结果]由单因素试验和响应面试验得知,影响玉米秸秆纤维素得率的工艺因素依次为浸提液pH〉提取时间〉液固比。将由响应面法优化的工艺与实际操作相结合,最终确定的最佳提取工艺条件为:液固比20∶1 ml/g,浸提液pH 12,提取时间76 min。在此条件下玉米秸秆纤维素的得率为(55.25±0.15)%。[结论]该研究为玉米秸秆的深入研究及其在食品领域中工业化生产创造了一定的条件。  相似文献   

4.
这个问题要从国际、国内同类技术的比较和带采的效益两方面来看待: 一、从国内外同类产品的比较看 目前,国内外处理秸秆方法,主要是碱化、氨化法,这种方法的缺点是成本高,效益低;也有用微生物技术处理秸秆的,主要是纤维素分解菌和乳酸菌为主。效果不稳定。该技术主要是发酵纤维素和淀粉,产生有机酸,改变饲料的适口性,没有提高秸秆的营养价值。因为反刍动物本身能利用的就是秸秆内的纤维素、半纤维素和淀粉,不能利用的是木质素键连的半纤维素和纤维素,纤维菌和乳酸菌发酵不能改变这一部分,所以没有提高秸秆的营养价值。  相似文献   

5.
作物秸秆作为饲养反刍动物和其他草食动物的能源,具有潜在的价值。但是,必须找出能将其木质素、纤维素与原果胶分离的经济方法。原料费用的上涨,世界人口的增长和对畜产品需要量的增加,使欧洲各国越来越重视秸秆饲料的科学研究。目前,已经研究出许多有效的方法来处理小麦、水稻等秸秆,使它们成为商品饲料,在市场上出售。 秸秆的碱化处理 纤维素、半纤维素和木质素的分离是借助苛性钠来进行的。首先,将切碎的秸秆与  相似文献   

6.
玉米秸秆主要成分及热值的测定与分析   总被引:22,自引:0,他引:22  
分别对15个玉米杂交种和22个亲本自交系秸秆的主要成分(纤维素、半纤维素、木质素)和热值进行了测定,分析了秸秆主要成分与热值的关系。结果表明:(1)反映玉米秸秆能量的主要指标是纤维素、木质素;(2)同一材料的热值及纤维素、木质素含量从上部到下部逐渐增多,半纤维素含量逐渐减少;(3)纤维素、木质素含量与热值呈正相关,即玉米秸秆的纤维素、木质素含量越多,热值越高。  相似文献   

7.
氨化饲料是将氨化剂(如氨水、尿素等)按一定的比例加入秸秆饲料中,充分拌匀,在密封的条件下,经过一定时间的氨化处理,以提高秸秆饲料的营养价值和适口性。秸秆饲料的主要营养成分是粗纤维。粗纤维中含有纤维素、半纤维素和木质素。其中纤维素和半纤维素可以被牛羊等反刍家畜消化利用,还有部分纤维素与木质素紧密结合,难于被消化利用。氨化可以破坏纤维与木质素表面之间的结合,并使少量木质素溶解,纤维素和半纤维素表面保护层结构改变,细胞壁膨胀,纤维软化,从而提高粗纤维的消化率。秸秆对氨有吸附作用,所以氨化还可以提高秸秆饲料中游离氨的含量,增加秸秆饲料中的  相似文献   

8.
为降低小麦秸秆中木质素的含量,提高半纤维素和纤维素的利用率,应用氢氧化钠和蒸汽高压联合处理小麦秸秆。首先采用单因素试验研究氢氧化钠质量浓度、固液比和处理时间对降解木质素效果的影响,然后通过正交试验研究降解木质素的最佳处理条件。结果表明,降解木质素的最佳条件为:氢氧化钠质量浓度11.67 mg/m L、固液比1∶9.0(w/V)、121℃(0.15 MPa)处理45 min。在此条件下,半纤维素、纤维素、木质素降解率分别达到78.07%、14.11%、80.33%。  相似文献   

9.
周华 《农村百事通》2006,(13):49-49
近年来,秸秆氨化、碱化、青贮等秸秆处理技术的推广应用,为合理开发饲料资源,充分解决饲草、饲料问题做出了积极的贡献,并取得了巨大的经济效益和社会效益。但是,青贮对秸秆的要求较高,季节性较强,而且氨化的液氨和氨水运输又很不方便,还有一定的不安全性,微贮技术则能弥补以上的不足。秸秆微贮技术通过加入木质素纤维素发酵剂秸秆微贮宝,在密闭的厌氧条件下,能促进秸秆纤维素、半纤维素和木质素的分解,改善秸秆的适口性,提高其消化率,并增加营养。秸秆微贮宝处理农作物秸秆,具有产量高、成本低、增重快、无毒害等特点,可以作为一种处理秸秆…  相似文献   

10.
[目的]研究蔗渣中半纤维素、纤维素和木质素的分离条件。[方法]在溶剂-酸-水混合体系中对蔗渣半纤维素、纤维素和木质素进行蒸煮分离,利用单因素试验和响应面分析法对主要影响因素进行分析优化,得到最佳的分离条件。[结果]通过响应面分析法预测最佳的分离工艺条件为溶剂浓度(v/v)69.63%、酸浓度(v/v)6.41%、反应时间4 h,此条件下模型预测的半纤维素水解率为98.07%、纤维素存留率为92.49%、木质素去除率为66.72%,验证试验半纤维素水解率为99.00%、纤维素存留率为92.08%、木质素去除率为67.06%,接近理论值。[结论]研究结果可较好地用于蔗渣半纤维素、纤维素和木质素的分离。  相似文献   

11.
为提高玉米秸秆的利用效率,研究了不同预处理方式对玉米秸秆化学成分的影响,并探讨了玉米秸秆爆破处理的最优条件。结果表明,常规2.0%NaOH溶液浸泡处理能显著降低玉米秸秆中半纤维素和木质素的含量(P0.05),同时能显著提高纤维素的含量(P0.05)。玉米秸秆经2%H_2SO_4溶液预处理后再爆破,可使秸秆中纤维素、半纤维素、木质素含量大幅度降低(P0.05);在压力2.5 MPa下,保压200 s进行爆破处理,能使秸秆中纤维素、半纤维素、木质素含量分别比对照组减少26.44%、82.99%、35.12%(P0.05)。研究结果为玉米秸秆的深加工利用奠定了基础。  相似文献   

12.
一组复合菌发酵秸秆的理化效应及饲喂效果   总被引:1,自引:0,他引:1  
采用人工培养及动物饲喂方法,研究了玉米秸秆粉经复合菌发酵后的变化及对鸡的饲喂效果。结果表明,玉米秸秆粉经一组复合微生物发酵后,电镜显示秸秆细胞壁结构受到破坏,原来致密、有序的组织结构被打乱,形成了大量的空洞。秸秆的主要成分纤维素、半纤维素和木质素分别下降了26.36%,43.30%和26.96%,粗蛋白提高了60.41%。动物饲喂实验表明,可以替代10%的原混合饲料,说明农作物秸秆经复合微生物发酵后,秸秆中与木质素交连在一起的纤维素和半纤维素游离出来,增加了细胞壁及胞内容物与微生物酶的接触机会,提高了农作物秸秆生物降解效率,提高了秸秆的营养价值,有利于动物的消化吸收。  相似文献   

13.
超声波辅助温和碱/氧化法进行小麦秸秆预处理的方法   总被引:1,自引:0,他引:1  
在用小麦秸秆生产生物乙醇的过程中,选择合适的秸秆预处理方法是提高原料利用率的关键。本研究采用超声波辅助温和碱/氧化法对小麦秸秆进行预处理,通过单因素试验和响应曲面法探讨NaOH浓度、超声功率、超声时间和初始水浴温度对小麦秸秆处理效果的影响,建立并分析了各因子与处理后木质素相对含量关系的数学模型,优化得到的处理条件为:NaOH浓度1.54%、超声功率1 160 W、超声时间50 min、初始水浴温度78.94℃。在最优处理条件下,处理后秸秆中木质素相对含量下降了54.16%。  相似文献   

14.
王维坚  潘艳 《安徽农业科学》2013,(18):7950-7953
[目的]采用并优化高剪切均质和超声技术联合处理提取绿豆蛋白的工艺条件,以提高绿豆蛋白的得率。[方法]先运用单因素法以绿豆蛋白提取率为考察指标对均质-超声联合提取绿豆蛋白的工艺参数(均质次数、超声功率、超声时间)进行优化。在单因素试验基础上,运用响应面方法进一步对该工艺参数进行优化。[结果]单因素试验表明,均质-超声联合提取绿豆蛋白的工艺参数为:均质次数6次、超声时间6 min、超声功率300 W。响应面法优化后的均质-超声联合提取绿豆蛋白的最佳工艺参数为:均质次数为7次,超声时间为8.4 min,超声功率为300.69 W。以蛋白提取率为考察指标的验证试验显示,响应面优化后的蛋白提取率为81.8%,与理论值82.4%相差0.72%,没有超出误差范围。[结论]运用响应面方法优化均质-超声联合提取绿豆蛋白的工艺参数方法科学合理、快速有效。  相似文献   

15.
以乙酸乙酯为溶剂,在前期单因素试验基础上,选择超声温度、超声时间、超声功率和液料比为自变量,辣椒红素吸光度为响应值,采用Box-Behnken试验设计法,研究了各自变量及其交互作用对辣椒红素吸光度的影响,利用Design-Expert 7.0软件对试验数据进行回归分析,作出响应面图,通过手动简化,得到简化的二次回归模型方程,确定辣椒红素的最佳提取条件为:超声温度46.47℃,超声时间57.67 s,超声功率396.48 W,液料比23.46∶1.00(mL∶g),在此条件下提取的辣椒红素吸光度实测值为0.517 3.二次回归模型预测值为0.515 9,与实测值相符,说明建立的二次回归模型切实可行.  相似文献   

16.
采用微波辅助提取火龙果多酚,并用响应面法优化多酚提取工艺.在单因素试验基础上采用响应面法,以多酚提取率为响应值,通过回归分析各工艺参数与响应值之间的关系,预测最佳的工艺条件.结果表明:当微波提取时间为135 s、乙醇浓度为62%、料液比为1∶13.5、微波功率为648 W时,火龙果多酚提取率达到81.90%.该方法预测准确、高效可行,可为火龙果资源的开发利用提供理论依据.  相似文献   

17.
为确定胡桃楸(Juglans mandshurica)种仁壳多糖超声波辅助酶法提取工艺条件,在单因素试验基础上,选取纤维素酶添加量、超声时间、超声功率为自变量,多糖得率为响应值,采用响应面法模拟得到二次多项式回归方程,并确定种仁壳多糖最佳工艺参数为纤维素酶添加量0.31%,超声时间40 min,超声功率400 W。其中超声功率对胡桃楸种仁壳多糖得率影响最大,其次是纤维素酶添加量,影响最小的是超声时间,回归模型预测的多糖得率理论值为1.35%。经验证试验,RSD为0.97%,该回归方程与实际情况拟合较好。  相似文献   

18.
玉米秸秆中木质素、半纤维素和纤维素的组分分离研究   总被引:1,自引:0,他引:1  
针对分离植物茎秆中的木质素、半纤维素和纤维素需高温和高压处理的苛刻条件以及所得组分纯度和回收率均较低的缺陷,采用乙醇和硝酸相结合的方法对玉米秸秆在常压下进行预处理,经稀碱溶液蒸煮及过氧化氢处理,实现高效分离和回收木质素、半纤维素和纤维素组分的目的。正交试验确定的最佳条件为:固液比1∶14、硝酸与乙醇体积比1∶2、76℃下反应3 h,原料的木质素脱除率达76.3%,木质素回收率为44.5%;预处理后的原料以4% NaOH为溶剂、固液比1∶40、95℃下蒸煮2.5 h,其半纤维素脱除率98.8%,半纤维素回收率达66.0%(滤液∶乙醇1∶0.8、pH 7、沉淀2 h);粗纤维素以2.5%H2O2为溶剂、固液比1∶30、pH 11.5、(46±1)℃下处理6 h,其纤维素纯度99.28%,回收率59.7%。该方法具有工艺条件温和及绿色环保等优势,为玉米秸秆的分级利用提供了一条新的途径。  相似文献   

19.
以玉米秸秆为原料,利用2%NaOH溶液对原料进行预处理,并研究预处理温度、时间、秸秆粒度对纤维素、半纤维素、木质素的含量以及脱除率的影响。结果表明,当温度为100℃、时间为4 h、粒度为16目时,半纤维素和木质素的脱降率达90.6%和86.4%,纤维素含量达53%。采用浓硫酸法对预处理后的秸秆进行水解工艺研究,在比较了液固比、时间、温度、酸浓度等单因素影响后,采用正交试验进行优化,得到最佳水解工艺的条件:温度为50℃、时间为10 min、硫酸浓度为72%、液固比为10 mL∶1 g。  相似文献   

20.
优化玉米秸秆预处理条件,测定其纤维素、半纤维素和木质素的含量,使其在生产过程中减少环境污染,降低生产成本和提高产率。将玉米秸秆切段除尘称量,先用亚硫酸氢钠浸泡,之后通过汽爆或蒸煮,再用氨水浸泡,然后烘干粉碎用蒸汽压力锅灭菌,最后进行液相色谱分析。结果表明,利用多种预处理方法相结合,使得纤维素、半纤维素、木质素分离开,切断其氢键破坏晶体结构,降低聚合度,有效去除木质素,提高纤维素、半纤维素的转化利用率。以亚硫酸氢钠浸泡24小时、3.0兆帕未挤干汽爆、氨水浸泡2小时的表现较好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号