首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Weng YH  Parker WH 《Tree physiology》2008,28(1):143-150
We investigated adaptive variation in fall cold hardiness development based on the electrical conductivity of tissue diffusates (EC) among 20 aspen provenances from northwestern Ontario. Provenance accounted for over 40% of the total variation in cold injury for seven dates from September through November in three provenance trials. Principal component analysis was performed to summarize the combinations of results for all sampling sites, dates and temperatures (traits). Principal component (PC)-1 represented fully developed cold hardiness differences among provenances; PC-2 represented differences in the timing of the onset of cold hardiness development; and PC-3 represented a site-related difference in cold hardiness development. Heat sum in early summer and late summer precipitation together were the best predictors of absolute degree of cold hardiness (PC-1), whereas temperatures for mid- to late summer were best for predicting onset of cold hardiness development (PC-2). In a second study, we assessed the efficacy of chlorophyll fluorescence (CF) as a simpler technique for determining the cold hardiness of aspen stem samples. Fall cold hardiness of stem samples of 12 of the original 20 provenances was estimated by CF, and the results were evaluated by a visual scoring (VS) method. Correlations between EC and CF measurements from the two studies were moderately strong based on the extent of cold hardiness in October of each year, but were negative for September dates because of a later onset of cold hardiness in the EC study year. Although the EC and CF methods gave similar cold hardiness values for stem samples from 12 provenances, the CF method may be preferred to the EC or VS method for species with chlorophyllous stems because of its greater ease of use.  相似文献   

2.

The frost hardiness of non-juvenile Norway spruce [Picea abies (L.) Karst.] populations growing in northern Sweden (63°54' N) was monitored during 1996-1997. The investigated progenies originated from 12 natural populations and six seed orchards located between 58° N and 68° N in Sweden. Frost hardiness of needles was assessed by measuring chlorophyll fluorescence and electrolyte leakage after freezing. The loss of frost hardiness in 1-yr-old needles during spring occurred slightly earlier in populations originating north of 63°30' N than in those originating further south. Dehardening was slightly delayed in selected populations compared with natural populations of similar origin. The level of frost hardiness during autumn was higher in populations originating north of 63°30' N than in those originating south of this latitude, but there were no clear differences in frost hardiness between selected and natural populations of similar origin. The results are discussed in relation to climatic factors and inherent growth rhythms.  相似文献   

3.
Frost hardiness development from mid-August to mid-November was evaluated in seedlings of three provenances of Norway spruce (Picea abies (L.) Karst.) and three provenances of Scots pine (Pinus sylvestris L.) raised at nurseries in north, central and south Sweden. Measurements of the visible + near infrared (VIS+NIR) spectra of shoots were made simultaneously with estimates of frost hardiness based on electrolyte leakage following artificial freezing. Nine physiological variables known to influence frost hardiness were measured throughout the experiment. Multivariate analysis showed that VIS+NIR spectra explained 69% and 72% of the variation in frost hardiness in Scots pine and Norway spruce, respectively. Stem lignification, dry weight fraction, and starch, glucose, fructose, galactose, sucrose, raffinose and stachyose concentrations together explained 80% and 85% of the variation in frost hardiness in Scots pine and Norway spruce, respectively when used as independent X variables in a partial least squares model. These physiological variables could be related to varying degrees with variation in the VIS+NIR spectra. We conclude that VIS+NIR spectroscopy provides a rapid nondestructive technique for measuring frost hardiness in conifer seedlings based on causal relationships between the spectra and the physiology of seedling frost hardiness.  相似文献   

4.

Context

J. regia timber is appreciated for high-value wood products. In new plantations, biotic or abiotic events which could affect wood quality should be monitored. Autumn frosts could affect annual shoot development, with consequent loss of timber value or even tree death. In southern Europe, climate change forecasts include erratic and severe autumn frost events.

Aims

The relationship between genotype and environment regarding susceptibility to autumn frost damage was examined in four provenances of Juglans regia L., planted at two ecologically different sites, one subject to Mediterranean and the other Atlantic weather conditions.

Methods

Annual budsticks from eight trees per provenance were collected in November 2010 from each site. The samples were then submitted to freeze–thaw cycles down to ?8, ?13 and ?18 °C, plus a control treatment (keeping samples at 5 °C). Damage to the stem was assessed using the index of freezing injury calculated from relative electrolyte leakage at each temperature considered. Frost damage to stem, apical and lateral buds was recorded by visual scoring.

Results

Differences in cold acclimation between sites were detected, with provenances exhibiting differences on senescence. A ‘provenance?×?site’ interaction was found in some of the analyses, but the same ranking of susceptibility was detected for all provenances at both sites and in all the tissues analysed. The differences between provenances could be related to their geographical origins, where an altitude gradient was observed.

Conclusions

The genetic component was important in the expression of autumn cold hardiness and, together with productive traits, should be considered in new afforestation projects.  相似文献   

5.
Pedunculate oak (Quercus robur L.) and Scots pine (Pinus sylvestris L.) seedlings were lifted on several occasions during autumn 1997 to determine the relationships between storability and frost hardiness. On each lifting date their physiological status was determined by assessment of shoot and root electrolyte leakage and frost hardiness, assessed as freeze-induced electrolyte leakage. Additional seedlings were simultaneously cold-stored for field planting and assessment of preplanting root growth potential in April 1998. First year field performance was determined the following winter. Storability and cold acclimation patterns differed between the two species. Both were negatively affected by early lifting, but oak was less sensitive with respect to survival, and pine attained tolerance to cold storage more rapidly and earlier with respect to growth increment. The correlations between shoot frost hardiness and performance suggest that freeze-induced shoot electrolyte leakage (SELdiff?20) below a threshold of 5% is a good storability predictor for Scots pine in Denmark. A completely reliable criterion for pedunculate oak could not be established.  相似文献   

6.
Despite evidences that Holm oak has a high plasticity and great adaptability, there is limited or contradictory knowledge of the morphological and physiological variability of this species. Holm oak has been widely used for reforestation projects in Mediterranean areas, but has frequently shown poor field performance. We hypothesized that Holm oak has inter-population differences in physiological responses to abiotic stressors that could affect reforestation success. The influence of nursery culture on the characteristics of Holm oaks from different provenances has not been explored in depth. Thus, we studied the effect of nursery autumn fertilization on morphological traits, frost tolerance, root growth potential, and nutritional status of two Spanish provenances of Holm oak, La Alcarria (a region with inland Mediterranean climate) and Sierra Morena Occidental (a region with a warm coastal Mediterranean climate). There were significant differences between the provenances in frost tolerance, biomass allocation, and leaf nutrient content, suggesting a role of genetic factors. The leaves of seedlings from La Alcarria had less visual damage at ?12°C than seedlings from the warmer provenance (45% vs. 92%). Seedlings from La Alcarria, compared to those from Sierra Morena, had higher leaf P concentration (0.17% vs. 0.15%), greater stem diameter (3.1?mm vs. 2.7?mm), lower shoot-to-root dry mass ratio (0.46 vs. 0.53), and lower slenderness (4.03 vs. 5.31). For both provenances, N autumn fertilization improved growth, root growth potential, cold hardiness, and nutritional status of seedlings. We suggest that forest reforestation programs should consider to a greater extent Holm oak provenances and their tolerances to different abiotic stressors.  相似文献   

7.
Cold hardiness and timing of bud set and bud break are important processes that provide protection of nursery seedlings against low temperatures. Seedlings of 9 provenances of Pinus greggii from two different regions of Mexico were tested to determine cold hardiness, bud set, and bud break timing differences. Needle sections were exposed to freezing temperatures to determine an injury index of each provenance. In addition, bud set and bud break timing were recorded through the fall, winter and spring. There were significant differences in cold hardiness between seedlings from northern and southern provenances. At the maximum cold hardiness, the index of injury (LT50) for northern provenances was LT50 = −18 °C, compared to −12 °C for southern provenances. There was a considerable variation among the provenances in the proportion of seedlings that set terminal buds. Seedlings from northern provenances had greater proportions of seedlings that set a terminal bud than seedlings from southern provenances. There were also significant differences in the bud break timing in the following spring among the 9 provenances. Seedlings from northern provenances broke bud earlier than southern provenances. Cold hardiness, bud set, and bud break timing results may be useful to determine how far a specific seed source can be moved from its natural environment.  相似文献   

8.
Comparison of three cold hardiness tests for conifer seedlings   总被引:1,自引:0,他引:1  
Greenhouse-cultured, container-grown ponderosa pine (Pinus ponderosa var. scopulorum Engelm.), interior Douglas-fir (Pseudotsuga menziesii var. glauca (Beissn.) Franco), and Engelmann spruce (Picea engelmannii (Parry) Engelm.) were cold acclimated and deacclimated in growth chambers over 19 weeks. Cold hardiness was measured weekly by a whole-plant freeze test and by two quick tissue tests: freeze-induced electrolyte leakage of needles, and differential thermal analysis of buds. The whole-plant freeze test provided results in 7 days, and indicated differences in cold hardiness among stems, buds, and needles. Although the whole-plant freeze test could accurately measure cold hardiness, it was not precise, and it required destructive sampling. Results from freeze-induced electrolyte leakage and differential thermal analysis were available in 2 days and 1 hour, respectively. The freeze-induced electrolyte leakage test was a precise, sensitive and objective predictor of changes or differences in tissue cold hardiness. To determine actual cold hardiness, results could be calibrated to the response of the same tissue in the whole-plant freeze test. The speed and objectivity of differential thermal analysis made this test useful for rapid, general assessment of cold hardiness status, but calibration was difficult, and precision varied.  相似文献   

9.
几个新选育优良枣品种(系)的抗寒性评价   总被引:3,自引:0,他引:3  
以4个新选育的枣品种(系)的发育枝为试材(以冬枣Ziziphus jujuba Mill.CV.Dongzao为对照),采用电导法并配以Logistic方程和干物质含量法,估测了抗寒性。研究结果表明:不同品种抗寒性不同,涞水铃枣抗寒性高于毛卜彦铃枣;月光枣抗寒性高于辣椒枣和冬枣。随树龄的增加,当年生发育枝的抗寒性增加,随枝龄的增大,抗寒性增强。本研究就干物质含量法和电导法在评价枣树抗寒性中的应用进行了讨论。  相似文献   

10.
Rose  Robin  Haase  Diane 《New Forests》2002,23(2):81-96
Two-year-old coastal Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) seedlings from two seed lots were exposed to controlled freezing temperatures every 4 weeks from October 1993 through April 1994. Freezing effects were assessed by measuring chlorophyll fluorescence emissions 1 day after freezing and by evaluating damage to the bud, cambium, and needle tissues 7 days after freezing. Differences between the seed lots as well as changes in cold hardiness among the bud, cambium, and needle tissues were evident throughout the duration of the study. Tissue damage was higher with increased freezing stress. Severity of damage to each of the tissues varied seasonally. Chlorophyll fluorescence emissions were lower with higher freezing stress (except during November and December, when test temperatures were not low enough to significantly damage the seedlings) and showed a strong relationship with morphological assessments of freezing stress. The slope of the slow kinetics phase of the chlorophyll fluorescence curve tended to be less steep (i.e., quenching was reduced) with higher freezing stress. Nonfrozen chlorophyll fluorescence measurements showed no obvious relationship with LT50 for either seed lot. However, chlorophyll fluorescence measurements are useful for determining cold hardiness and resistance to stress, because they provide a rapid assessment of seedling vigor following exposure to freezing.  相似文献   

11.
Although cold hardiness is known to be a major determinant of tree species distribution, its dynamics and the factors that regulate it remain poorly understood. Variation in cold hardiness and carbohydrate concentration, from dormancy induction until bud burst, were investigated in populations of two deciduous (Quercus robur L. and Quercus pubescens Willd.) and one evergreen (Quercus ilex L.) European oak. Mean cold hardiness values in January were -56, -45 and -27 degrees C for Q. robur, Q. pubescens and Q. ilex, respectively. Soluble carbohydrate concentrations were closely related to instantaneous cold hardiness, estimated by the electrolyte leakage method, whereas total carbohydrate concentration was related to maximum cold hardiness. Both cold hardiness and carbohydrate concentration showed a close linear relationship with temperatures at the location of the sampled population. Our results show that temporal variation in both the inter- and intraspecific cold hardiness in European oaks can be related to variations in the concentrations of soluble carbohydrates and that these relationships appear to be driven by temperature.  相似文献   

12.
Operational stock-testing facilities that estimate overwinter storability of seedlings (ability to survive and grow after storage) need a reliable method that provides fast results to forest nurseries. We compared three methods using container-grown seedlings of Douglas-fir, interior spruce, lodgepole pine, and western larch from forest nurseries in British Columbia. On three to nine dates in autumn, frost hardiness at −18°C was estimated using visible injury of foliage or stems (VI), electrolyte leakage from needles or stems (EL), and chlorophyll fluorescence of shoots (CF). Seedlings were placed into overwinter cold storage (−2°C). In the spring, stored seedlings were planted in nursery beds; survival and growth were assessed after one growing season. There were close correlations (r ≥ 0.93) between the assessment methods. Seedlings lifted after they reached thresholds of 69% or higher for CF and 25% or lower for EL and VI had over 90% survival at harvest and doubled shoot dry weight compared with seedlings lifted earlier. Measuring CF was the fastest and most easily replicated method to estimate successful storability, and reduced testing time by 6 days relative to VI tests.  相似文献   

13.
The susceptibility of Pinus oocarpa to freezing temperatures limits the commercial deployment of the highly productive Pinus patula × P. oocarpa hybrid in South Africa. Identifying P. oocarpa germplasm with increased frost tolerance is important. Twenty-three P. oocarpa provenances, originating from Mexico, Honduras, Guatemala and Nicaragua, were therefore assessed for their tolerance to freezing conditions by analysing field survival after frost events, subjecting needles to freezing temperatures and assessing damage using the electrolyte leakage test, and exposing young plants to freezing temperatures in a semi-controlled environment and scoring tissue damage based on a visual assessment. The performance of many of the provenances represented in the field and artificial freezing studies were similar and there was a strong correlation between provenance ranking in the whole plant freezing and electrolyte leakage test. We therefore support the use of these techniques as a means to assess cold tolerance in P. oocarpa at the provenance level. Provenances from north-western Mexico demonstrated more frost tolerance than those from southern Mexico. Provenances representing Honduras and Guatemala appear to be highly susceptible to frost.  相似文献   

14.
Frost hardiness of tissues along the length of the stem and the root was investigated in first‐year black spruce (Picea mariana (Mill.) B.S.P.) seedlings. Frost hardiness of 1 cm long stem and root segments was evaluated based on Index of Injury, calculated from post‐freezing electrolyte leakage. Frost hardiness was tested approximately weekly beginning seven weeks after seedlings were transferred from an 18 to a 10 h photoperiod, both at day/night temperatures of 26°C/16°C. Trees were transferred to temperatures of 10°C day and 5°C night at a 10 h photoperiod after a further 18 days. Frost hardiness was greater at the terminal bud and least at the root tips. Although shoots were generally more frost hardy than roots, differences in hardiness along the stem and root axes were gradual, rather than abruptly differing at the shoot‐root interface. All tissues, including root tips, increased in frost hardiness after conditioning for 18 days under short photoperiods (10 h) and warm temperatures (26?C/16°C, day/night). Under cold temperatures (10°C/5°C, day/night) all tissues, excepting the root tips, tolerated — 16°C with little subsequent electrolyte leakage.  相似文献   

15.
We investigated changes in photochemical activity and cold hardiness of detached needles of three clones of Picea abies (L.) Karst. by measuring variable chlorophyll fluorescence (F(v)/F(m)), before and after artificial freezing, from September to June. Photochemical activity varied considerably during the study, but only minor differences in photochemical activity among the clones were observed before freezing. Photochemical activity was high during early fall and then declined from November until April. Photochemical activity was at a minimum in April and then increased quickly to high values in May. During the period from late September to October, and also during the winter, differences in F(v)/F(m) ratios after artificial freezing to below -10 degrees C were observed among clones, indicating clonal differences in cold hardiness and hardiness development. The clone having an average height of 2.3 m after 11 years showed consistently lower cold hardiness than clones that had reached average heights of 4.0 and 5.0 m. There were also differences in the temperature requirement for bud flushing among clones.  相似文献   

16.

Whole root systems of 2-yr-old containerized white spruce [Picea glauca (Moench) Voss], black spruce [Picea mariana (Mill.) B.S.P.] and jack pine (Pinus banksiana Lamb.) seedlings, with intact root plugs, were exposed to various frost temperatures, which a preliminary test indicated would induce approximately 0 (control), 20, 40, 60, 80 and nearly 100% frost damage. Damage to root systems was evaluated using: (1) two measures of electrolyte leakage (relative conductivity and total tissue leakage after autoclaving); (2) water loss after pressurization; (3) chlorophyll fluorescence (Fv/Fm, maximal PSII photochemical efficiency) measured 4, 21 and 30 days after the beginning of seedling regrowth and (4) live root dry mass measured 21 days after the artificial frost and 60 days after the beginning of regrowth. Seedling survival and growth after the artificial frost were evaluated using live root dry mass measured after 60 days of regrowth and new shoot length, stem diameter, and root and shoot dry mass. Live root dry mass, dead tissue leakage, jack pine root water loss and fluorescence measurements were all significantly correlated with one or more of the growth variables and the number of significant correlations varied with species. Dead tissue leakage measurements appear to be the most promising method for evaluating root damage to 2-yr-old well-developed root systems of these species.  相似文献   

17.
Twenty-six provenances (2 340 plants) of cork oak (Quercus suber spp.) originating from Portugal, Spain, Italy, Morocco, Algeria, and Tunisia were tested for genetic variation among and within provenances by growth traits. Seven morphometrical characters were measured in 90 plants from each provenance. Analysis of variance showed highly significant differences for all characters. The phenotypic coefficient of differentiation reached 0.24 for the form and 0.22 for height, thus revealing a strong structuring between the provenances. Comparative study of growth among the provenances revealed more vigorous growth and better survival rate for those from Morocco, Spain, and Portugal, which may constitute better materials for afforestation. Furthermore, this variability appeared to be geographically structured and would be mainly genetically controlled, as cork oak provenances were cultivated under the same environmental conditions. Our results should be helpful for guide forest managers in afforestation.  相似文献   

18.
国外木本植物抗寒性测定方法综述   总被引:23,自引:0,他引:23       下载免费PDF全文
文中对目前国外采用的不同抗寒性测定方法的测定原理、测定程序以及优缺点等作了较为详细的介绍。这些测定方法有全株冰冻测试法(组织褐变法)、电解质渗出率法、叶绿素荧光法、热分析法(主要用差热分析法)、电阻抗图谱法以及核磁共振显微镜图谱法和可视+近红外线光谱法等。并简介了这些测定方法的适用性和抗寒性测定方法的研究展望。  相似文献   

19.
Interspecific hybrids between eastern white pine (Pinus strobus L.) and Himalayan blue pine (P. wallichiana A. B. Jacks.) were developed in Ontario, Canada, to introduce blister rust (Cronartium ribicola Fisch.) resistance genes to P. strobus. There is concern that introducing blister rust resistance has resulted in reduced cold hardiness of the progeny compared with non-hybridized eastern white pine. To test the efficacy of backcrossing with P. strobus to improve cold hardiness, 1-year-old seedlings from hybrid crosses differing in P. strobus genome composition were artificially freeze-tested. In Experiment 1, unhardened seedlings were allowed to acclimate to progressively lower temperatures in a growth room, whereas in Experiment 2, seedlings were hardened outdoors under natural weather conditions in Sault Ste Marie, Ontario. Needle cold injury was determined by calculating relative electrical conductivity based on post-freezing electrolyte leakage. Results indicated that needle fascicles from unhardened seedlings of all genotypes in the greenhouse tolerated -5 degrees C for 3 hours with little or no injury. Cold hardiness increased in parallel with declining growth room minimum temperature over the 7-week period of hardening. Cold hardiness was improved for hybrid crosses with increased Pinus strobus genome composition in Experiment 2, but the results were less conclusive in Experiment 1.  相似文献   

20.
  • ? Water oak (Quercus nigra L.) is a tardily deciduous species commonly planted in afforestation projects in the Lower Mississippi River Alluvial Valley, USA. Field performance is often marked by low survival rates and top dieback, which may be associated with poor physiological quality of planting stock.
  • ? We investigated physiological status of cold stored (2–4 °C; CS) and freshly lifted (FL) seedlings during the period between lifting and planting (December — February). In mid-February, seedlings were transplanted into a controlled greenhouse environment for 90 d to evaluate post-transplant growth performance.
  • ? Net photosynthetic rates were positive until late January (generally greater in CS seedlings) and became negative thereafter. FL seedlings generally had lower LT50 values from freeze-induced electrolyte leakage (FIEL), reflecting greater cold hardiness. FIEL of foliage provided the best indicator of physiological status, though terminal buds may serve as a suitable substitute. All seedlings experienced top dieback following transplant; CS seedlings had less relative root-collar diameter, height, and root volume increments.
  • ? Cold storing seedlings did not appear to prolong dormancy, increase stress resistance, or hold promise as a means to improve outplanting success. Regardless of storage regime, seedlings appeared to be most cold hardy and perhaps stress resistant until late January.
  •   相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号