首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The site within the hypothalamic-pituitary axis at which cortisol acts to inhibit luteinizing hormone (LH) secretion was investigated in female pigs. Six ovariectomized, hypophysial stalk-transected (HST) gilts were given 1 microgram pulses of gonadotropin releasing-hormone (GnRH) iv every 45 min from day 0 to 12. On days 6-12, each of 3 gilts received either hydrocortisone acetate (HCA; 3.2 mg/kg body weight) or oil vehicle im at 12-hr intervals. Four ovariectomized, pituitary stalk-intact gilts served as controls and received HCA and pulses of 3.5% sodium citrate. Jugular blood was sampled daily and every 15 min for 5 hr on days 5 and 12. Treatment with HCA decreased serum LH concentrations and LH pulse frequency in stalk-intact animals. In contrast, serum LH concentrations, as well as the frequency and amplitude of LH pulses, were unaffected by HCA in HST gilts and were similar to those observed in oil-treated HST gilts. We suggest that chronically elevated concentrations of circulating cortisol inhibit LH secretion in pigs by acting at the level of the hypothalamus.  相似文献   

2.
Sixteen ovariectomized (OVX) mature gilts, averaging 139.6 ± 3.1 kg body weight (BW) were assigned randomly to receive either progesterone (P, 0.85 mg/kg BW, n=8) or corn oil vehicle (OIL, n=8) injections im twice daily for 10 d. On the day of experiment, all gilts received either the EAA agonist, N-methyl-d,l-aspartate (NMA; 10 mg/kg BW, iv) alone or NMA plus the EOP antagonist, naloxone (NAL, 1 mg/kg BW, iv), resulting in the following groups of 4 gilts each: OIL-NMA, OIL-NMA-NAL, P-NMA and P-NMA-NAL. Blood samples were collected via jugular cannula every 15 min for 6 hr. All pigs received NMA 5 min following pretreatment with either 0.9% saline or NAL 2 hr after blood collection began and a GnRH challenge 3 hr after NMA. Administration of NMA suppressed (P<0.03) LH secretion in OIL-NMA gilts and treatment with NAL failed to reverse the suppressive effect of NMA on LH secretion in OIL-NMA-NAL gilts. Similar to OIL-NMA gilts, NMA decreased (P<0.03) mean serum LH concentrations in P-NMA gilts. However, in P-NMA-NAL gilts, serum LH concentrations were not changed following treatment. All gilts responded to GnRH with increased (P<0.01) LH secretion. Additionally, administration of NMA increased (P<0.01) growth hormone (GH) and prolactin (PRL) secretion in both OIL-NMA and P-NMA gilts, but this increase in GH and PRL secretion was attenuated (P<0.01) by pretreatment with NAL in OIL-NMA-NAL and P-NMA-NAL gilts. Serum cortisol concentrations increased (P<0.01) in all gilts and the magnitude of the cortisol response was not different among groups. In summary, results of the present study confirmed previous findings that NMA suppresses LH secretion in both oil- and P-treated OVX gilts, but we failed to provide definitive evidence that EOP are involved in the NMA-induced suppression of LH secretion. However, NMA may, in part, activate the EOP system which in turn increased GH and PRL secretion in the gilt.  相似文献   

3.
Two experiments were performed to examine the influence of exogenous growth hormone on the reproductive axis in gilts. Experiment one employed 26 Yorkshire × Landrace prepubertal gilts, which were selected at 150 d and 86.5 ± 1.5 kg bodyweight (BW) and assigned equally to two treatments. Gilts received injections of either porcine growth hormone at 90 μg/kg BW, or vehicle buffer, from 150 to 159 d. At 154 d gilts received 500 IU PMSG, followed 96 hr later by 250 IU hCG. Gilts were slaughtered at 163 days and their ovaries recovered to determine ovulatory status. In each treatment, gilts failed to show any ovarian response to PMSG/hCG. All remaining control gilts ovulated and their ovaries appeared morphologically normal. In gilts receiving exogenous growth hormone, fewer ovaries (4/11, P<.01) appeared morphologically normal. The ovaries of all other growth hormone injected gilts had very large (12–25 mm) non-luteinized follicles. In experiment two, 20 prepubertal Yorkshire × Landrace gilts were selected at 138 days and 85 kg BW. These gilts received injections of growth hormone at 90 μg/kg BW (n=9) or vehicle (n=11) from 138 to 147 days. At 143 days, all gilts were given an injection of estradiol benzoate (EB) at 15 μg/kg BW. Blood samples were taken at the time of EB injection, at 24 and 36 hr and then at 6 hr intervals until 78 hr. All samples were assayed for serum LH concentrations. The EB induced LH peak height was lower (P<.04) in gilts receiving exogenous growth hormone than in controls. The results presented indicate that the daily injection of growth hormone at 90 μg/kg BW reduced the estradiol-induced release of LH in addition to reducing the number of corpora lutea in gonadotrophin stimulated gilts.  相似文献   

4.
In experiment 1, nine prepuberal crossbred gilts 145 +/- 2 days of age and 90.3 +/- 1.6 kg body weight (BW) were hypophysial stalk-transected (HST) or sham-HST. Starting at 0800 on Day 1 (35 +/- 2 days after surgery), three sham-HST and two HST gilts received 3.5% sodium citrate vehicle (V) while two HST gilts and two sham-HST gilts received pulses of 2.5 micrograms GnRH every 45 min for 9 days via a jugular vein cannula. At 0800 on day 7, all gilts received 1,000 IU of pregnant mare serum gonadotropin (PMSG) im. Blood was sampled every 15 min from 0800 to 0845 on Days 1 through 6. On Day 10, ovarian morphology and ovarian and follicular fluid weights were recorded. In experiment 2, eight prepuberal crossbred gilts, 146 +/- 6 days of age and 79.5 +/- 1.5 kg BW, were HST or sham-HST. Starting at 0800 on Day 1 (7 +/- 4 days after surgery), two sham-HST and three HST gilts received V, while three HST gilts received pulses of 2.5 micrograms GnRH every 45 min for 8 days. At 1200 on Day 5, all gilts, including three unoperated controls (UC), received 1,000 IU of PMSG im. Blood was sampled from all but UC gilts every 15 min from 0800 to 0845 on Days 1 through 5. Ovarian data were obtained on Day 9. The HST + V gilts failed to respond to PMSG, whereas growth of ovulatory follicles was stimulated in the other groups in both experiments.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Adenohypophyseal concentrations of LHRH receptors, pituitary content of LH and FSH, and plasma concentrations of LH were determined in thirty Hereford, Angus or Hereford-Angus heifers that were randomly assigned by breed and weight to five periods including day 3 of the estrous cycle (CY), pregnant day 120 (P120), 200 (P200), 275 (P275), or day 2 postpartum (PP). Jugular blood samples were collected at 10-min intervals for 8 hr from all cows. Within 2 hr after completion of blood sampling, animals were slaughtered and the pituitary gland frozen at −196 C. LH pulse frequency/8 hr was reduced (P<.05) during gestation (.5, .2, and 1.5 ± .5/8 hr, for P120, P200, and P275, respectively) and PP (.5 ± .5/8 hr) compared to CY (7.8 ± .5/8 hr). Frequency of LH pulses/8 hr was not different (P>.1) among P120, P200 or PP periods but was different (P<.05) between P200 and P275. There were no differences in LH pulse height (P>.1) among periods; however, pulse amplitude was greatest (P<.05) at P120 (1.3 ± .2 ng/ml) and lowest between P200 and PP (.6 to .8 ± .2 ng/ml). Baseline concentrations of plasma LH did not differ (P>.1) among P and PP periods (.3 ± .1 ng/ml), but were lower (P<.05) than in CY animals (.7 ± .1 ng/ml). Concentration of adenohypophyseal LHRH receptors was approximately two-fold greater (P<.05) at P120 (25.85 ± 2.2 fmol/mg) than at all other periods (9.5 to 14.9 ± 2.2 fmol/mg). Pituitary content of LH was greatest at P120 (1.56 ± .11 ug/mg) and lowest (P<.05) at P275 and PP (0.46 to 0.52 ± .11 ug/mg). Pituitary content of FSH was greatest (P<.05) in P (12.7 to 17.0 ± 1.4 ug/mg) and PP (18.3 ± 1.4 ug/mg) vs CY (5.0 ± 1.4 ug/mg) cows and increased from P120 to PP (P<.05). Results indicate that physiological changes occurring during gestation may have an effect on subsequent function of the adenohypophysis in beef cows.  相似文献   

6.
The aim of the experiment was to determine the acute and chronic effects of the β-agonist, cimaterol, on plasma hormone and metabolite concentrations in steers. Twelve Friesian steers (liveweight = 488 ± 3 kg) were randomly assigned to receive either 0 (control; n=6) or .09 mg cimaterol/kg body weight/day (treated; n=6). Steers were fed grass silage ad libitum. Cimaterol, dissolved in 140 ml of acidified distilled water (pH 4.2), was administered orally at 1400 hr each d. After 13 d of treatment with cimaterol or vehicle (days 1 to 13), all animals were treated with vehicle for a further 7 d (days 14 to 20). On days 1, 13 and 20, blood samples were collected at 20 min-intervals for 4 hr before and 8 hr after cimaterol or vehicle dosing. All samples were assayed for growth hormone (GH) and insulin, while samples taken at −4, −2, 0, +2, +4, +6 and +8 hr relative to dosing were assayed for thyroxine (T4), triiodothyronine (T3), cortisol, urea, glucose and non-esterified fatty acids (NEFA). Samples taken at −3 and +3 hr relative to dosing were assayed for IGF-I only. On day 1, cimaterol acutely reduced (P<.05) GH and urea concentrations (7.6 vs 2.9 ± 1.4 ng/ml; and 6.0 vs 4.9 ± 0.45 mmol/l, respectively; mean control vs mean treated ± pooled standard error of difference), and increased (P<.05) NEFA, glucose and insulin concentrations (160 vs 276 ± 22 μmol/l, 4.1 vs 6.2 ± 0.15 mmol/l and 29.9 vs 179.7 ± 13.9 μU/ml, respectively). Plasma IGF-I, T3, T4 and cortisol concentrations were not altered by treatment. On day 13, cimaterol increased (P<.05) GH and NEFA concentrations (7.7 vs 14.5 ± 1.4 ng/ml and 202 vs 310 ± 22 mEq/l, respectively) and reduced (P<.05) plasma IGF-I concentrations (1296 vs 776 ± 227 ng/ml). Seven-d withdrawal of cimaterol (day 20) returned hormone and metabolite concentrations to control values. It is concluded that : 1) cimaterol acutely increased insulin, glucose and NEFA and decreased GH and urea concentrations, 2) cimaterol chronically increased GH and NEFA and decreased IGF-I concentrations, and 3) there was no residual effect of cimaterol following a 7-d withdrawal period.  相似文献   

7.
The objective was to test the hypothesis that dopamine regulates prolactin (PRL) secretion by determining acute changes in catecholamine concentrations in hypophyseal portal blood of cattle, and their relation to peripheral blood concentration of PRL in hypophyseal stalk-transected (HST) and sham-operated controls (SOC). Holstein heifers (606 +/- 21 kg BW; mean +/- SE) were subjected to neurosurgery for 8 h to collect hypophyseal portal blood with a stainless steel cannula designed with a cuff placed under the pituitary stalk and peripheral blood via a jugular vein catheter. PRL plasma concentration was measured by radioimmunoassay, and dopamine and norepinephrine in portal plasma by radioenzymatic assay. During anesthesia before HST or SOC, PRL plasma concentration ranged from 20-40 ng/ml throughout 255 min. PRL abruptly increased and remained above 90 ng/ml after HST compared with a steady decrease to <20 ng/ml in SOC heifers throughout 440 min. Within 5 min after severing the hypophyseal stalk, dopamine in portal blood (>8 ng/ml) was significantly increased (P < 0.05) compared with peripheral blood (<2 ng/ml). Norepinephrine concentration in portal blood was significantly greater (P < 0.05) than in peripheral blood during the first 60 min. The sustained high PRL level in peripheral plasma after severing the hypophyseal stalk stimulated hypothalamic dopamine secretion from hypophyseal portal vessels during the prolonged period of blood collection. Norepinephrine concentration in these cattle was greater in hypophyseal portal than in peripheral blood, implicating both an important hypothalamic source of the catecholamine as well as an adrenal gland contribution during anesthesia.  相似文献   

8.
Two experiments were conducted to determine the minimal effective dose during lactation and site of action of N-methyl-d,l-aspartic acid (NMA) for elicitation of release of luteinizing hormone (LH) in female pigs. In the first experiment, three doses of NMA were given to lactating primiparous sows in which endogenous LH was suppressed by suckling of litters. In the second experiment, ovariectomized gilts were pretreated with estradiol benzoate or porcine antisera against GnRH to suppress LH and then given NMA to determine if it elicited secretion of LH directly at the anterior pituitary or through release of GnRH. In experiment 1, 3 lactating sows (17 +/- 1.5 d postpartum) were each given three doses of NMA (1.5, 3.0 and 5.0 mg/kg body weight [BW]; IV) on 3 consecutive days in a Latin Square design. Blood samples were collected every 10 min from -1 to 1 hr from injection of NMA. NMA at 1.5 and 3.0 mg/kg did not affect (p greater than .5) secretion of LH; however, 5 mg NMA/kg elicited a 114% increase (p less than .001) in circulating levels of LH during 1 hr after treatment. In experiment 2, 8 ovariectomized gilts were given either estradiol benzoate (EB; 10 micrograms/kg BW; IM n = 4) to suppress release of GnRH or porcine antiserum against GnRH (GnRH-Ab; titer 1:8,000; 1 ml/kg BW; IV; n = 4) to neutralize endogenous GnRH. Gilts infused with GnRH-Ab were given a second dose of antiserum 24 hr after the first. Gilts were then given NMA (10 mg/kg BW; IV) 33 hr after EB or initial GnRH-Ab. Blood samples were drawn every 6 hr from -12 to 24 hr from EB or GnRH-Ab treatments, and every 10 min from -2 to 2 hr from NMA. Serum LH declined (p less than .001) after EB (from 1.87 +/- .2 ng/ml at 12 hr before EB to 0.46 +/- .02 ng/ml during 24 hr after EB) and GnRH-Ab (from 1.97 +/- .1 to 0.59 +/- .02 ng/ml). In gilts treated with EB, the area under the curve (AUC) for the LH response (ng.ml-1.min) 1 hr after NMA (38.7 +/- 3) was significantly greater (p less than .01) than the 1 hr prior to NMA (21.3 +/- 1.5). Treatment with NMA had no effect (p greater than .5) on secretion of LH in gilts infused with GnRH-Ab.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

9.
Ten gilts on day 6·11 of the estrous cycle (onset of estrus = day 0) were given 115 mg of naloxone (NAL), an opioid antagonist, in saline i.v. (n = 5) or saline Lv. (n = 5). Jugular blood was collected at 15 min intervals for 2 hr before and 4 hr after treatment. Serum LH concentrations were 0.4 ± 0.1 ng/ml before NAL treatment, increased (P<.01) to 4.3 ± 0.7 ng/ml at 15 min following NAL treatment and returned to control concentrations by 75 minutes. Serum PRL concentrations were 5.0 ± 0.1 ng/ml before NAL treatment, increased (P<.05) to 14.8 ± 2.9 ng/ml at 30 min following NAL treatment and returned to control concentrations by 120 minutes. Serum LH and PRL concentrations were 0.5 ± 0.1 ng/ml and 5.2 ± 0.4 ng/ml, respectively, at 15 min following saline treatment and remained unchanged throughout the blood sampling period. Four of the 5 NAL treated gilts responded with an increase in both serum LH and PRL concentrations. The mean of serum progesterone concentrations, quantitated in samples taken every 2 hr, were similar for controls (22.7 ± 1.8 ng/ml) and NAL (26.5 ± 1.4 ng/ml) treated gilts. The gilt which failed to respond to NAL had nondetectable concentrations of serum progesterone and was excluded from analysis. These data indicate that the opioids modulate LH and PRL secretion during the luteal phase of the estrous cycle.  相似文献   

10.
Five ovariectomized (OVX) gilts were placed in each of two chambers at 20 C with a photoperiod of 12 h light and 12 h dark for 8 d (12L:12D). On d 1, blood samples were collected via jugular cannula every 30 min from 0830 to 1630. At 1630, 200 micrograms of thyrotropin releasing hormone (TRH) were injected iv and blood samples taken every 10 min for 1 h and every 30 min for the next 2 h. On d 2, samples were taken every 30 min from 0830 to 0930 and from 1530 to 1630. Temperature was changed to 10 C or 30 C on d 3. Samples were taken from 0830 to 1630 on d 3, 4 and 9. At 1630 on d 9, the TRH challenge was repeated. Mean basal serum concentrations of prolactin (PRL) were similar for all gilts and for all periods. However, serum PRL response (ng PRL X ml-1 X 150 min-1) to TRH increased (P less than .0001) after exposure to 30 C, while exposure to 10 C failed to alter PRL response. In Exp. 2, six ovariectomized gilts were assigned to each chamber. The protocol of Exp. 1 was followed through d 3, except temperature and photoperiod were changed to 10 C and 8L:16D or 30 C and 16L:8D. On d 34 the TRH challenge was repeated. Mean basal serum concentration of PRL was similar for all gilts and all periods. However, simultaneous increases in temperature and photoperiod increased (P less than .005) serum PRL response to TRH, whereas simultaneous decreases in temperature and photoperiod failed to alter PRL response to TRH.  相似文献   

11.
Three studies were conducted to examine the role of progesterone in stimulating sexual receptivity in estrogen-treated, ovariectomized gilts. Progesterone was administered either before, simultaneously with, or 48 h after estrogen. In each study, gilts were treated with either a suboptimal or an optimal dosage of estradiol benzoate (EB). Progesterone treatment (600 micrograms/kg BW-1 X injection-1) on alternate days for a total of four injections produced serum concentrations of progesterone that were maximal at 9.4 ng/ml and remained greater than 1 ng/ml for 15 d. Estradiol benzoate was administered 22 d after the first of these progesterone injections. When progesterone was administered concurrently with or 48 h after EB, the dosage was 100 micrograms/kg BW and produced a maximal serum progesterone concentration of 1.8 ng/ml 4 h after treatment. Gilts were placed in an evaluation pen with a boar for 5 min on d 3 and 4 after EB treatment. Traits of interest were total number of mounts by the boar, mounts before the gilt showed the immobilization response, proportion of gilts that showed the immobilization response, and latency from entry of the gilt into the evaluation pen until the immobilization response. In none of the three studies did progesterone improve any of the traits of interest. In each study the immobilization response was observed in a higher proportion of gilts treated with the optimal than in those treated with the suboptimal dosage of EB. Latency from entry of gilts into the evaluation pen until the immobilization response was less on d 4 than on d 3 after EB in all studies.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Effects of two winter nutritional levels (LOW, MOD) and two summer pastures (bahiagrass, BG; perennial peanut, PP) on plasma IGF-I, and the relationship between IGF-I and average daily gain (ADG), thyroid hormones, plasma urea, packed cell volume (PCV) and steer type were determined in 101 steers (217 kg) varying in breed composition, frame size and initial condition. Relationships between body composition or composition of gain and IGF-I were determined in 11 contemporary steers assigned directly to the feedlot. Initial IGF-I (57.9 ± 3.5 ng/ml) was positively correlated (P<.05) to initial condition, estimated percentage of Brahman and plasma T3, but not related to subsequent ADG. During the 126-day wintering period, ADG was .21 kg for the LOW winter treatment and .47 kg for the MOD winter treatment. Concentration of IGF-I in the wintering period was affected (P<.01) by nutritional level (LOW = 71.8 ng/ml, MOD = 150.6 ng/ml) and was positively related to winter ADG in MOD steers (P<.01) but not in LOW steers. Concentration of IGF-I in winter was also positively related to condition at the end of the winter period (P<.01), T3 (P<.05) and T4 (P<.05). There were no effects of winter treatment on IGF-I during the subsequent summer pasture period. During the 145-d summer period, ADG was .53 kg for BG and .68 kg for PP. Concentration of IGF-I during the summer period was affected (P<.05) by pasture treatment (BG = 138.6 ng/ml, PP = 181.9 ng/ml), was positively related (P<.01) to PCV and percentage of Brahman, and was negatively related (P<.05) to estimated percentage of English breeding. In steers assigned directly to the feedlot, IGF-I was correlated with empty body (EB) weight (r=−.59, P<.10), EB water (r=−.59, P<.10) and EB protein (r=−.60, P<.10) at slaughter, and with days on feed (r=−.65, P<.05), but was not correlated with ADG or rate of component gain. These data indicate that IGF-I is related to nutritional status in steers as in other species, that there may be significant breed or cattle type differences in circulating concentrations of IGF-I, and that circulating concentration of IGF-I may be functionally related to plasma concentration of thyroid hormones.  相似文献   

13.
An attempt was made to induce precocious puberty in gilts approximately 164 days of age by stimulating a luteinizing hormone (LH) secretory pattern similar to that which occurs before normal onset of puberty. Hourly iv administration of 1 μg synthetic gonadotropin releasing hormone (GnRH) for 7 or 8 days resulted in a mean serum LH concentration of 1.7 ± .3 ng/ml in three treated gilts compared with .9 ± .1 ng/ml in three control gilts (P<.08). Serum LH peak frequency was also greater (P<.05) in treated (3.4 ± .5 peaks/4 hr) than in control gilts (1.2 ± .1 peaks/4 hr), but serum LH peak amplitude was not altered (P>.33) by GnRH treatment. All treated gilts displayed estrus and ovulated within 6 days after treatment began, and all control gilts remained prepuberal throughout the study (P=.05). Only one of the three treated gilts displayed a normal estrous cycle and reovulated after treatment. Precocious ovulation but not puberty was induced in gilts by hourly administration of 1 μg synthetic GnRH, indicating that the pituitary and ovaries of 164-day-old gilts are competent and that final sexual maturation occurs at the hypothalamic level.  相似文献   

14.
Our objective was to examine the ability of thyroid releasing hormone (TRH) to stimulate not only the release of the thyroid hormones, but also prolactin (PRL) in the female pig. An experiment was conducted to determine the effect of dose and route of administration of TRH on the concentration of PRL and thyroxine (T4) in cyclic gilts. Six gilts were injected with 0, 5, 25, 125, and 625 micrograms TRH and fed 0, 5, 2.5, 12.5 and 62.5 mg TRH. Gilts received TRH once daily. During the 10-day treatment period, route of TRH administration alternated between i.v. injection and feeding. The dose of TRH progressed from the lowest to the highest. Blood samples were taken prior to TRH injection and thereafter at 15-min intervals for 3 hr. Sampling continued for an additional 3 hr at 30-min intervals when TRH was fed. Concentrations of PRL and T4 were determined by radioimmunoassay. Intravenous injection of gilts with 125 and 625 micrograms TRH resulted in an increase in PRL from 0 to 15 min (P less than .05). All doses of TRH given i.v. elevated T4 over a 2-hr period (P less than .01). TRH failed to increase PRL when TRH was fed (P greater than .5). The feeding of 62.5 mg TRH elevated T4 from 0 to 6 hr (P less than .01). Thus, TRH injection increased PRL rapidly and T4 gradually. When TRH was fed, only a gradual elevation in T4 was observed. We conclude that TRH can elicit the release of both PRL and T4 in the cyclic gilt, but magnitude and duration of the PRL and T4 response depends on the dose and route of TRH administration.  相似文献   

15.
Effects of pituitary stalk-transection on plasma concentrations of luteinizing hormone (LH), follicle stimulating hormone (FSH) prolactin (PRL) and progesterone were investigated during the estrous cycle of ewes. Pituitary stalk (SS) or sham (SH) transection was performed on day 1 (estrus = day 0) of the estrous cycle. A Teflon or Silastic barrier was placed between the cut ends of the stalk to prevent reorganization of the portal vasculature. Immediately following surgery, pulsatile administration of gonadotropin releasing hormone (GnRH, 200 ng/hr) or .9% NaCl was initiated and continued for the duration of the experiment. Estradiol benzoate (EB, 50 μg im) was administered to all ewes on day 3. Mean concentrations of LH were greater in SS ewes than in SH ewes (P<.05). There was a trend (P=.06) for the concentration of LH to be higher in ewes with Teflon compared with Silastic barriers between the cut ends of the stalk. Infusion of GnRH elevated concentrations of LH in both SS and SH ewes (P<.05). Concentrations of progesterone were reduced (P<.01) in saline-infused SS ewes while infusion of GnRH in SS ewes maintained concentrations of progesterone similar to saline-infused SH ewes. The concentrations of FSH or PRL were unaffected by SS, type of barrier or treatment with GnRH. Administration of EB failed to induce a surge of LH except in a SH ewe infused with GnRH. Ewes were more responsive to infusion of GnRH following SS than after SH as reflected by increased plasma concentrations of LH and progesterone.  相似文献   

16.
Primiparous gilts were given subcutaneous injections of saline solution or 8 mg of Escherichia coli endotoxin (055:B5 strain) in saline solution on postpartum days (PPD) 2 and/or 6 and saline solution at the same site on PPD 1, 3, 5, and 7 at 1000 hours. On PPD 1 to 3 and on PPD 5 to 7, pigs were given 100 micrograms of thyrotropin-releasing hormone (TRH) IV at 1300 hours to evaluate TRH-induced prolactin (PRL) release. Blood samples were analyzed for PRL, cortisol, triiodothyronine (T3), and tetraiodothyronine (T4) concentrations. Rectal temperatures were monitored at hourly intervals between 0800 and 1500 hours on PPD 2 and 6. The PRL declined after endotoxin administration on PPD 2, but a similar decline was not seen after saline solution administration on PPD 1, 2, or 3. The PRL concentrations remained unchanged on PPD 5, 6, and 7 in gilts exposed to endotoxin for the 1st or 2nd time on PPD 6 and to saline solution on PPD 5 and 7. The TRH injection caused increases in PRL in all animals, but the PRL increase after TRH injection was significantly lower (P less than 0.05) in gilts treated with endotoxin on PPD 2. Cortisol concentrations increased after endotoxin exposure on PPD 2 and 6. Rectal temperatures increased after endotoxin exposure on PPD 2 and 6 with peak temperatures of 41.8 C and 41.6 C seen 4 and 3 hours, respectively, after endotoxin injection. The T3 and T4 response, used as an indicator of TRH perfusion of the adenohypophysis, was unchanged after endotoxin or saline solution administration.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
The effects of n-methyl-d,l-aspartate (NMA), a neuroexcitatory amino acid agonist, on luteinizing hormone (LH), prolactin (PRL) and growth hormone (GH) secretion in gilts treated with ovarian steroids was studied. Mature gilts which had displayed one or more estrous cycles of 18 to 22 d were ovariectomized and assigned to one of three treatments administered i.m.: corn oil vehicle (V; n = 6); 10 micrograms estradiol-17 b/kg BW given 33 hr before NMA (E; n = 6); .85 mg progesterone/kg BW given twice daily for 6 d prior to NMA (P4; n = 6). Blood was collected via jugular cannulae every 15 min for 6 hr. Pigs received 10 mg NMA/kg BW i.v. 2 hr after blood collection began and a combined synthetic [Ala15]-h GH releasing factor (1-29)-NH2 (GRF; 1 micrograms/kg BW) and gonadotropin releasing hormone (GnRH; .2 micrograms/kg BW) challenge given i.v. 3 hr after NMA. NMA did not alter LH secretion in E gilts. However, NMA decreased (P < .02) serum LH concentrations in V and P4 gilts. Serum LH concentrations increased (P < .01) after GnRH in all gilts. NMA did not alter PRL secretion in P4 pigs, but increased (P < .01) serum PRL concentrations in V and E animals. Treatment with NMA increased (P < .01) GH secretion in all animals while the GRF challenge increased (P < .01) serum GH concentrations in all animals except in V treated pigs. NMA increased (P < .05) cortisol secretion in all treatment groups. These results indicate that NMA inhibits LH secretion and is a secretagogue of PRL, GH and cortisol secretion with ovarian steroids modulating the LH and PRL response to NMA.  相似文献   

18.
The objective of this study was to examine the effects of somatotropin (ST) on porcine reproductive and metabolic statuses during early pregnancy. Four pregnant crossbred gilts received 6 mg of recombinant porcine somatotropin (rpST) daily from days 10 to 27 after artificial insemination while six pregnant gilts served as controls. Blood samples were taken on days 8, 10, 12, 14, 18, 22, and 27 prior to rpST injections (8:00 h) and subsequently at 9:00, 10:00, 12:00, 14:00, 16:00, 18:00, and 20:00 h. On all remaining days of treatment, samples were taken once daily before injections (8:00 h). The samples were assayed for the metabolic hormones: ST, insulin-like growth factor I (IGF-I), insulin, thyroxine (T4), triiodothyronine (T3), and cortisol; for metabolites: free fatty acids (FFA) and glucose; and for the reproductive hormones: luteinizing hormone (LH), progesterone, estradiol-17β, estrone sulfate, and prostaglandin F2. Delivery of rpST daily induced a 20- to 40-fold increase in plasma ST concentrations. Moreover, repeated administration of rpST resulted in a continuous increase in plasma IGF-I concentration (P<0.001), from 191.0±22.3–340.0±15.3 ng/mL 24 h after initial injection to 591.3±46.8 ng/mL after final injections. Mean serum insulin tended to be greater in rpST-treated gilts. Blood concentrations of T4 were reduced (P<0.05) from day 14 of gestation in treated gilts while T3 concentrations remained unchanged. Concentrations of both glucose and FFA were greater (P<0.01) and cortisol concentrations were unchanged in treated gilts. Changes in reproductive steroid hormones were minimally affected. Circulating progesterone (P=0.078), and estradiol-17β (P=0.087) concentrations tended to be lower in treated animals. These data show that treatment of pregnant gilts with rpST during early gestation mainly impacts metabolic rather than reproductive status.  相似文献   

19.
The purpose of the present study was to determine experimental conditions to stimulate secretion of thyroid hormones (T3 and T4) with thyrotropin-releasing hormone (TRH) injections in suckling piglets during the first weeks of postnatal life. Three consecutive experiments were conducted. Four 10–20 d old piglets were i.m. injected with 0, 20, 100, 500 μg (experiment 1) or 0, 4, 20, 100 μg TRH/kg BW (experiment 2) according to a 4 × 4 latin square design involving different litters in each experiment. Blood samples were taken −15, −1, 15, 30, 45, 60, 90, 120 180 and 300 min after TRH injection in experiment 1, and −.25, −.08, .25, .5, 1, 2, 4, 6, 8, 12, 24, 30, 36, 48, 60 and 72 hr after TRH injection in experiment 2. T3 and T4 levels were significantly (P<.01) increased as soon as 30 and 45 min after TRH injection, respectively. Maximal levels of T3 and T4 were obtained 2 and 4 hr after the injection of 100 μg TRH. T3 and T4 returned to basal levels within 6 and 8 hr post injection, respectively. Plasma pGH levels were significantly (P<.001) increased 15 min after TRH injection in piglets injected with 500 μg. In experiment 3, 100 μg TRH/kg BW were injected i.m. either daily or every other day from .0 to 23 days of age. Results showed that T4 response to TRH did not decrease after repeated injections. These results indicate that daily i.m. injections of 100 μg TRH/kg BW can be used to increase thyroid hormone levels for at least 13 d in the young suckling piglet.  相似文献   

20.
Two experiments (Exp) were conducted to examine in vitro the release of gonadotropin releasing hormone (GnRH) from the hypothalamus after treatment with naloxone (NAL) or morphine (MOR). In Exp 1, hypothalamic-preoptic area (HYP-POA) collected from 3 market weight gilts at sacrifice and sagitally halved were perifused for 90 min prior to a 10 min pulse of morphine (MOR; 4.5 × 10−6 M) followed by NAL (3.1 × 10−5 M) during the last 5 min of MOR (MOR + NAL; N=3). The other half of the explants (n=3) were exposed to NAL for 5 min. Fragments were exposed to KCl (60 mM) at 175 min to assess residual GnRH releasability. In Exp 2, nine gilts were ovariectomized and received either oil vehicle im (V; n=3); 10 μg estradiol-17β/kg BW im 42 hr before sacrifice (E; n=3); .85 mg progesterone/kg BW im twice daily for 6 d prior to sacrifice (P4; n=3). Blood was collected to assess pituitary sensitivity to GnRH (.2 μg/kg BW) on the day prior to sacrifice. On the day of sacrifice HYP-POA explants were collected and treated as described in Exp 1 except tissue received only NAL. In Exp 1, NAL increased (P<.05) GnRH release. This response to NAL was attenuated (P<.05) by coadministration of MOR. Cumulative GnRH release after NAL was greater (P<.05) than after MOR + NAL. All tissues responded similarly to KCl with an increase (P<.05) in GnRH release. In Exp 2, pretreatment luteinizing hormone (LH) concentrations were lower (P<.05) in E gilts compared to V and P4 animals with P4 being lower (P<.05) than V gilts. LH response to GnRH was lower (P<.05) in E pigs than in V and P4 animals, while the responses was similar between V and P4 gilts. NAL increased GnRH release in all explants, whereas, KCl increased GnRH release in 6 of 9 explants. These results indicate that endogenous opioid peptides may modulate in vitro GnRH release from the hypothalamus in the gilt.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号