首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 865 毫秒
1.
Dissolved organic carbon (DOC) in acid‐sensitive upland waters is dominated by allochthonous inputs from organic‐rich soils, yet inter‐site variability in soil DOC release to changes in acidity has received scant attention in spite of the reported differences between locations in surface water DOC trends over the last few decades. In a previous paper, we demonstrated that pH‐related retention of DOC in O horizon soils was influenced by acid‐base status, particularly the exchangeable Al content. In the present paper, we investigate the effect of sulphate additions (0–437 µeq l?1) on DOC release in the mineral B horizon soils from the same locations. Dissolved organic carbon release decreased with declining pH in all soils, although the shape of the pH‐DOC relationships differed between locations, reflecting the multiple factors controlling DOC mobility. The release of DOC decreased by 32–91% in the treatment with the largest acid input (437 µeq l?1), with the greatest decreases occurring in soils with very small % base saturation (BS, < 3%) and/or large capacity for sulphate (SO42?) retention (up to 35% of added SO42?). The greatest DOC release occurred in the soil with the largest initial base status (12% BS). These results support our earlier conclusions that differences in acid‐base status between soils alter the sensitivity of DOC release to similar sulphur deposition declines. However, superimposed on this is the capacity of mineral soils to sorb DOC and SO42?, and more work is needed to determine the fate of sorbed DOC under conditions of increasing pH and decreasing SO42?.  相似文献   

2.
Abstract

A close relationship was found between the pH of soil suspensions in the SMP buffer solution (pHsmp) and the potential acidity of soils (H + Al) extracted by a neutral calcium acetate solution (r = 0.98), for twenty six soil samples of the State of Sao Paulo, Brazil, This relationship was represented by the equation lnY = 7.76 ‐ 1.053X, which allowed for the calculation of H + Al directly from the values of pHsmp.

With the values of H + Al and the sum of bases, calcium, magnesium and potassium, the cation exchange capacity (CEC), and the base saturation (V) were calculated. Relationships between the base saturation of the soils and the active acidity of soil suspensions were close, both for pH determined in water (r=0.94) and pH determined in 0.01M CaCl2 solution (r ‐ 0.97). Thus the lime requirement (LR) of soils could be calculated, for given values of pH or base saturation, using the equation LR = CEC (V2 ‐ V1)/100, in which V1 is the base saturation of the soil and V2 is the expected value upon liming.

The predicted values for lime required to increase the soil pH in water to either 5.5 or 6.0 were comparable to those obtained by the direct use of the SMP buffer method, and were, respectively, two and four times higher than the amounts required to neutralize exchangeable aluminum, considering the criterion LR = Al × 1.5.

The proposed method to determine lime requirement of soils is described in detail and the advantages of its use are discussed.  相似文献   

3.
A soil acidification model has been developed to estimate long-term chemical changes in soil and soil water in response to changes in atmospheric deposition. Its major outputs include base saturation, pH and the molar Al/BC ratio, where BC stands for divalent base cations. Apart from net uptake and net immobilization of N, the processes accounted for are restricted to geochemical interactions, including weathering of carbonates, silicates and Al oxides and hydroxides, cation exchange and CO2 equilibriums. First, the model's behavior in the different buffer ranges between pH 7 and pH 3 is evaluated by analyzing the response of an initially calcareous soil of 50 cm depth to a constant high acid load (5000 molc ha?1 yr?1) over a period of 500 yr. In calcareous soils weathering is fast and the pH remains high (near 7) until the carbonates are exhausted. Results indicate a time lag of about 100 yr for each percent CaCO3 before the pH starts to drop. In non-calcareous soils the response in the range between pH 7 and 4 mainly depends on the initial amount of exchangeable base cations. A decrease in base saturation by H/BC exchange and Al/BC exchange following dissolution of Al3+ leads to a strong increase in the Al/BC ratio near pH 4. A further decrease in pH to values near 3.0 does occur when the A1 oxides and/or hydroxides are exhausted. The analyses show that this could occur in acid soils within several decades. The buffer mechanisms in the various pH ranges are discussed in relation to Ulrich's concept of buffer ranges. Secondly, the impact of various deposition scenarios on non-calcareous soils is analyzed for a time period of 100 yr. The results indicate that the time lag between reductions in deposition and a decrease in the Al/BC ratio is short. However, substantial reductions up to a final deposition level of 1000 molc ha?1 yr?1 are needed to get Al/BC ratios below a critical value of 1.0.  相似文献   

4.
The typical values and probable ranges of acid-precipitation are evaluated in terms of their theoretical effects on pH and cation exchange equilibrium of soils characteristic of the humid temperature region. The extent of probable change in soil pH and the time required to cause such a change are calculated for a range of common soils. Hydrogen ion input by acid precipitation is compared to cation inputs from nutrient cycling and other sources. For example it can be calculated that 100 yr of acid precipitation (10000 cm at pH 4.0) could be expected to shift the percentage base saturation in the top 20 cm of a typical midwestern forest soil location exchange capacity of 20 meq 100 g?1 downward 20%, thus lowering the pH of the Al horizon by approximately 0.6 units, if there are no countering inputs of basic materials.  相似文献   

5.

Purpose

This study aimed to investigate the effect of initial soil pH and organic anion-to-acid ratio on changes in soil pH.

Materials and methods

Two soils (Podosol and Tenosol) along with two carboxylic acids (malic and citric acid) and their anions (sodium malate and citrate), commonly found in plant residues, were used in this study. Stock solutions of either malic acid and disodium malate or citric acid and trisodium citrate were added to pre-incubated soils at anion-to-acid ratios of 0:100, 10:90, 25:75, 50:50, 75:25, 90:10, 100:0 and at 0.25 g C kg?1 soil. Soils were adjusted to 80 % field capacity and mixed thoroughly, and three replicates of 50 g of each soil were transferred into individual plastic cores and incubated at 25 °C in the dark for 30 days. Soil pH, respiration, NH4 +, and NO3 ? were determined.

Results and discussion

Soil pH increased linearly with increasing organic anion-to-acid ratio. The addition of organic anions to soil resulted in net alkalinisation. However, the addition of organic acids immediately decreased soil pH. During subsequent incubation, soil pH increased when the organic anions were decomposed. Alkalinity generation was lower in the Podosol (initial pH 4.5) than in the Tenosol (initial pH 6.2), and was proportional to anion-to-acid ratio across all the treatments. Cumulative CO2-C release was approximately three times lower in the Podosol than the Tenosol at day 2 due to lower microbial activity in the low-pH Podosol.

Conclusions

Increasing anion-to-acid ratio of organic compounds increased soil pH. Increases in soil pH were mainly attributed to direct chemical reactions and decomposition of organic anions. Low pH decreased the amount of alkalinity generated by addition of organic compounds due to incomplete decomposition of the added compounds. This study implies that organic anion-to-acid ratio in plant residues plays an important role in soil pH change.  相似文献   

6.
The acid- and base-buffering properties of 84 non-calcareous surface soil samples were studied by batch titration with HCI or KOH at a constant ionic strength of I = 0.1. The soil samples were classified according to their pH of zero point of titration (ZPT). Differential buffer values, dB(H) or dB(OH) (H+ or OH? as meq kg?1 needed to reduce or increase the soil pH sequentially by 0.5 units, respectively), were introduced to describe the course of titration curve and the intensity of buffer action. In all soils, the first acid-buffer value, dB(H)0→0.5, varied from 8 to 78 meq kg?1 and the second one, dB(H)0.5→1, from 10 to 138 meq kg?1. The corresponding base-buffer values, dB(OH)0→0.5 and dB(OH)0.5→1, ranged from 10 to 48 and from 14 to 44 meq kg?1, respectively. The most acid soils were most strongly buffered against acid, and the soils with the highest initial pH against base. The results reveal the acid-buffering by exchange reactions to be very important. In the soils with ZPT≦5.4, the first acid-buffer value was dependent on the content of organic matter and oxalate-soluble Al, whereas in the more acid soils the role of clay became significant. Thus, it was concluded that at higher pHs the foremost inactivation of H+ is attributable to soil components of pH-dependent charges, and the significance of constituents of permanent charges to increase with proceeding acidification. In strongly acid soils (ZPT≦4.8) the very effective buffering seemed to be primarily due to the dissolution of Al-hydroxides and, thus, to exert detrimental effects on the edaphic environment. The general rank of soil factors explaining the variation in the base-buffer values was in accord with the neutralization sequence, i.e. the strongest acid in the soil being neutralized first. In the strongly acid soils (ZPT≦4.8) the base-buffer values seemed to depend on the clay as well as KCl- and NH4OAc-extractable Al, whereas in the soils with higher initial pH mostly on organic C.  相似文献   

7.
Biochar was prepared using a low temperature pyrolysis method from nine plant materials including non‐leguminous straw from canola, wheat, corn, rice and rice hull and leguminous straw from soybean, peanut, faba bean and mung bean. Soil pH increased during incubation of the soil with all nine biochar samples added at 10 g/kg. The biochar from legume materials resulted in greater increases in soil pH than from non‐legume materials. The addition of biochar also increased exchangeable base cations, effective cation exchange capacity, and base saturation, whereas soil exchangeable Al and exchangeable acidity decreased as expected. The liming effects of the biochar samples on soil acidity correlated with alkalinity with a close linear correlation between soil pH and biochar alkalinity (R2 = 0.95). Therefore, biochar alkalinity is a key factor in controlling the liming effect on acid soils. The incorporation of biochar from crop residues, especially from leguminous plants, can both correct soil acidity and improve soil fertility.  相似文献   

8.
Alkalinity production in terrestrial and aquatic ecosystems of Canada, the U.S.A., Norway and Sweden is calculated from either strong acid titrations or budgets for base cations and strong acid anions, using mass-balance budgets. Where alkalinity budgets for lakes and their catchments are calculated in acid-vulnerable geological settings, in-lake processes often contribute more to lake alkalinity than yield from terrestrial catchments. Nitrate and sulfate removal, and Ca exchange with sediments are the predominant alkalinity generating mechanisms in lakes. Nitrate and sulfte removal rates increase as the concentrations of NO? 3 and SO4 2? in lake water increase, so that in-lake acid neutralizing capacity increases as acid deposition increases. Both processes occur in sediments overlain by oxic waters, at rates which seem to be controlled primarily by diffusion.  相似文献   

9.
Purpose

The purpose of this study is to determine the critical soil pH, exchangeable aluminum (Al), and Al saturation of the soils derived from different parent materials for maize.

Materials and methods

An Alfisol derived from loess deposit and three Ultisols derived from Quaternary red earth, granite, and Tertiary red sandstone were used for pot experiment in greenhouse. Ca(OH)2 and Al2(SO4)3 were used to adjust soil pH to target values. The critical soil pH was obtained by two intersected linear lines of maize height, chlorophyll content, and yield of shoot and root dry matter changing with soil pH.

Results and discussion

In low soil pH, Al toxicity significantly decreased plant height, chlorophyll content, and shoot and root dry matter yields of maize crops. The critical values of soil pH, exchangeable Al, and Al saturation varied with soil types. Critical soil pH was 4.46, 4.73, 4.77, and 5.07 for the Alfisol derived from loess deposit and the Ultisol derived from Quaternary red earth, granite, and Tertiary red sandstone, respectively. Critical soil exchangeable Al was 2.74, 1.99, 1.93, and 1.04 cmolckg?1 for the corresponding soils, respectively. Critical Al saturation was 5.63, 12.51, 14.84, and 15.16% for the corresponding soils.

Conclusions

Greater soil cation exchange capacity and exchangeable base cations led to lower critical soil pH and higher critical soil exchangeable Al and Al saturation for maize.

  相似文献   

10.
A chemical equilibrium model was applied to soil chemistry data (Spodosols) collected from 30 and 21 forested watersheds in New York and Maine, respectively, during the EPA Pilot Soil Survey. Chemistry data were evaluated between states using lumped series and within New York using three series (Adams, Becket, and Canaan). All New York horizons had soil characteristics that tend to cause lower solution alkalinity in comparison to Maine horizons. Negative alkalinities were produced in all E horizons (? 69 to ? 37 μmol LU?1) at each of the pCO2 levels used (0.3 to 2%). All B horizons had negative alkalinities at low PCO2 levels, which became positive at higher levels, except for the Canaan B and New York Bh horizons, which were negative at all pCO2 levels. C horizons generated positive alkalinities (1 to 67 μmol L?1) at most pCO2 levels. Results indicate the importance of water contact with different horizons and soil series in determining solution alkalinity. Because of degassing effects, solutions with a positive alkalinity will increase in pH after leaving the soil, whereas solutions with a negative alkalinity will remain at low pH (pH < 5.5) and cause the surface water to be acidic. Application of the model to soil chemistry data collected in the northeastern U.S. illustrates the importance of various factors such as pCO2, Al solubility, base saturation, and exchange coefficients in determining surface water chemistry.  相似文献   

11.
The pH and alkalinity of groundwater from 7651 wells drilled in the Precambrian crystalline bedrock of southwestern Sweden has been evaluated. The wells are generally less than 100 m deep. Analytical results were collected from different laboratories and authorities in the region. In areas with thin soil cover or coarse-grained deposits overlying the bedrock, alkalinity is normally less than 100 mg HCO3 L?1. Below the marine limit, where clayey sediments predominate, alkalinity sometimes even exceeds 200 mg HCO3 L?1. When comparing pH and alkalinity of groundwaters from Quaternary deposits with bedrock groundwaters, the latter always have higher pH and alkalinity values. The most acidic bedrock groundwaters are found in small areas close to the city of Göteborg due to additional factors of high acid loadings, high groundwater discharge and thin soil layers. A study of data from 1949 to 1985 in the province of Värmland suggests that no regional acidification of importance is in progress. However, results from public water supplies support the hypothesis that the groundwaters which are most sensitive to acidification are those where discharge from wells in small bedrock aquifers induces rapid groundwater recharge of acidic surficial water.  相似文献   

12.
Diagnostics, methods of evaluation, and geography of saline-alkali (soda) soils are discussed. The saline-alkali soils include soils of different genetic types with the following chemical properties: the pH of the water suspensions equal to or higher than 8.5; the total alkalinity exceeding 1.4 meq/100 g of soil and the sum of water-soluble calcium and magnesium; and the presence of soluble “alkaline” salts in the soil profiles, the hydrolysis of which results in the alkaline reaction of the soils. The chemical properties of the saline-alkali soils are largely related to the presence of soda (Na2CO3, NaHCO3) in the soils. According to their morphological properties, saline-alkali soils are divided into two groups: alkaline soils with an undiferentiated profile and without a morphologically pronounced solonetzic (natric) horizon, and alkaline soils with a pronounced natric horizon (solonetzes). Solonetzes, in turn, are divided into (a) alkaline solonetzes (with soda or with soda and neutral salts), (b) solonetzes salinized with neutral salts (saline soils) with increased alkalinity in the solonetzic and lower lying horizons, (c) saline solonetzes throughout the profile, and (d) leached solonetzes containing no soluble salts in the profile and almost no exchangeable sodium in the soil exchange complex (SEC) (“dead” solonetzes). The latter two groups of solonetzes cannot be ranked among the alkaline soils. The alkalinity of the saline-alkali soils under study is due to carbonate and bicarbonate ions (carbonate alkalinity), organic acid anions (organic alkalinity), and borate ions (borate alkalinity). The carbonate alkalinity is due to both soda (Na2CO3, NaHCO3) and CaCO3.  相似文献   

13.
14.
PONETTE  Q.  DUFEY  J. E.  WEISSEN  F. 《Water, air, and soil pollution》1997,95(1-4):353-379
Liming and fertilization are important tools for improving the chemical status of acid, base poor forest soils. The downward movement of dolomite, kieserite and a mixture of CaCO3 and kieserite was investigated by monitoring the leachates and exchangeable cation composition from single and combined horizon columns, reconstructed from an acid brown forest soil profile (0–15 cm). Upon entering the soil, Mg ions from kieserite displaced base cations and acidity (H and Al ions) from exchange sites, which subsequently moved down with the mobile SO4 2- anions. Total leaching during the initial SO4 2- pulse was similar with the CaCO3 + kieserite mixture. Compared to the single kieserite treatment, the joint application of CaCO3 greatly increased the proportion of Ca in the leachates from all horizons. It also decreased the leaching of acidity from the surface Oe horizon and prevented pH from dropping under this layer. With both treatments, the redistribution of magnesium with SO4 2- anions resulted in a rapid increase in exchangeable Mg contents throughout the studied columns. Due to the important charge increase in the Oe horizon and to kinetic restraints imposed on dissolution, downward movement of Ca and Mg ions from dolomite was very limited. Mg was however much more mobile than Ca. In the CaCO3 + kieserite and dolomite treatments, the migration of alkalinity and base cations with time was associated with a decrease in exchangeable acidity and an increase in ECEC in the two upper soil layers. By the end of the monitoring period, overall net Mg retention in the 0–15 cm columns increased in the order kieserite < CaCO3 + kieserite << dolomite with respectively 20, 35 and 85% of cumulated inputs remaining in the columns. The corresponding net Ca retention amounted to 82 and 96% of cumulated inputs for the CaCO3 + kieserite and dolomite treatments, respectively. Results from this study complement those obtained in the field by clearly demonstrating the mechanisms involved in the downward movement of some fertilizers commonly used to increase the base saturation of acid forest soils.  相似文献   

15.
The retention of agricultural residues in cropping systems to maintain soil fertility is also important for the redistribution of alkalinity. In systems that adopt minimum or no‐tillage practices residue incorporation into the soil may occur slowly and the contribution of soluble and insoluble residue fractions to pH change may vary temporally and spatially. In this study we examined the contribution of whole, water soluble (70°C for 1 hour for two cycles) and insoluble fractions of canola, chickpea and wheat residues (added at 10 g kg?1 soil) to pH change in a Podosol (Podzol; initial pH 4.5) and a Tenosol (Cambisol; initial pH 6.2) over a 59‐day incubation period. Whole residues increased pH in both soils, with the magnitude of the pH increase (chickpea > canola > wheat) being related to alkalinity content (concentration of excess cations) of the residue. Temporal release of alkalinity was only observed for the larger alkalinity content canola and chickpea residues and the change in pH was greater than during the initial period (approximately 4 hours; T0). Increases in pH were attributed to the decarboxylation of organic anions and the association of H+ with organic anions and other negatively charged chemical functional groups. The relative contribution of these processes depended on the residue and the initial soil pH. Our results show that 40–62% of the alkalinity of canola and chickpea residues resided in the soluble fraction. Furthermore, pH increases caused by soluble fractions may be transient if these contain large N concentrations. Soil properties that influence inorganic N dynamics such as inhibition of nitrification at acid pH will be important in determining the subsequent direction and magnitude of pH change.  相似文献   

16.
Critical loads of acidity were estimated for upland forests in Eastern Canada using the steady-state Simple Mass Balance (SMB) Model. A consistent methodology was applied to the entire region, although critical loads were estimated separately for the Atlantic provinces (New Brunswick, Nova Scotia, Prince Edward Island and Newfoundland), Quebec and Ontario using different data sources. In this project, critical load estimates and steady-state exceedance values did not include the effect of forest fire and forest harvesting, which could have a considerable impact on critical loads in Eastern Canada. The observed soil pH – base saturation relationship for forest soils indicated that the constants used into the calculation of alkalinity leaching should be set to 10 (M/M) for the molar Bc/Al ratio in soil leachate and 109 (mol L?1)2 for the gibbsite dissolution constant. The area-weighted median critical load for each province varied between 519 (Quebec) and 2063 eq ha?1 y?1 (Prince Edward Island), with a median critical load value for Eastern Canada of 559 eq ha?1 y?1. It is estimated that approximately 52% of the mapped area is exceeded in terms of acidity according to the 1994–1998 average total (wet + dry) atmospheric deposition. Greatest exceedances occurred in Ontario and Quebec and in the south of Nova Scotia, due to low critical loads and high loads of acid deposition.  相似文献   

17.
Soybean is one of the most important legume crops in the world. Two greenhouse experiments were conducted to determine the influence of liming and gypsum application on yield and yield components of soybean and changes in soil chemical properties of an Oxisol. Lime rates used were 0, 0.71, 1.42, 2.14, 2.85, and 4.28 g kg?1 soil. Gypsum rates applied were 0, 0.28, 0.57, 1.14, 1.71, and 2.28 g kg?1 soil. Lime as well as gypsum significantly increased grain yield in a quadratic fashion. Maximum grain yield was achieved with the application of 1.57 g lime per kg soil, whereas the gypsum requirement for maximum grain yield was 1.43 g per kg of soil. Lime significantly improved soil pH, exchangeable soil calcium (Ca) and magnesium (Mg) contents, base saturation, and effective cation exchange capacity (ECEC). However, lime application significantly decreased total acidity [hydrogen (H) + aluminum (Al)], zinc (Zn), and iron (Fe) contents of the soil. The decrease in these soil properties was associated with increase in soil pH. Gypsum application significantly increased exchangeable soil Ca, base saturation, and ECEC. However, gypsum did not change pH and total acidity (H + Al) significantly. Adequate soil acidity indices established for maximum grain yield with the application of lime were pH 5.5, Ca 1.8 cmolc kg?1, Mg 0.66 cmolc kg?1, base saturation 53%, Ca saturation 35%, and Mg saturation 13%. Soybean plants tolerated acidity (H + Al) up to 2.26 cmolc kg?1 soil. In the case of gypsum, maximum grain yield was obtained at exchangeable Ca content of 2.12 cmolc kg?1, base saturation of 56%, and Ca saturation of 41%.  相似文献   

18.
This paper summarizes the results from current studies in Norway. One main approach is the application of artificial acid ‘rain’ and of lime to field plots and lysimeters. Application during two growth seasons of 50 mm mo?1 of ‘rain water’ of pH 3 to a podzol soil increased the acidity of the humus and decreased the base saturation. The reduction in base saturation was mainly due to leaching of Ca and Mg. Laboratory experiments revealed that decomposition of pine needles was not affected by any acid ‘rain’ treatment of the field plots. Liming slightly retarded the decomposition. No nitrification occurred in unlimed soils (pH 4.4-4.1). Liming increased nitrification. The soil enchytraeid (Ohgochaeta) fauna was not much affected by the acidification. Germination of spruce seeds in acidified mineral soil was negatively affected when soil pH was 4.0 or lower. Seedling establishment was even more sensitive to increasing soil acidity. Analysis of throughfall and stemflow water in southernmost Norway reveals that the total deposition of H2SO4 beneath spruce and pine is approximately two times the deposition in open terrain. A large part of this increase is probably due to dry deposition. Increased acidity of the rain seems to increase the leaching of cations from the tree crowns. Tree-ring analysis of spruce (Picea abies (L.) Karst.) and pine (Pinus sylvestris L.) has been based on comparisons between regions differently stressed by acid precipitation and also between sites presumed to differ in sensitivity to acidification. No effect that can be related to acid precipitation has yet been detected on diameter growth.  相似文献   

19.
Combustion of fossil fuels has contributed to many environmental problems including acid deposition. The Clean Air Act (CAA) was created to reduce ecological problems by cutting emissions of sulfur and nitrogen. Reduced emissions and rainfall concentrations of acidic ions have been observed since the enactment of the CAA, but soils continue to receive some acid inputs. Many soils sensitive to acid deposition are found to have low pH, a loss of base cations, and a shift in the mineral phase controlling the activity of Al3+ and/or SO4 2?. If inputs continue, soil may be depleted of base cations and saturated with Al and could cause low forest productivity. Soil samples and soil solutions from pan lysimeters were taken on ridge-tops in the Daniel Boone National Forest to evaluate potential impacts of acid deposition recently and in the future. Sample results were compared to historical data from identical locations. Physicochemical characteristics of the soils revealed that sites were very low in base saturation and pH and high in exchangeable acidity, illustrating change since previously sampled. Soil solution data indicated that sites periodically received high acid inputs leading to saturation of Al in soils and the formation of Al-hydroxy-sulfate minerals. Given these conditions, long-term changes in soil chemistry from acid deposition are acknowledged.  相似文献   

20.
The soil acidification model SAFE was modified to calculate historical changes in geochemistry and runoff since the last glaciation ended at the Lake Gårdsjön F1 catchment 12 000 B.P. Changes in runoff pH and ANC, soil weathering rate, soil mineralogy, soil texture and base saturation was also calculated. The changes in mineralogy compared favorable to data. Modeled historic weathering rates were slightly higher than data suggest, while present weathering rate was somewhat to low, 37 mmolc m?2 yr?1. The weathering rate was very high immediately after the last glaciation, and decreased as the smaller particles were consumed by weathering. The calculated runoff pH follows the pattern of the paleo-inferred pH. SAFE suggests a natural depletion of base cations in the C-layer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号