首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A flotation method for the rapid measurement of the wet bulk density of soil clods is described in which the clods are sprayed with a waterproof coating of a resin and then immersed sequentially in liquids of different specific gravity. It is compared with the wax coating method for a selection of soil textures and moisture contents and shown to be ten times as rapid when used to measure wet bulk density with an accuracy of ± 0.05 g cm-8. The flotation method was used to show that, for three contrasting soils, clod wet bulk density is independent of clod size.  相似文献   

2.
赵诚斋  赵渭生 《土壤学报》1979,16(3):265-276
本文就苏南地区二种粘质水稻土的土壤紧实度和土块组成对水稻生长的影响进行了研究,并对不同方法耕作后耕层土块的组成状况进行了观测,结果指出:土壤紧实度和土块/细土比例的不同对水稻生长有明显的影响,土壤紧实度对水稻生长的影响是通过土壤对根的机械阻力,抑制土壤养分的转化及水分物理特性的改变所致;而土块组成的影响可能主要是影响土壤养分的转化。研磨细了的土壤转化成NH4-N的量最高,土块大于1厘米者对NH4-N的产生受到严重抑制,因此认为,春耕后耕层中小于1厘米的土块是评定春耕质量的一个重要指标,耕层土块大于8厘米时妨碍栽秧操作,8-4厘米者影响次之,1-4厘米者对栽秧无影响。对于要获得较小土块组成的耕作质量,旋转耕作效果最好,机耙最差,但土壤经过充分晒垡后,各种耕作方法均可获得较好的相同效果,这时,对合适机具的选择主要可从经济效益考虑。渍水条件下土垡经过挤压受损后,可使土块膨软,这或对土壤养分的释放有利,故一般用于春耕机具,只考虑其切割效果而不同时考虑挤压作用是不足的。  相似文献   

3.
The early stages of bacterial colonization of a sterilized soil put in contact with the same non-sterile soil were investigated. Soil mesocosms of 269 cm3 composed of sterilized spherical remoulded soil clods of 27 mm diameter surrounded by non-sterilized 2-4 mm soil aggregates of the same soil (considered as a source of bacterial colonizers) were designed. Bacterial colonization was monitored from 0 to 14 days in three concentric portions of the sterilized clods (outer, intermediate and inner) and in the surrounding non-sterile soil, by measuring cell numbers and substrate-induced respiration (SIR). In addition, modifications of genetic diversity of the soil bacterial community associated to colonization were monitored with the ribosomal intergenic spacer analysis (RISA) technique in the intermediate portion of the sterilized soil clod and in the surrounding non-sterile soil aggregates. Assessments of bacterial cell numbers and SIR rates showed that the sterilized soil clod was colonized rapidly during incubation time from its outer to its inner portion. In addition, the bacterial genetic structure of the clod varied during incubation time, suggesting succession of bacteria during recolonization. Comparison of cell numbers, SIR rates and bacterial genetic structure between the soil clod and the surrounding soil aggregates showed that the colonization process in the clod led to the establishment of a bacterial community different from the surrounding soil aggregates.  相似文献   

4.
Detachment of soil particles by the processes of splash from rainfall and shallow flow from surface runoff is influenced by soil cohesion, soil aggregate properties, and characteristics of this flow. We have evaluated relationships between rates of detachment, aggregate size, and tensile strength of the soil. Soil and water losses were determined in the laboratory from sieved air‐dry samples on three aggregate size ranges of two clay loam soils differing in particle‐size distribution and organic matter. Tensile strength was measured for each aggregate size range. The results showed that as clod size increased, detachment rates increased and interaggregate tensile strength decreased. Wash erosion increased as initial clod size increased despite a decrease in runoff. Final rates of loss by splash were greater from the largest clods than from the smaller clods. Finally, splashed material was larger in size than material washed off. The fact that the size of the splashed material was larger than washed‐off material shows that material in the wash suffered more impact by raindrops and thus was more likely to be fragmented.  相似文献   

5.
Abstract

An interagency forest monitoring program has been initiated on a systematic network of forested plots often accessible only by foot traffic along a compass line. Extensive site classification and physiochemistry data are being collected for vegetation and soil indicators of forest health. In order to select a suitable technique for obtaining an estimate of mineral soil bulk density, conventional clod and core methods were compared across a wide range of forest soils within the Coastal Plain of southeastern Virginia. Replicate soil clods and cores were collected from two to four horizons within each of six pedons representing different soil series. Following analysis, the sample data were used to evaluate main and interaction effects due to differences in the method, series, horizon, and texture effects. Differences between the clod and core data were highly significant on average (P < 0.001) as were all of the main effects. Both methods exhibited high precision (average CV < 5%) within the individual horizons sampled. The two data sets were highly correlated (r = 0.98), and the regression equation used to predict clod bulk density with data from the core method is: Clod BD = (1.011 x Core BD) + 0.068; standard errors of ±0.042 and ±0.048 for the slope and intercept, respectively. From an operational standpoint, the core method appears to have many advantages over the clod method for sampling in remote locations.  相似文献   

6.
Large clods (centimetres in size) can be formed by tillage in clayey paddy fields where upland crops are planted. These clods cause early water depletion near the soil surface, which decreases crop germination and emergence rates. Because of the difficulty in reducing clod size, desiccation damage to seeds can be avoided by adjusting the seeding depth based on the clod size-dependent soil moisture profile. This study aimed to clarify the effect of clod size on (1) the evaporation rate (E) and soil moisture profile and (2) the mobility of soil water during the drying process. Evaporation experiments were conducted in an air-conditioned greenhouse with natural light using cylindrical columns filled with artificially made clods 3 (L columns) and 1 cm (S columns) in diameter. We measured E, potential evaporation rate (PE), and total soil moisture content (wtot) throughout the experiment and the soil moisture profiles at the end of the experiment. The water diffusivity (Dw) and apparent vapour diffusion coefficient (dvap) were calculated as the mobility of soil water and water vapour, respectively. We found that wtot was lower in the L column than in the S column, although not at the onset of the experiment. At the end of the experiment, the soil moisture content was lower in the L column than in the S column throughout the soil layer. In contrast, E/PE was higher in the L column than in the S column throughout the experiment and even at the same wtot. Regarding mobility, Dw was slightly greater in the L column than in the S column in the soil moisture content range, where vapour movement could be greater than liquid water movement. In addition, the ratio of dvap to the diffusion coefficient of water vapour in soil was higher than unity in both columns and was 2.4–3.2 times higher in the L column than in the S column. In summary, larger clods caused a higher evaporation rate and lower soil moisture content, owing to the increased enhancement of water vapour movement probably induced by wind.  相似文献   

7.
TILTH MELLOWING     
Effects of weathering action, mainly wetting and drying cycles, on the strength of the clods produced by tillage are studied. Experiments were carried out on sandy loam soils at two sites in South Australia, and on silt loam and clay soils at Wye College, England. It is found that tillage increases the amplitude of soil water content fluctuations. These bigger soil water content fluctuations resulted in a decrease in the clod strength and this in turn modified the size distribution of the clods produced by tillage in the South Australian soils. The decrease in clod strength, as measured by the drop shatter test, was followed by an increase in the proportion of the smaller aggregate size fraction produced by a second implement pass. It is suggested that, for soils in which the increase in the soil water content fluctuations after the first tillage implement pass decreases clod strength, a further implement pass should be delayed for several days. By doing this, the soil can be tilled with minimum energy and cost to produce a good seed bed.  相似文献   

8.
Assessments of the effects of deforestation, post-clearance tillage methods and farming systems treatments on soil properties were made from 1978 through 1987 on agricultural watersheds near Ibadan, southwestern Nigeria. These experiments were conducted in two phases: Phase I from 1978 through 1981 and Phase II from 1983 to 1987, with 1 year (1982) as a transition phase when all plots were sown with mucuna (Mucuna utilis). There were six treatments in Phase I involving combinations of land clearing and tillage methods: (1) manual clearing with no-till (MC-NT); (2) manual clearing with plough-till (MC-PT); (3) shear-blade clearing with no-till (SB-NT); (4) tree-pusher/root rake clearing with no-till (TP-NT); (5) tree-pusher/root-rake clearing with plough-till (TP-PT); (6) traditional farming (TF). The six treatments were replicated twice in a completely randomized design. The traditional treatment of Phase I was discontinued during Phase II. The five farming systems studied during Phase II with a no-till system in all treatments were: (1) alley cropping with Leucaena leucocephala established on the contour at 4-m intervals; (2) and (3) fallowing with Mucuna utilis on severely degraded and moderately degraded watersheds, respectively, for 1 year followed by maize-cowpea rotation for another; (4) and (5) ley farming involving establishment of pasture in the first year on severely and moderately degraded plots, respectively, controlled grazing in the second year, and growing maize (Zea mays)-cowpea (Vigna unguiculata) in the third year. All treatments, imposed on watersheds of 2–4 ha each, were replicated twice. The soil properties analyzed were particle size distribution, total aggregation and mean weight diameter of aggregates, soil bulk density, penetrometer resistance, water retention characteristics, infiltration capacity and saturated hydraulic conductivity. These properties were measured under the forest cover in 1978, and once every year during the dry season thereafter during Phases I and II. Prior to deforestation, mean soil bulk density was 0·72 Mg m−3 and 1·30 Mg m−3, soil penetration resistance was 32·4 KPa and 90·7 KPa, and mean weight diameter of aggregates was 3·7 mm and 3·2 mm for 0–5 cm and 5–10 cm depths, respectively. The infiltration rate was excessive (54–334 cm hr−1) and saturated hydraulic conductivity was rapid (166–499 cm hr−1) under the forest cover. Furthermore, water transmission properties varied significantly even over short distances of about 1 m. Deforestation and cultivation increased soil bulk density and penetration resistance but decreased mean weight diameter of aggregates. One year after deforestation in 1980, mean soil bulk density was 1·41 Mg m−3 for 0–5 cm depth and 1·58 Mg m−3 for 5–10 cm depth. Soil bulk density and penetration resistance were generally higher for NT than for PT methods, and the penetration resistance was extremely high in all treatments by 1985. During Phase II, soil bulk density was high during the grazing cycle of the ley farming treatment. Sand content at 0–5 cm depth increased and clay content decreased with cultivation duration. Soon after deforestation, saturated hydraulic conductivity and equilibrium infiltration rate in cleared and cultivated land declined to only 20–30 per cent of that under forest. Mean saturated hydraulic conductivity following deforestation was 46·0 cm hr−1 for 0–5 cm depth and 53·7 cm hr−1 for 5–10 cm depth. Further, infiltration rate declined with deforestation and cultivation duration in all cropping systems treatments. During Phase I, mean infiltration rate was 115·8 cm hr−1 under forest cover in 1978, 20·9 cm hr−1 in 1979, 17·4 cm hr−1 in 1980 and 20·9 cm hr−1 in 1981. During Phase II, mean infiltration rate was 8·5 cm hr−1 in 1982, 11·9 cm hr−1 in 1983, 11·0 cm hr−1 in 1984, 11·3 cm hr−1 in 1985 and 5·3 cm hr−1 in 1986. Infiltration rate was generally high in ley farming and mucuna fallowing treatments. Natural fallowing drastically improved the infiltration rate from 19·2 cm hr−1 in 1982 to 193·2 cm hr−1 in 1986, a ten-fold increase within 5 years of fallowing. High-energy soil water retention characteristics in Phase I were affected by those treatments that caused soil compaction by mechanized clearing and no-till systems. Soil water retention at 0·01 MPa potential in 1979 was 19·2 per cent (gravimetrics) for SB, 17·9 per cent for TP, 15·9 per cent for MC and 17·8 per cent for TF methods. With regards to tillage, soil water retention was 17·8 per cent for NT compared with 16·8 per cent for PT. During Phase II, water retention characteristics were not affected by the farming system treatments. Mean soil water retention (average of 4 years' data from 1982 to 1986) at 0·01 MPa for 0–5 cm depth was 16·6 per cent for alley cropping, 16·7 per cent for mucuna fallowing and 16·8 per cent for ley farming. Mean soil water retention for 1·5 MPa suction was 9·3 per cent for alley cropping, 8·7 per cent for mucuna fallowing, and 9·3 per cent for ley farming. Water retention at 1·5 MPa suction correlated with the clay and soil organic carbon content.  相似文献   

9.
针对现有根茎类作物收获机用于藠头收获时存在的果土分离不彻底、埋果率高、地形适应性差等问题,该研究研制了基于"杆筛式振动碎土+拨辊推送式多级分离"技术的自走式藠头收获机。对挖掘和果土分离过程中的物料状态和作业机理进行了分析,建立模型计算得到了挖掘装置的位置和深度、杆筛式振动装置的振幅和曲柄转速、拨辊的尺寸和位置等关键参数,基于可调式挖掘装置、杆筛式振动装置、拨辊推送式多级分离装置组成加工了藠头收获机样机。针对研究内容设计了田间挖掘试验和整机性能试验,对以上装置及整机的作业性能进行验证。田间试验表明:该机实际挖掘深度稳定,漏挖率、埋果率、总伤果率分别为0.31%、3.20%、5.87%,有效收获率为93.23%。整机结构及布局合理,性能稳定,能够满足当前丘陵山区条件下藠头机械化收获的需求。  相似文献   

10.
Application of organic waste on agricultural land as a soil conditioner and fertilizing material has lately gained much attention. This study was conducted to determine the effects of vermicompost applications (0·5%, 1%, 2% and 4% w/w) on physical characteristics of soils with different textures (sandy loam, loam and clay), under laboratory conditions. The results indicated that in the higher soil aggregate fraction (>12·7 mm) aggregate fraction was limited at the three soils. Vermicompost applications in all three soils significantly increased organic matter content. When compared with control, the increasing rates in organic matter content were 14·0%, 23·8%, 42·0% and 90·2% for 0·5%, 1%, 2% and 4% vermicompost application doses, respectively. Vermicompost applications increased the wet aggregate stability and decreased the dispersion ratio of all the experimental soils in all aggregate size fractions. Overall, wet aggregate stability increased from 26·9% to 52·2% with the application rate of 4%. Correlation coefficient between organic matter content and wet aggregate stability was found as 0·918**. The lowest mean bulk density and the highest mean total porosity occurred when the most vermicompost was added. In all the soils studied, the highest permeability coefficients were gained with the application dose of 2%. As a result of increase in wet aggregate stability and decrease in bulk density, air permeability increased, and penetration resistance decreased significantly. The results obtained in this study have clearly indicated that the vermicompost application is an effective way to improve soil physical characteristics. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
Soil clods were collected from the A horizons of six soils (3 Aqualfs and 3 Uderts) in the vicinity of Bayreuth in northern Bavaria. The soils had a range of clay contents and came from arable, meadow (pasture) and forest areas. The soils ranged in workability from easily workable to difficult to work. The clods, still moist as collected, were fractured into two parts by tensile stress and one part of each clod was embedded in polyester resin. The embedded clod parts were then sectioned to show profiles of the fracture surfaces. The profiles were digitized by a television scanner. Statistical measures of the roughness of the fracture surfaces were computed. Fracture surface roughness was strongly influenced by land use and soil clay content. Soil workability was related to fracture surface roughness and hence also to land use and soil clay content. Ease of soil working was mainly associated with the presence of soil structural features larger than 10 mm.  相似文献   

12.
Effects of six slope lengths, 60 m to 10 m with 10-m increments, on soil physical properties were evaluated for plough-based conventional till and no-till seedbed preparation on field runoff plots for three consecutive years from 1984 to 1987. Soil physical properties measured included texture, bulk density, infiltration capacity, and soil moisture retention characteristics. Conventional till treatment caused a rapid increase in soil bulk density and penetration resistance, and decrease in available water capacity and equilibrium infiltration rate. Gravel content increased with cultivation duration. Soil bulk density of 0–5 cm depth was 1·20 Mg m−3 for 1984, 1·39 Mg m−3 for 1985 and 1·46 Mg m−3 for 1986 for conventional till; and 1·13 Mg m−3 for 1984, 1·33 Mg m−3 for 1985, and 1·27 Mg m−3 for 1986 for the no-till treatment. The penetration resistance of the no-till treatment was relatively low and increased with cultivation duration. Mean penetration resistance for 0–5 cm depth was 2·2 kg cm−2 in 1984, 2·71 kg cm−2 in 1985, and 3·79 kg cm−2 in 1986. The available water capacity decreased in both tillage methods without any consistent trends with regard to slope length. The equilibrium infiltration rate declined drastically for long slopes and conventional till methods. The data support the conclusion that these soils should be managed with short slope lengths and a no-till method of seedbed preparation. © 1997 John Wiley & Sons, Ltd.  相似文献   

13.
The effectiveness of mulch and termite activity in the rehabilitation of the physical properties of crusted soil was studied in northern Burkina Faso (Province de Bam). A split plot design was used with three replications each being on one soil type. The soil types were Ferric Lixisol, Haplic Lixisol and Chromic Cambisol. The main factor was termite activity, and to this end dieldrin (0·50 kg a.i. ha−1) was used to create plots without termite activity next to plots with termite activity. The subplots consisted of Pennisetum pedicellatum mulch, wood Pterocarpus lucens mulch and composite (wood+straw) mulch, applied at rates of 3, 6 and 4 t ha−1, respectively. Two years after establishing the experiment, the combined effect of termite and mulch on the change in physical properties of the soil was measured. The parameters used for this assessment were porosity, saturated hydraulic conductivity and soil resistance to cone penetration. Soil water content was also measured. Termite activity was found to increase soil porosity, soil saturated hydraulic conductivity, improve soil water status and reduce soil bulk density and soil resistance to cone penetration. The only difference between bare plots and mulched plots without termites was in water content. This indicates that the mechanism whereby mulch improves the physical properties of crusted soil is mainly based on soil biology processes and to a limited extent on protecting soil against weather impact. © 1997 John Wiley & Sons, Ltd.  相似文献   

14.
The diffusion of indigenous nitrate from small (<5 mm) aggregates of a clay-loam soil, and added bromide from larger (30–70 mm) clods of a sandy clay, were studied under saturated conditions. The time (t0.5) taken for half the diffusional solute loss to occur from the small aggregates was well related to the square of the aggregate radius (a2). The impedance factor (fi) of 0.54 calculated from the t0.5 v. a2 relationship gave satisfactory results in simulations of the measured Mt/M∞. v. time curves. t0.5 was also well related to a2 for the clods, but the ft values calculated from it were not only very large (>0.9) but also decreased with increasing clod size, possibly because of anion exclusion effects. The model simulated bromide diffusion from chalk cubes of mixed sizes better when computations were made for each size than when a single volume-averaged size was taken.  相似文献   

15.
Mechanized maneuver training impacts the landscape by creating depressions, compacting soils, producing bare ground areas, transporting seeds of invasive plants, and crushing vegetation. We measured 3 physical, 13 chemical, and 2 biological soil properties and used a disturbance index (DI) based on perceptions of soil conditions on a military installation to assess the condition of 100 × 100 m plots (1 ha): 10 in 2002 and 10 in 2004. Potential DI scores range from 0 (no appreciable evidence of disturbance) to 1 (>95 per cent of the plot disturbed). Bulk density, porosity (%), and water content (%)—all at 5·1–10·0 cm depth, and nematode family richness (NFR) were significantly, negatively correlated (Spearman coefficients, rs) with the DI of both years. The strong negative correlation (rs = −0·69 in 2002, −0·79 in 2004) of NFR with the DI appears to reflect the status of nematode diversity and, therefore, may serve as a useful, inexpensive approach to rapidly assessing grasslands subjected to mechanized military training. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

16.
The lower Himalayan regions of north‐west India experienced a severe land‐use change in the recent past. A study was thus conducted to assess the effect of grassland, forest, agricultural and eroded land uses on soil aggregation, bulk density, pore size distribution and water retention and transmission characteristics. The soil samples were analysed for aggregate stability by shaking under water and water drop stability by using single simulated raindrop technique. The water‐stable aggregates (WSA) >2 mm were highest (17·3 per cent) in the surface layers of grassland, whereas the micro‐aggregates (WSA < 0·25 mm) were highest in eroded soils. The water drop stability followed the similar trend. It decreased with the increase in aggregate size. Being lowest in eroded soils, the soil organic carbon also showed an adverse effect of past land‐use change. The bulk density was highest in eroded lands, being significantly higher for the individual aggregates than that of the bulk soils. The macroporosity (>150 µm) of eroded soils was significantly (p < 0·05) lower than that of grassland and forest soils. The grassland soils retained the highest amount of water. Significant (p < 0·05) effects of land use, soil depth and their interaction were observed in water retention at different soil water suctions. Eroded soils had significantly (p < 0·05) lower water retention than grassland and forest soils. The saturated hydraulic conductivity and maximum water‐holding capacity of eroded soils were sufficiently lower than those of forest and grassland soils. These indicated a degradation of soil physical attributes due to the conversion of natural ecosystems to farming system and increased erosion hazards in the lower Himalayan region of north‐west India. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

17.
Abstract

A computer program was developed to calculate bulk density(BD), coefficient of linear extenslbility(COLE), linear extensibility(LE), and linear shrinkage(LS) in the presence or absence of coarse fragments (>2mm). When coarse fragments are present in a soil clod, COLE and linear extensibility calculations become more complex, requiring additional equations and correction factors. The calculation of linear shrinkage is not sensitive to coarse fragments, thus requiring a single equation. This BASIC computer language program is accommodating to various parameter imputs and correction factors for fast calculation of BD, COLE, LE and LS in soil clods with and without coarse fragments.  相似文献   

18.
Based on a 28‐year in situ experiment, this paper investigated the impacts of organic and inorganic fertiliser applications on soil organic carbon (SOC) content and soil hydraulic properties of the silt loam (Eumorthic Anthrosols) soils derived from loess soil in the Guanzhong Plain of China. There were two crop (winter wheat and summer maize) rotations with conventional tillage. The treatments included control without fertiliser application, organic manure application (M), chemical fertiliser application (NP), and the application of organic manure with chemical fertiliser (MNP). The results showed that the 28‐year organic manure applications (M and MNP) significantly (p < 0·05) increased SOC content at surface layer (0–10 cm), but the effect of chemical fertilisers alone on SOC was not significant. Organic manure treatments (M and MNP) apparently improved soil hydraulic properties. Compared with control, field capacity and total porosity significantly (p < 0·05) increased while soil bulk density significantly (p < 0·05) decreased for organic manure applications. The M and MNP treatments increased soil water retentions by 3·2–10·8%, which was dependent of suction tensions. However, the NP treatment had no significantly impact on soil water retention compared with control. Neither organic nor inorganic fertiliser applications significantly changed saturated hydraulic conductivity. However, a clear difference was observed for unsaturated hydraulic conductivity between the M and the control at 0–5 cm. Overall, long‐term applications of organic manuring increased SOC content and amended soil hydraulic properties. However, the effects of chemical fertilisers on these soil properties were limited. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
Poor soil tilth is a major constraint in realizing optimum yield potential of wheat (Triticum aestivum L.) in rice (Oryza sativa L.)–wheat cropping system. The effect of long-term additions of lantana (Lantana spp. L.) biomass, a wild sage, on physical properties of a silty clay loam soil under rice–wheat cropping was studied in north-west India. Lantana was added to soil 10–15 d before puddling at 10, 20 and 30 Mg ha−1 yr−1 (fresh weight). At the end of 10th rice crop, liquid limit, plastic limit, shrinkage limit and plasticity index of soil increased significantly with lantana additions. The friability range of lantana-treated soil decreased from 8.9 to 7.8–8.2% gravimetric-moisture content, but soil became friable at relatively higher moisture content. Soil cracking changed from wide, deep cracks in hexagonal pattern to a close-spaced network of fine cracks. The cracks of sizes <5 mm increased, 10–20 mm and wider decreased, while 5–10 mm remained almost unchanged with lantana additions. The volume density of cracks decreased by 36–76% and surface area density by 19–37% compared with control. The clods of sizes <2 cm diameter increased, while 2–4 cm and 4–6 cm diameter decreased with lantana additions. The MWD of clods varied between 2.15 and 2.34 cm in lantana-treated soil as against 2.83 cm in the control. The bulk density and breaking strength of soil clods were lower in lantana-treated soil by 4–9% and 29–42% than in the control. About 23–47% less energy was required to prepare seed-bed in lantana-treated than in the control soil.  相似文献   

20.
Following the decline of industrial manufacturing, many US cities have experienced severe population reductions that have resulted in large areas of vacant land. Urban agriculture has emerged as a desirable land use for these spaces, but degraded soils are common. Therefore, we measured soil and plant responses to amendments and management in urban lots where vacant houses had recently been demolished in Youngstown, OH, USA. Soil degradation was observed following demolition activities in the form of compaction (bulk density of 1·5–1·8 Mg m−3) and low soil microbial biomass C (21 mg C kg−1 soil). Our split‐plot experiment measured the effects of organic matter (OM) amendments produced from yard wastes and the use of raised beds on soil properties and vegetable crop yields. Two years after their application, OM amendments resulted in significant improvement to a number of soil physical, chemical, and biological properties. Vegetable crop yields were improved by OM amendments in 2011 and by both OM amendments and the use of raised beds in 2012. A soil quality index, developed using factor analysis and the Soil Management Assessment Framework, produced values ranging from 0·60 to 0·85, which are comparable to those reported for rural agricultural soils. All results indicate that urban agriculture can be productive in vacant urban land and that amendments produced from urban yard wastes can improve soil quality at previously degraded sites and increase crop yields for urban agriculture. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号