首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
本文采用原子吸收分光光谱法测定可湿性含锰盐农药中锰含量,具有干扰小、稳定、重现好等优点。方法的线性相关系数为1.000;标准偏差为0.486;变异系数为2.50%;平均回收率为98.1%。  相似文献   

2.
农药高效液相色谱法分析中紫外吸收波长的选择   总被引:1,自引:0,他引:1  
研究了60种农药的高效液相色谱法分析中,对紫外光波吸收波长的选择,并找出了这些农药的最大吸收波长和适宜分析波长。农药残留分析可选择最大紫外吸收波长;农药常规定量分析可选择适宜分析波长,可以减少操作步骤及分析时间。  相似文献   

3.
高等植物对钠离子的吸收、运输和累积   总被引:6,自引:0,他引:6  
综述了植物对钠离子吸收、运输和累积等方面的最新研究进展。植物根系吸收钠离子的途径可能有三条,包括2条跨膜途径(钙敏感和非钙敏感两部分)和支流途径等。根系对钠离子的吸收可能是被动的,但排泄是主动的。木质部的装载可能是主动的,也可能是被动的。木质部的卸载过程还不清楚,可能是通过非选择性阳离子通道,或K /Na ,Na /H 反向运输体完成。Na 在植物体内运输需要特殊部位特殊细胞类型以协同方式运作。为了减少Na 通过木质部的质外体部分向地上部输送,根系靠外的部分细胞要减少流入,而内层细胞应该加大流入。我们需要了解更多的特殊细胞运输过程,和特殊细胞的载体及信号操作过程的知识。  相似文献   

4.
为明确浙江省各地区芹菜中农药残留水平以及对人群的膳食摄入风险,采用蔬菜中农药残留的标准检测方法,对在浙江省各地区采集的210个芹菜样品进行了检测,并就其累积急性膳食摄入风险开展了初步评估.结果表明:210个芹菜样品中共检出35种农药,检出率为94.8%,其中杀虫剂23种,杀菌剂11种,除草剂1种;97.1%的样品中的农...  相似文献   

5.
不同施肥处理对作物产量及土壤中硝态氮累积的影响   总被引:39,自引:2,他引:39  
通过4a定位试验研究了小麦-玉米轮作制度下不同施肥处理对作物产量及硝态氮(NO3--N)在土壤中累积和分布的影响。结果表明:长期大量施用氮肥,会造成土壤NO3--N的累积,且土体NO3--N的含量随施氮量的增加呈直线上升趋势;在土壤空间差异不显著的情况下,NO3--N在400cm土体中的分布呈一定的规律性,分别在60cm和200cm左右存在累积峰;配合施用磷肥、钾肥可以降低土壤剖面NO3--N的含量,尤其是钾肥可显著降低土壤上层NO3--N的含量,但作物无法吸收的NO3--N却有整体下移的趋势。提出华北山前平原高水肥投入地区NPK合理施用量为:N肥200kg/(hm2·a),P肥32.5kg/(hm2·a),K肥150kg/(hm2·a)。  相似文献   

6.
农药兑水茎叶喷施对靶沉积是一个复杂的剂量传递与分布过程,涉及制剂形成、药液配制、雾化分散、空间运行、叶面沉积和稳态持留等动态过程,受到药剂特性、环境因素、为害规律、植株形态和叶面结构等多因素影响,在水稻、小麦和玉米三大粮食作物上对靶沉积率为40.6%。其中,对不同区域、不同靶标作物种植体系中农药损失规律和高效利用机理研究与认识不足,是农药对靶沉积剂量传递效率低的主要原因之一。本文以农药向靶标作物及有害生物传递的过程行为为主线,将农药兑水茎叶喷施对靶沉积的剂量传递过程分解为雾滴空间运行、叶面动态沉积和稳态持留3个过程,从空间维度综述了各过程中的表观现象与行为、损失规律及其调控机制途径与技术等;从技术发展与进步角度,分析了农药对靶沉积剂量传递与调控研究和认知的发展思路,概述了典型代表性成果,提出了未来研究与发展建议。期望客观认知农药高效对靶沉积的损失规律与调控机制,探析主控过程与影响因子,提出农药减量施用调控方法、控制技术指标及功能助剂施用限量标准等,为农药减施增效关键技术与产品研发提供理论与技术支持。  相似文献   

7.
欧洲食品安全管理局(EFSA)拟建立工作组,开展农药对甲状腺影响的累积风险评估,目前就这一动议对公众征求意见。这项工作是EFSA正在进行的多种农药残留累积风险评估(cumulative risk assessment, CRA)项目的一部分,包括对甲状腺产生特定影响的两类农药进行累积风险评估。  相似文献   

8.
欧盟食品安全管理局(EFSA)制定了新的农药分组方法,为累积风险评估的实施铺平道路。此类评估考察多种农药残留暴露所造成的风险。新方法分组标准广泛,以在某一具体器官或者系统中显示相似毒理性作为化学品分组基础。首先,欧盟食品安全管理局将其用于界定对甲状腺或者中枢神经系统有害的农药分组。  相似文献   

9.
农药在土壤中吸附的动力学模型研究   总被引:1,自引:0,他引:1  
本文讨论农药在土壤中吸附的动力学模型的建立、推导和确证,由土壤-农药吸附体系提出总包吸附反应的模型,并由该模型建立因吸附作用引起的土壤溶液中农药浓度衰减的动力学方程。应用该方程对功夫在褐土中吸附的动力学实验数据拟合,确证模型的理论假设与实验结果较好地吻合,并由拟合参数求算具有确切物理涵义的基本动力学参数,为总包吸附过程的反应机理提供依据。  相似文献   

10.
施氮量对膜下滴灌棉花氮素吸收、积累及其产量的影响   总被引:4,自引:0,他引:4  
2004年在膜下滴灌条件下,研究了施氮量0,180,270,360kg/hm2对膜下滴灌棉花氮素的吸收、累积和产量及氮肥利用率的影响。结果表明:施用氮肥可以显著提高棉花的生物和经济产量及地上部分总吸氮量,但过量施用氮肥对经济产量和生物产量增产不显著,各施氮处理氮肥利用率在27.6~33.8%之间,随施氮量的增加而降低。植株中氮素含量随生育延长而降低,氮素累积总体呈增加趋势,施氮量对棉花氮素吸收有显著影响,同一生育时期,氮素含量和累积量都随着施氮量增加而提高。本试验条件下,棉花的合理施氮量应控制在270 kg/hm2左右。  相似文献   

11.
The uptake of four (14)C-labelled non-ionised compounds, the methyl carbamoyloxime insecticide/nematicide oxamyl and three model phenylureas, from solution by rooted stems of the aquatic plant parrot feather [Myriophyllum aquaticum (Vell.) Verdc], together with translocation to the emergent shoots, was measured over periods of 24 and 48 h. Uptake into the submerged tissues of roots and stem base could be ascribed to two processes: movement into the aqueous phase of cells and then partitioning onto the plant solids. This latter process was related to lipophilicity (as measured by the l-octanol/water partition coefficient, K(ow)) and gave rise to high uptake rates of the most lipophilic compounds. Translocation to shoots was passive and was optimal at log K(ow) approximately 1.8, at which the efficiency of translocation of compound was about 40% of that of water. This optimum log K(ow) was identical to that observed previously in barley, although the translocation efficiency was somewhat less in parrot feather. Solvation parameters were applied to model uptake and translocation of a set of ten compounds by barley with the particular objective of understanding why translocation efficiency is lower at log K(ow) > 1.8.  相似文献   

12.
杀虫剂和除草剂的植物修复研究进展   总被引:3,自引:0,他引:3  
李海涛  叶非 《植物保护》2010,36(1):28-32
随着农药施用量的增加,农药污染土壤给生态环境造成了极大的危害,并引起了人们的普遍关注。传统的修复方法因其价格昂贵而不能普遍采用,植物修复是近年来兴起的一种利用植物积累、吸收、降解等去除土壤、水和沉积物中污染物的新方法。本文主要介绍了植物修复的机制和方式,对近年来杀虫剂和除草剂的植物修复研究进展进行综述,指出了植物修复的不足和今后的发展方向。  相似文献   

13.
A study on uptake of neutral and dissociating organic compounds from soil solution into roots, and their subsequent translocation, was undertaken using model simulations. The model approach combines the processes of lipophilic sorption, electrochemical interactions, ion trap, advection in xylem and dilution by growth. It needs as input data, apart from plant properties, log KOW, pKa and the valency number of the compound, and pH and chemical concentration in the soil solution. Equilibrium and dynamic (steady‐state) models were tested against measured data from several authors, including non‐electrolytes as well as weakly acidic and weakly basic compounds. Deviations from the measured values led to further development of the model approach: sorption in the central cylinder may explain the small transpiration stream concentration factor of lipophilic compounds. For non‐electrolytes, the model predicted uptake and translocation with high accuracy. For acids and bases, the tendency of the results was satisfactory. The dynamic model and the equilibrium approach gave similar results for the root concentration factor. The calculation of the transpiration stream concentration factor was more accurate with the dynamic model, but still gave deviations up to factor of ten or more. The dominating process for monovalent weak electrolytes was found to be the ion trap effect. © 2000 Society of Chemical Industry  相似文献   

14.
BACKGROUND: Wheat shows selectivity to pyroxsulam, a new broad‐spectrum herbicide with high activity on blackgrass. Studies were performed to establish whether uptake, translocation or metabolism were responsible for the differential activity in wheat compared with blackgrass. In addition, the effect of the safener cloquintocet‐mexyl on metabolism was evaluated in wheat and blackgrass shoots. RESULTS: Root uptake of pyroxsulam in blackgrass was significantly higher than in wheat, suggesting a possible activity enhancement in blackgrass owing to root uptake. Translocation to foliage from root uptake as well as translocation out of treated foliage following foliar applications was low in wheat compared with blackgrass, likely owing to the rapid metabolism of pyroxsulam in wheat. Wheat metabolized pyroxsulam significantly faster than blackgrass to the less active O‐dealkylation product. Wheat shoots metabolized pyroxsulam faster when the safener cloquintocet‐mexyl was present, but cloquintocet‐mexyl did not increase the rate of metabolism in blackgrass. CONCLUSIONS: The selectivity of pyroxsulam to wheat relative to blackgrass was connected primarily with differences in the rate of metabolism and generation of an inactive metabolite. Metabolism in wheat restricted subsequent movement of radioactivity out of the treated leaf. The rapid metabolism in wheat was increased by the addition of cloquintocet‐mexyl. Copyright © 2010 Society of Chemical Industry  相似文献   

15.
Molinate, a selective herbicide, is used for the control of annual and perennial weeds in rice paddy fields. This study was designed to assess the basis of the selective action of molinate between a susceptible broadleaf crop, tobacco, and a resistant graminaceous plant, rice. Experiments were conducted comparing plant growth under different concentrations of molinate, determining the absorption and translocation of the herbicide in the plant and identifying the metabolites in suspension cells. Rice showed greater tolerance to molinate than tobacco. Leaves of tobacco showed retarded and distorted growth at 10 mg liter-1 of molinate 14 days after treatment, but rice leaves were unaffected at this concentration. Higher concentrations of molinate accumulating in the root of tobacco seedlings may inhibit root development and represent a significant factor in the herbicide's selective action. Seven and eight metabolites were found in tobacco and rice cells, respectively, with molinate sulfoxide and molinate sulfone present in both species. © 1998 SCI  相似文献   

16.
The uptake by barley roots from nutrient solution and subsequent transport to shoots of two series of amine bases were measured over 6 to 72 h. The compounds were chosen to span systematically ranges of lipophilicity (assessed using 1-octanol/water partition coefficients, Kow) and pKa that would include commercial pesticide amines. In a series of six substituted phenethyl amines, strong bases with pKa∽9·5, all the compounds were strongly taken up by roots from solutions of pH 8·0; uptake declined substantially as the pH was lowered to 5·0, especially for the compounds of intermediate lipophilicity (log Kow 2 to 3). This uptake could be ascribed to three processes: (i) accumulation of the cation inside the root cells due to the negative charge on the plasmalemma, as given by the Nernst equation and important only for the polar compounds which have low permeation rates through membranes; (ii) accumulation into the vacuole by ion-trapping, which was the dominant process at high pH for all compounds and at all pH values for the compounds of intermediate lipophilicity; (iii) partitioning on to the root solids, substantial only for the most lipophilic compounds. Translocation to shoots was proportional to uptake by roots, this ratio being independent of external pH for each compound and being optimal for the compounds of intermediate lipophilicity. Such proportionality was also observed in a series of three weaker bases of intermediate lipophilicity, in which compounds of pKa 7·4 to 8·0 were also well taken up and translocated whereas the very weak base 4-ethylaniline (pKa 5·03) was much less so. Tests with quaternised pyridines confirmed that organic cations move only slowly through membranes. The observed behaviour of the amines could be modelled reasonably well assuming that transport within the plant was dominated by movement across membranes of the non-ionised species, and this appeared to be true even for the most lipophilic phenethylamine (log Kow 4·67) studied, though its long-distance movement would be as the protonated species. © 1998 Society of Chemical Industry  相似文献   

17.
The metabolism, uptake and translocation of paraquat in resistant (R) and susceptible (S) biotypes of Crassocephalum crepidioides (Benth.) S. Moore (redflower ragleaf) at the 10-leaf stage was investigated. A study on the properties of leaf surface was carried out to examine the relationship between leaf surface characters and paraquat absorption. The extractable paraquat was not metabolized by the leaf tissue of either the resistant or susceptible biotypes. Differential metabolism, therefore, does not appear to play a role in the mechanism of resistance. Both biotypes did not show any significant difference in the amount of cuticle and trichome densities. Furthermore, both biotypes are identical in the structure of stomata, trichomes and epicuticular wax. The results of the leaf surface studies are in agreement with the findings of the uptake study. Both biotypes demonstrated no significant difference in absorption between the resistant and susceptible biotypes. However, 10% of the absorbed 14C-paraquat into the S biotype was translocated basipetally, but not in the R biotype. The results of this study suggest that in C. crepidioides , differential translocation may contribute to the mechanism of resistance at the 10-leaf stage.  相似文献   

18.
Florasulam is a triazolopyrimidine sulfonanilide post-emergence broadleaf herbicide for use in wheat (Triticum aestivum L.). The selectivity of florasulam to wheat has been determined to be related primarily to a differential rate of metabolism between wheat with a half-life of 2.4 h and broadleaf weeds with half-lives ranging from 19 to >48 h. To a lesser extent, selectivity, at least for the broadleaf weed cleavers (Galium aparine L.), involves uptake differences. Rate of metabolism data were generated using greenhouse-grown plants injected with radiolabelled florasulam and subsequent extraction and processing by high-performance liquid chromatography (HPLC). Structures of metabolites were determined by isolation for nuclear magnetic resonance and liquid chromatography/mass spectrometry. Wheat plants metabolised florasulam by hydroxylation of the aniline ring para to the nitrogen, followed by conjugation to glucose. Metabolism by broadleaf weeds was so slow that isolation of metabolite was not possible, but comparison of HPLC data suggested hydroxylation as the major pathway.  相似文献   

19.
The uptake experiments with pesticides were performed to clarify differences among plant species, and the influence of growth stages and conditions on the uptake and translocation ability of pesticides. There were 2–10-fold differences among plant species in the root and shoot concentrations of each pesticide, and shoot concentrations of pesticides in Brassica rapa L. var. perviridis were relatively high. In addition, the changes in shoot concentrations with growth stage of B. rapa were affected by root system development. The influence of temperature on uptake and translocation ability differed for each pesticide, while uptake and translocation ability were high for short day lengths. This indicated that plant uptake and translocation of pesticides were affected by root system development and growth conditions such as temperature and day length, not only the relationships to the chemical’s properties and behavior of organic chemicals in the soil.  相似文献   

20.
采用喷雾法研究了大黄酚对黄瓜白粉病的生物活性及其在黄瓜组织中的内吸传导性。结果表明,大黄酚对黄瓜白粉病菌具有较高毒力,感染白粉病的叶片经200 mg/L的大黄酚处理2 d后,霉状物变褐色,病斑枯死。扫描电子显微镜观察显示,黄瓜白粉病菌经大黄酚处理后,菌丝和分生孢子梗扭曲、变形,分生孢子塌陷。盆栽试验表明,利用大黄酚防治黄瓜白粉病具有较长的持效期,黄瓜子叶上喷施100 mg/L的大黄酚,20 d后接种病原菌,其防效仍达84.83%,与有效成分500 mg/L的硫磺悬浮剂防效相近。此外,大黄酚在黄瓜组织中具有一定的跨层传导性,其横向传导性较弱,几乎无向顶及向基的传导性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号