首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
定量分析了北京顺义、通州区土壤高光谱反射特征,利用资源三号、高分一号、高分二号传感器的光谱响应函数,结合高光谱数据生成相应宽波段模拟数据;将土壤光谱数据、拟合宽波段数据分别与实测土壤有机质含量开展相关性分析,提取并筛选敏感波段,利用偏最小二乘法建立基于高光谱数据的土壤有机质含量预测模型;依据宽波段模拟数据和实测土壤有机质含量的相关性,提取并筛选敏感波段,建立土壤有机质含量预测模型。结果表明,在基于土壤高光谱数据建立的土壤有机质含量预测模型中,以对数的一阶微分为最优,其R和RMSE分别为0.697和0.195,偏最小二乘法得到的反演土壤有机质含量的模型是可靠的;在基于模拟宽波段构建的土壤有机质含量估测模型中,以高分一号的拟合精度最高,R和RMSE分别为0.334和0.240;受室外不可控因素的影响,模拟宽波段数据在估测北方地区土壤有机质含量方面仍需进一步研究。  相似文献   

2.
为了探索快速检测土壤有机质含量的方法,试验采用不同分解水平的Coiflet函数的小波(wavelet)分析方法,对山西关帝山土壤样品的近红外光谱信号进行了消噪处理,来快速获取土壤中有机质含量。结果表明:对有机质敏感波段的为450~600 nm,810~935 nm,1 030~1 315 nm,1 380~1 400 nm;有机质NIRS法与实验室标准法测定值之间的相关系数R2为0.9818;说明通过小波变换滤波,选择敏感波段,用偏最小二乘回归方法预测土壤有机质含量是可行的。  相似文献   

3.
胡林  丘耘  周国民 《安徽农业科学》2012,(12):7123-7124,7188
[目的]研究在野外直接测定土壤有机质含量的方法。[方法]以重铬酸钾容量法(外加热法)测定土壤样本有机质含量作为真实值,在不进行土壤样本预处理的前提下,利用近红外光谱直接扫描未作处理的土壤样本,测定土壤有机质含量,以其作为土壤有机质含量的预测值。[结果]利用620和1 900 nm的波长组合,可以较好地预测土壤有机质含量,预测模型(定标模型)的相关系数为0.9,极为显著。[结论]该模型对同类土壤有机质含量的预测效果很好,预测值与实测值的相关系数达到0.95。  相似文献   

4.
土壤有机质高光谱特征及其反演研究   总被引:1,自引:0,他引:1  
具有精细的光谱分辨率,可获取地物纳米级连续光谱信息的高光谱技术以其简便、快速、精度高和无损等优势成为获取土壤有机质(soil organic matter,SOM)含量的重要手段,在精确农业发展中发挥着重要作用。本文阐述了高光谱反演土壤有机质的机理,概述了土壤有机质含量的光谱反射特征,包括不同土壤类型、不同土壤有机质含量的光谱响应波段,以及土壤有机质含量的光谱反演方法和模型的研究进展。进一步分析了土壤有机质光谱特征研究中存在的问题并对发展趋势进行了展望和分析,以期为以后的研究提供一定的参考。  相似文献   

5.
为研究不同土壤颗粒粒径对可见/近红外光谱分析技术在土壤有机质含量快速检测应用中的影响,获取粒径为0.169~2 mm和<0.169 mm的2种土壤样本(各53个)的可见/近红外光谱(325~1075 nm),分别建立各自的主成分-反向传播神经网络(PCA-BPNN)、最小二乘-支持向量机(LS-SVM)和偏最小二乘法(PLS)土壤有机质含量检测模型.结果表明:当土壤粒径为0.169~2 mm时,所建立模型的土壤有机质含量预测相关系数r均在0.84以上,且预测均方根误差(RMSEP)都在0.20以下;而当土壤粒径<0.169 mm时,所建立模型的预测相关系数r均不超过0.71.而RMSEP都在0.23以上;对于相同粒径的土壤,PLS模型对土壤有机质含量的预测效果优于LS-SVM和PCA-BPNN模型.说明不同土壤颗粒粒径会显著影响可见/近红外光谱对于土壤有机质含量的预测结果.  相似文献   

6.
苏玉珍  杨锋  王涛 《安徽农业科学》2012,40(8):4535-4537,4581
[目的]基于土壤可见-近红外直接测定系统,重点研究和开发土壤有机质含量的校正分析模型。[方法]主要利用测试系统对来自关帝山森林土壤的20个样本在400~1 000 nm范围内进行光谱测试和分析。[结果]采用光谱法测定的有机质含量与采用权威化学方法测定的值基本一致。[结论]使用偏最小二乘回归分析,建立了土壤有机质与土壤光谱特性的预测模型。  相似文献   

7.
测定了直播和移栽油菜的苗期、抽薹期、花期、盛花期和角果期的冠层光谱,构建了比值光谱植被指数(RSI)和归一化光谱植被指数(NDSI)。为了获得区分直播和移栽的最佳RSI和NDSI,利用降采样法和精细采样法相结合的受试者工作特征(ROC)图寻找油菜生长期光谱的敏感波长,直播和移栽油菜各时期RSI和NDSI的最敏感波长分别为:苗期(458 nm,511 nm)和(433 nm,517 nm);抽薹期(997 nm,501 nm)和(990 nm,510 nm);花期(1 235 nm,1 180 nm)和(1 235 nm,1 180 nm);盛花期(478 nm,396 nm)和(484 nm,416 nm);角果期(1 073 nm,1 037 nm)和(1 092 nm,1 024 nm)。用敏感波长下的2种植被指数为特征,以最近邻法为分类器的定性识别模型,结果花期的区分效果最好,最大约登指数分别为0.941 7和0.945 0。  相似文献   

8.
水稻叶片反射光谱诊断氮素营养敏感波段的研究   总被引:13,自引:0,他引:13       下载免费PDF全文
田间小区试验叶色差异明显而生育期相似的两品种第一和第三完全展开叶片光谱反射率与氮素营养相关性分析表明,不同品种同一叶位之间这种相关性变化规律一致,然而在不同叶位之间相关性变化不尽一致.进一步对比分析大田区域试验和小区试验叶片光谱反射率与氮素营养相关性发现两区域样本相同叶位之间相关性变化规律相同.分析第一、三完全展开叶叶片光谱反射率处理之间差异显著性表明,存在差异显著的波段范围主要集中在绿光(525~605 nm)、黄光(605~655 nm)和短波近红外光(750~1100nm)范围内.和叶片氮素含量之间相关性最大的波段主要为绿光(525~605 nm)和黄光(605~655 nm)范围,而短波近红外光范围与叶片氮素含量之间相关性最小.因此和IKONOS2、IKONOS4、MSS4、MSS6、MSS7、SPOT1、SPOT3、TM2、TM4、AVHRRCH1、AVHRRCH2相对应的绿光(525~605 nm)、黄光(605~655 nm)和短波近红外光(750~1100nm)是叶片反射光谱诊断氮素营养的敏感波段范围.  相似文献   

9.
以贵州省典型山区耕地土壤高光谱数据为研究对象,基于光谱变换法和机器学习原理构建贵州省山区耕地土壤有机质(SOM)含量估算模型。于2020年8月至2021年3月在贵州省13个县(区、市)采集了120个土壤样品,检测土壤可见光-近红外波段光谱信息,利用5种光谱数据变换(原始光谱、一阶微分、二阶微分、倒数对数的一阶微分、连续统去除)和4类模型(偏最小二乘回归、支持向量机、随机森林和BP神经网络)组合出不同土壤有机质含量的预测模型,按照3∶1选择训练样本和测试样本以估算山区SOM含量。结果表明,一阶微分数据变换与山区SOM含量的相关性较高,相关系数最高达到-0.635;反演模型中,基于一阶微分光谱变换构建的BP神经网络模型精度最高,训练集、测试集的决定系数(R2)分别为0.845、0.838,测试集均方根误差(RMSE)为3.452,相对分析误差(RPD)达到2.470,其次是RF、PLSR模型的RPD较高,SVM模型的RPD最低。光谱数据变换中一阶微分法能极大程度提取出山区耕地的SOM含量信息,BP神经网络模型是估算山区SOM含量的最优模型,本研究结果可为贵州省山区耕地...  相似文献   

10.
为克服卷积神经网络(CNN)拟合和估测精度不一定成正比的不足,提高土壤有机质估测精度,本文基于山东省济南市章丘区和济阳区的121个土壤样本的数据,首先对光谱数据进行预处理,然后建立土壤有机质高光谱CNN-FCM估测模型。结果表明:当CNN模型结构为一个3×3的卷积核,一个2×2的平均池化层,一个完全连接和输出层,FCM模型的模糊分类数为10,且使用线性函数建立融合模型时,模型估测精度最高,其中检验样本的决定系数R2为0.895,平均相对误差MRE为5.042%,均优于传统的BP、SVM和随机森林模型。研究表明,土壤有机质高光谱CNN-FCM估测模型是可行有效的。  相似文献   

11.
【目的】采用近红外光谱和不同建模方法测定土壤中的有机质和速效P含量。【方法】分别采集江西不同地区的土样240个,采集土壤样品的近红外漫反射光谱,以对光谱数据进行主成分分析得到的前6个主成分(PCs)和偏最小二乘回归(PLSR)建模得到的6个潜在变量(LVs),分别作为反向传播神经网络(BPNN)和偏最小支持向量机(LS-SVM)的输入变量,共建立6个模型,分别为主成分回归(PCR)、PLSR、BPNN-PCs、BPNN-LVs、LS-SVM-PCs和LS-SVM-LVs,并对这些建模方法预测土壤有机质和速效P含量的结果进行评价,从中筛选出最佳模型。【结果】在预测土壤有机质和速效P含量时,LS-SVM-LVs模型的预测效果优于PCR、PLSR、BPNN-PCs、BPNN-LVs和LS-SVM-PCs模型。用LS-SVM-LVs模型得到的有机质、速效P预测集的决定系数(R2)和均方差(RMSE)分别为0.873 4,0.780 1mg/kg和2.92g/kg,4.97mg/kg。【结论】将近红外漫反射光谱和LS-SVM、PLSR相结合可用于测定土壤有机质和速效P含量。  相似文献   

12.
基于Matlab和地统计学的土壤有机质空间变异研究   总被引:1,自引:0,他引:1  
以黑龙江省齐齐哈尔市甘南县东兴村为试验点,对土壤有机质进行常规统计及半方差分析。结果表明,球形模型为最佳拟合模型,该区有机质具有中等程度的空间相关性,并探讨了其空间变异特征,为该地精准农业的研究提供了一定的理论参考。  相似文献   

13.
14.
  目的  基于可见/近红外光谱技术,以10种木材为研究对象,探索不同预处理和特征提取方法下BP神经网络识别木材的效果。  方法  利用美国ASD公司生产的LabSpec 5000光谱仪采集10种木材的光谱图,分别进行移动平均法处理、移动平均法+多元散射校正(MSC)、移动平均法+标准正态变量变换(SNV)、Savitzky-Golay卷积平滑算法(S-G滤波器)、S-G滤波器+MSC和S-G滤波器+SNV的预处理,运用主成分分析法(PCA)、连续投影算法(SPA)、SPA和遗传算法(GA)联合分别进行特征提取,将提取的特征结合BP神经网络进行木材识别试验。  结果  以SPA和GA联合提取光谱特征时,移动平均法+SNV的预处理效果最佳,以吸收峰为起始波段(Winitial=1 445 nm)、吸收峰个数为特征个数(Ntot=9)时,识别率较高,特征个数大部分减少为SPA提取特征值个数的一半左右。BP神经网络的平均识别速度提升明显。10种木材的平均识别率为98.0%,其中7种木材的识别率达到了100.0%。  结论  在移动平均法+SNV的预处理下,SPA和GA联合提取光谱图的特征,既可提高BP神经网络识别木材的正确率,又可提升识别速度。图3表6参23  相似文献   

15.
为了实现对茶园土壤酸碱状况量化判别,以7个省份茶园313份土壤为材料,以酸碱度(pH表示)值在4.5~5.5的范围为最适宜茶树生长区间,将pH值划分为4.5,4.5~5.5和5.5 3个范围,提出了将近红外光谱信息与贝叶斯(Bayes)判别相结合进行定性判别酸碱状况是否适合茶树正常生长。在此基础上,采用多元线性回归(multiple linear regression,MLR)定量预测pH值。通过一阶导数(first derivative,1stDer)对光谱预处理,通过逐步判别分析(stepwise discriminant analysis)优选20条特征光谱,基于特征光谱数据结合Bayes判别构建定性判别模型,再通过MLR构建pH值的定量预测模型。结果表明,采用本研究的方法和构建的模型对茶园土壤酸碱状况总体准确判别率达83.54%,pH值预测相关系数均在0.9286以上,预测精度较高。证明运用该方法能实现对茶园土壤酸碱状况快速预测。  相似文献   

16.
【目的】探讨高光谱遥感数据不同预处理及不同估测算法下土壤有机质估测模型的优劣,为提高土壤有机质估测精度奠定基础。【方法】使用高光谱仪在室内条件下对土壤样品进行光谱测量,对光谱数据进行4种去噪处理(无去噪处理、Savitzky-Golay(S-G)平滑滤波去噪、小波包去噪以及S-G平滑与小波包结合去噪),然后对去噪后的光谱数据进行8种数据变换(原始光谱数据R、倒数1/R、对数log(R)、倒数对数log(1/R)、一阶导数R′、倒数一阶导数(1/R)′、对数一阶导数(log(R))′、倒数对数一阶导数(log(1/R))′),接着对变化后的光谱数据进行3种降维处理(无降维处理、敏感波段降维和主成分分析降维),最后运用支持向量回归法和偏最小二乘回归法分别建立SOM含量估测模型。【结果】研究中所涉及的各种数据预处理和估测算法中,小波包去噪、PCA降维、反射率倒数一阶导数(1/R)′光谱数据变换处理条件下,使用PLSR方法的估测模型精度最高、模型最稳定,可以较精确地估测吉林省伊通县SOM含量。【结论】合适的数据预处理,尤其是小波包去噪和PCA降维相结合,可有效改善光谱数据质量,提高SOM含量估测模型精度及稳定性。  相似文献   

17.
利用可见-近红外光谱技术,选取湖北地区同一品种不同饲养环境下的鸡蛋,提取鸡蛋的光谱透射率(500~900nm),利用标准正态变量变换对光谱数据进行预处理,结合竞争性自适应重加权与主成分分析对光谱数据进行二次降维,并将提取的特征信息输入增强回归树算法,建立鸡蛋土洋种类鉴别模型,模型的训练集和测试集判别正确率分别为98.33%和97.00%。结果表明,应用基于可见-近红外光谱及增强回归树方法,针对同一母鸡品种但不同饲料产出的土洋鸡蛋的种类鉴别是可行的。  相似文献   

18.
为解决遥感技术在监测耕层土壤有机质方面的应用问题,利用表层土壤光谱对耕层土壤有机质含量进行估测。以山东省济南市章丘区的表层、耕层各76个土壤样本为研究对象,首先对表层光谱数据进行小波变换去噪、剔除异常样本等处理,然后对处理后的光谱反射率进行一阶微分等10种数学变换,在对数倒数一阶微分和对数一阶微分变换后的反射率数据中选取43个与土壤有机质含量相关系数较高的波段,通过主成分分析以累计贡献率大于90%的标准选取5个主成分作为反演因子,利用BP神经网络(BPNN)、支持向量机回归(SVR)和多元线性回归(MLR)方法建立耕层土壤有机质含量间接估测模型。结果表明,耕层土壤与表层土壤有机质含量之间决定系数R~2达到0.839,显著性P0.01,存在着较强的相关性BPN估测模型的精度最优,决定系数R~2为0.845,平均相对误差为7.642%,RMSE分别为1.622g·kg~(-1)。研究表明,利用表层土壤光谱信息间接估测耕层有机质含量是可行有效的,为耕层土壤有机质的估测问题提供了一种新思路。  相似文献   

19.
为提高典型黑土区土壤有机质含量的预测精度,结合田间实测数据与遥感影像反射率数学变换数据筛选出最佳特征波段,并建立多种回归模型,对研究区土壤有机质含量预测模型进行优选。结果表明:对影像反射率进行不同的数学变换处理能够扩大数据中对有机质含量变化敏感的细微吸收特征,突出敏感光谱信息。利用标准化模型对处理后的光谱数据贡献率进行量化,结合相关系数筛选最佳特征波段。建模结果显示,支持向量机模型在检验集上的决定系数为0.89,均方根误差为2.81 g·kg-1,模型整体的相对分析误差为2.14,对土壤有机质含量的预测能力极好。研究结果可为黑土区土壤有机质含量的预测模型优选提供参考,也可为中国北部地区耕地的有机质含量监测和有效开发提供基础理论依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号