首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The influence of frost boils on the development of cryozems (Turbic Cryosols) in the tundra zone of northern Yakutia is discussed. Mechanisms of the input, redistribution, and transformation of raw organic matter with its accumulation in the deep part of the profile of cryozems are elucidated. As a result, specific organomineral or organic horizons are formed above the permafrost table. The development of cryozems has a cyclic pattern: from the stage of barren frost boil to the stage of mature soil profile. However, this cycle can be interrupted at any stage of overgrowing of the barren surface of frost boil. The rates of overgrowing and the formation of the profile of cryozem, and the 14C age of organic matter accumulated in the organomineral suprapermafrost horizons are estimated.  相似文献   

2.
In the profiles of cryozems (Oxyaquic Turbic Cryosols) developing in tundra of northern Yakutia under conditions of shallow active layer, suprapermafrost horizons of the accumulation of raw organic matter are formed. Taking into account their genesis, stable and regular position in the soil profile, paragenetic links with the overlying horizons and neighboring soil profiles, and a set of diagnostic features and properties, these horizons can be separated as a new type of genetic soil horizons—the organomineral accumulative suprapermafrost horizon (CRO). Its qualitative composition (the ratio of organic and mineral matter in the material) can be reflected at a lower level. In relation to the separation of the new genetic horizon within the framework of the new Russian soil classification system, a new genetic types of soils—cryozem with suprapermafrost accumulation of raw organic matter (suprapermafrost organo-accumulative cryozem)—can be established. Its diagnostic profile has the following horizonation: (O, AO, T)–CR–CRO–┬C.  相似文献   

3.
On the basis of a large volume of literature and original data, the high content (1–7%) of organic matter in the mineral layer of loamy permafrost-affected soils of coastal lowlands in East Siberia (from the lower reaches of the Lena River to the lower reaches of the Kolyma River) has been statistically proved. In most cases, the reserves of Corg in the mineral layer of these soils exceed those in the surface organic horizons and constitute 60–90% of the total soil pool of Corg. The enrichment of the mineral layer with Corg is due to the cryogenic retention (retenization) of humus (the illuviation and accumulation of colorless humic substances above permafrost) and the cryogenic mass exchange (mechanical admixture of organic matter from the upper organic horizons into the mineral layers). The analysis of 60 soil profiles showed that the accumulation of organic matter above the permafrost table is observed in 43% of cases; in general, the organic matter distribution in the soil profiles is highly variable. A specific type of colorless humus is accumulated above the permafrost table. The mechanisms of its precipitation and transformation in the profile require further studies.  相似文献   

4.
The composition and fabric of the upper permafrost layer and its relationships with the permafrost-affected soils developing from the loamy substrates on the interfluves within coastal lowlands of northern Yakutia are considered. The studied area is characterized by the maximum activity of cryogenic processes and a shallow depth of seasonal thawing. The permafrost layer affected by the maximum thawing during the Holocene has a specific morphology attesting to the impact of soil processes on it. In general, the modern soil profile and the underlying permafrost layer can be distinguished as the soil-permafrost complex. It is subdivided into the soil profile, the transient layer, and the intermediate layer. The morphology and properties of the transient layer depend on the character of the soil horizons above the permafrost table. The lateral migration of raw organic substances takes place above the permafrost surface between the particular elements of the cryogenic soil complexes; this material tends to accumulate within the transient layer.  相似文献   

5.
Patterned ground and properties of permafrost soils of the Northsiberian Lena Delta The land surface of the Lena Delta is covered by polygon structures with scattered pingos and dunes. There exist so-called aerated, swampy and open polygons (open water surface) with Gelic Gleysols and Gelic Histosols (gelundic phase). The soils show only minor signs of cryoturbation and weathering. They contain high amounts of silt and slightly decomposed organic matter down to soil depths far beyond the permafrost table during summer. The soil surface is rising due to accumulation of organic matter and periodic flooding. This leads to a continuous rise of the permafrost table and subsequently to a permafrost freeze storage of plant material. The soils are therefore effective carbon sinks. On top of an investigated pingo a Gleyi-gelic Cambisol developed due to windexposed position, good drainage and higher soil temperatures connnected with a deeper permafrost table. This soil did not show any signs of cryoturbation. It has a relatively low content of organic matter due to a higher mineralization. As a consequence of frost effected sorting and wind erosion the soil material near to the surface is rich in sand and has a reduced silt content.  相似文献   

6.
Differently directed and heterochronous cryogenic processes have contributed to the contrasting soil cover patterns and spatial heterogeneity of the properties of soils in hydromorphic ecosystems of the discontinuous permafrost zone of the northern taiga in Western Siberia. Frost heave and permafrost thawing within ecosystems of highmoor bogs have led to the development of specific cryogenic landforms, such as flat-topped and large peat mounds. A set of cryogenic soils is developed in these ecosystems; it includes different variants of cryozems, gleyzems (Cryosols), and peat soils (Histosols). The distribution of these soil types is controlled by the local topography and thawing depth, other factors being insignificant. Alternation of peat horizons of different types and ages, whirl-like patterns of horizon boundaries, considerable variations in the thickness of soil horizons, and inversions of soil horizons under the impact of frost cracking, frost heave, and cryoturbation are typical of the considered soils. Thawing depth is the most significant factor affecting the thickness of organic horizons, the soil pH, and the degree of decomposition of peat. As a result of the upward movement of bog ecosystems under the impact of frost heave, peat soils are subjected to considerable transformation: peat horizons undergo mineralization, and the thickness of organic horizons decreases; in some cases, eluvial–illuvial differentiation of the mineral horizons takes place, and peat podzols are developed. However, the opposite process of the return of the soils to the bog stage of pedogenesis with peat accumulation may take place in any time in the case of activation of thermokarst processes.  相似文献   

7.
Morphological features, physicochemical properties, and specific characteristics of the organic matter of cryozems (Cryosols) under postpyrogenic larch forests affected by fires 2, 6, 22, 55, and 116 years ago are considered. The morphological changes in the soils affected by fires are manifested by the burning of the upper organic horizons with preservation of pyrogenic features in the soils for more than a century after the fire. In the first years (2 and 6 years) after the fire, the acidity of the organic horizons and their base saturation become lower. The postpyrogenic soils are characterized by the smaller contribution of the organic horizons to the total pools of soil organic carbon. In the studied cryozems, the organic carbon content is correlated with the contents of oxalate-extractable iron and aluminum. A decrease in the content of water-soluble organic compounds in the soils is observed after the fires; gradually, their content increases upon restoration of the ground cover.  相似文献   

8.
The role of cryogenic mass exchange in the distribution of the viable microfauna (ciliates, heterotrophic flagellates, and nematodes) in the profiles of cryoturbated cryogenic soils and in the upper layers of permafrost was revealed. The material for microbiological investigations was collected from the main horizons of cryozem profiles, including the zones with morphologically manifested processes of cryogenic mass exchange (the development of barren spots, cryoturbation, and suprapermafrost accumulation) and the zones affected by solifluction. The radiocarbon dating of the soil samples showed that the age of the organic cryogenic material and material buried in the course of solifluction varied from 2100 to 4500 years. Some zones with specific ecological conditions promoting the preservation of species diversity of the microfauna were found to develop in the cryozem profiles. A considerable part of the community (38% of ciliates, 58% of flagellates, and 50% of nematodes) maintained its viability in the dormant state, and in some cases, it could pass to the state of long-term cryobiosis in the upper layer of permafrost.  相似文献   

9.
Humic acids from polar soils—cryozems (Cryosols), gleyezems (Gleysols), and peat soils (Histosols)—have been studied by electron paramagnetic resonance spectroscopy. First information was acquired on the content of free radicals in humic acids from polar soils for the northern regions of Western Siberia (Gydan Peninsula, Belyi Island). It was found that polar soils are characterized by higher contents of free radicals than other zonal soils. This is related to the lower degree of humification of organic matter and the enhanced hydromorphism under continuous permafrost conditions. The low degree of organic matter humification in the cryolithozone was confirmed by the increased content of free radicals as determined by electron paramagnetic resonance, which indicates a low biothermodynamic stability of organic matter.  相似文献   

10.
In previous parts of this study, transformations of organic matter in mineral A and B horizons from a set of soils of temperate regions were characterised by Curie-point pyrolysis-mass spectrometry (Py/MS) and elucidated in terms of changes in the biopolymer composition. These changes were associated with the processes of eutrophic humification, illuviation and hydromorphism. Within the set (23 profiles from Scotland, chosen as representative of soil groups of the temperate zone) some 13 podzols and humic gleysols displayed raw humus surface horizons above their mineral A horizons.

The L, F and H layers of these organic horizons, where they were morphologically distinct, were successfully differentiated in terms of their biopolymer composition by Py/MS. These differences were of degree rather than kind. The principal components analysis of 50 ion intensities from the mass spectra demonstrated a single dominant factor of composition. The corresponding reconstructed factor spectrum showed, in the sense L→F→H, the loss of lignin and polysaccharide products derived from raw plant material and the increase of residual or humified structures characterized by homologous alkene and higher benzene pyrolysis products. Peat was found to be similar to the L and F material. The successful observation of these chemical differences by a rapidly applied method is contrasted with alternative indices of organic composition, C%, N%, C/N, and also with pH, none of which showed any significant differences between the L, F and H horizons.

The retarded process of humification which occurs in these horizons compares closely in terms of Py/MS with that occurring in anaerobic mineral soils and differs from the more rapid eutrophic humification in aerobic soils. The products resemble those from geochemical sediments.  相似文献   


11.
The morphology and properties of the soils of permafrost peatlands in the southeast of the Bol’shezemel’skaya tundra are characterized. The soils developing in the areas of barren peat circles differ from oligotrophic permafrost-affected peat soils (Cryic Histosols) of vegetated peat mounds in a number of morphological and physicochemical parameters. The soils of barren circles are characterized by the wellstructured surface horizons, relatively low exchangeable acidity, and higher rates of decomposition and humification of organic matter. It is shown that the development of barren peat circles on tops of peat mounds is favored by the activation of erosional and cryogenic processes in the topsoil. The role of winter wind erosion in the destruction of the upper peat and litter horizons is demonstrated. A comparative analysis of the temperature regime of soils of vegetated peat mounds and barren peat circles is presented. The soil–geocryological complex of peat mounds is a system consisting of three major layers: seasonally thawing layer–upper permafrost–underlying permafrost. The upper permafrost horizons of peat mounds at the depth of 50–90 cm are morphologically similar to the underlying permafrost. However, these layers differ in their physicochemical properties, especially in the composition and properties of their organic matter.  相似文献   

12.
To elucidate the mechanism of podzolization in its first stages we studied the fate of the water-soluble organic matter (WSOM) in incipient podzols in sandy soils by comparing the composition of the WSOM from L, F and H horizons with that in the bulk of the Bh horizons and fibres of three profiles. The WSOM appeared to consist significantly of ligno-cellulose and proteins, but these biopolymers were hardly present in the Bh horizons. The material of the fibres, however, greatly resembled the WSOM composition, thereby suggesting that in these soils most of the WSOM is transported through the B horizon and accumulates hardly changed in thin bands where the water stops moving. This implies that in the early steps of podzolization, accumulation of organic matter in the B horizon is not likely to be caused by water-soluble material.  相似文献   

13.
To evaluate the effects of forest fire and post-fire stand recovery on the organic layer chemistry and solute release within mound and trough microrelief elements (termed earth hummock microtopography) that mainly distribute permafrost affected area, we chose five fire plots (larch forests burned in 1951, 1981, 1990, 1994 and 2005) paired with adjacent control plots in mature larch forests in Central Siberian permafrost terrain. We determined total carbon, nitrogen and ash content in solid organic soils, and analyzed total carbon, nitrogen, bases and major anions in water extracts. There was a significant correlation between water-extracted organic carbon (WEOC) and total carbon (kg m−2) in area basis, implying that the quantity of total carbon was a major factor in WEOC production. WEOC correlated negatively with pH, indicating strong control by organic horizons (organic solute leaching) on soil acidity and base cation dynamics. The sum of water extractable base cations was also correlated significantly to total carbon, indicating that cations can be released through organic matter decomposition. Organic horizons in troughs in burned plots released greater amounts of Ca, Mg and K than those in mounds, probably due to greater content of organic matter as a cation source. Anions including nitrate and phosphate and WEOC also accumulated in trough depressions, due probably to organic matter degradation. The contrasting distribution of solutes between mounds and troughs in burned plots seems to be controlled by organic horizon development via changes in microtopography after forest fires.  相似文献   

14.
Specific features of soil formation in the taiga zone of Western Siberia are considered. The polygenetic nature of podzolic and gley-podzolic soils in the middle taiga zone, soddy-podzolic and soddy gley soils in the southern taiga zone, and meadow soils in the subtaiga zone is related to the pre-Holocene transformation of the lithogenic matrix upon activation of denudation and accumulation processes and the complicated Holocene evolution of these soils. A soil profile can be subdivided into separate layers according to the geomorphic features of the cryogenesis, the indices of interruption of soil formation, and the differences in the composition of the organic matter in the relict and modern humus horizons.  相似文献   

15.
Data on the distribution of the components of oil products that have accumulated in the arctic tundra soils of the Bol’shoi Lyakhovskii Island (the Novosibirskie Islands) under the impact of technogenic loads are analyzed. The examined soils differ in the vertical and lateral distribution patterns of the methanenaphthenic and naphthenic hydrocarbons and in the degree of their transformation. This is determined by the position of particular soils in the catenas and by the sorption of particular hydrocarbon compounds in the soils. The portion of light molecular-weight hydrocarbons in the upper horizons decreases by two-ten times in comparison with the deeper soil layers. In the lateral direction, the twofold difference in the contents of the methane-naphthenic and naphthenic hydrocarbons in the upper horizons is seen. The degree of transformation of the hydrocarbons under the impact of microbiological processes depends on the aeration conditions, the depth of permafrost table, the composition of oil products, and the soil organic matter content.  相似文献   

16.
The role of aluminium on humus accumulation in acid forest soils The impact of soil-borne aluminum on humus accumulation was investigated in a forest soil of the chestnut zone (Castanea sativa) in southern Switzerland (Ticino). Soil samples of two soils formed on bedrocks which differ mainly in their aluminum content were extracted with HNO3, NH4Ac.-EDTA, NH4Cl, KCl, and NH4F-HCl and analyzed for the most abundant elements. On gneiss which contains up to about 10% of total aluminum the common soil type in this area is a Cryptopodzol. This soil is similar to the nonallophanic Udands. It is rich in wellhumified organic matter and shows dark-colored Ah-, A(E)- and Bh-horizons. The soil samples of these horizons are extremely rich in nonexchangeable aluminum which is, however, extractable with NH4Ac.-EDTA. It is assumed that this Al is intimately bound to the organic matter. The soil samples of these horizons contain large amounts of HNO3-extractable phosphorus. Up to 90% of this P appears in the organic fraction. The content of NH4F-HCl-extractable P is only 0.7 to 3.4 mg/kg. It is concluded that due to excessive Al in the organic matter the humus mineralization is inhibited compared to the Haplumbrepts of the region.  相似文献   

17.
The accumulation and transformation of organic matter were studied in chronoseries of different-aged (3-, 10-, 20-, 30-, 43-, and 60-year-old) soils and a background (reference) plot. The ecogenetic succession of plants on sand quarry dumps was characterized. It was shown that the pedogenesis rate was closely related to the rate of phytocenosis development, and the thicknesses of organic and mineral horizons increased synchronously. The profile distribution of organic matter in young soils was estimated as an ectomorphic distribution, and the humus reserves in the mineral horizons of the same soils were comparable with the reserves of organic matter in the litters. The illuvial horizons of the soils under study played a significant role in the deposition of carbon dioxide; the resistance of organic matter to mineralization increased with age. In the soil chronoseries, the combustion heat of litter organic matter increased, as well as the content of energy accumulated in the litters. The composition of humus differed strongly between the eluvial and illuvial horizons; in the chronosequence, the relative content of humic acids increased in the E horizon, and that of fulvic acids increased in the B horizon. The effect of the phytocenosis on the soil was increasingly mediated with time. The accumulation and transformation of organic matter were the leading pedogenic processes at all stages.  相似文献   

18.
The method of chemodestructive fractionation is suggested to assess the composition of soil organic matter. This method is based on determination of the resilience of soil organic matter components and/or different parts of organic compounds to the impact of oxidizing agents. For this purpose, a series of solutions with similar concentration of the oxidant (K2Cr2O7), but with linearly increasing oxidative capacity was prepared. Chemodestructive fractionation showed that the portion of easily oxidizable (labile) organic matter in humus horizons of different soil types depends on the conditions of soil formation. It was maximal in hydromorphic soils of the taiga zone and minimal in automorphic soils of the dry steppe zone. The portion of easily oxidizable organic matter in arable soils increased with an increase in the rate of organic fertilizers application. The long-lasting agricultural use of soils and burying of the humus horizons within the upper one-meter layer resulted in the decreasing content of easily oxidizable organic matter. It was found that the portion of easily oxidizable organic matter decreases by the mid-summer or fall in comparison with the spring or early summer period.  相似文献   

19.
The accumulation of organic matter and the major nutrients associated with it (nitrogen and phosphorus) in soils of the mountain tundra is determined by the intensity of the processes of conservation of plant debris. A low nitrogen content (C : N = 12–26) is indicative of the accumulation of weakly humified organic matter. Organic phosphorus compounds mostly accumulate in organogenic horizons with organic matter humified to a greater degree.  相似文献   

20.
The rate of biochemical decomposition of organic matter in drained peaty soils has been studied for the black, sand‐mixed, and sand‐mantled farming systems with a concurrent analysis of hydrothermic conditions. The maximum depletion of peat was observed in the plow horizon for the black system and in the plow and subplow horizons for the mixed system. For the sand‐mantled system, two maximums were found for the biochemical decomposition of organic matter (in the plow horizon and in the zone of the open capillary fringe). Sand‐mixed and sand‐mantled cultures enhance the biochemical depletion of peat. An accelerated decomposition of the peat organic matter after addition of sand results in increasing the content of mobile nitrogen in soil and ground waters. Protection against the degradation is associated with control of the ground water table.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号