首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We aimed to investigate proximate and fatty acid composition of important freshwater fish species in the Czech Republic. Sampled fish include seven species from intensive farming: African catfish, rainbow trout, Wels catfish, Nile tilapia, brook trout, northern whitefish, and pikeperch; eight species from semi-intensive culture systems: common carp, northern pike, pikeperch, grass carp, European perch, tench, silver carp, and catfish; and three species from extensive culture systems: rainbow trout, tench, and common carp. The fat content and fatty acid composition were highly influenced by the culture systems. Simultaneously, we observed a significant dependence of fatty acid composition on the fat content. The content of saturated fatty acids was below 34% in all analyzed fish. Northern pike, pikeperch, and European perch contained with over 50% the highest proportion of polyunsaturated fatty acids. Intensively cultured fish reached the highest content of eicosapentaenoic and docosahexaenoic fatty acid. Nutritional quality was determined by atherogenic and thrombogenic indexes which ranged from 0.27 to 0.63 and 0.20 to 0.61 and by ratios n-3/n-6 (0.54–3.45) and polyunsaturated/saturated fatty acids (0.67–2.01). Results demonstrated that the flesh of all studied species are of high nutritional quality.  相似文献   

2.
Supplemental cereal feeding (maize, wheat and triticale compared with a control group with natural food only) and its effect on fatty acid (FA) expression in the flesh during long-lasting storage of common carp (Cyprinus carpio) was investigated. The fish were cultured in earthen ponds in the Trebon region (Czech Republic). The content of fatty acid was investigated in the flesh of carp during 8 months of long-lasting storage without additional feeding. Sixty common carp in their third year of life were used for the analyses. The weight of the fish (marketable fish) ranged from 1,358 g to 2,221 g. Polyunsaturated fatty acid (PUFA, n–3) content and composition in fish flesh were determined by gas chromatography (VARIAN 3300). Supplemental cereals caused lower levels of PUFAs and n–3 PUFAs in fish fat. The content of these fatty acids did not decrease, even during 8 months of fish storage. The average percentage of PUFAs in total fat from edible parts was: for maize 13.7% ± 1.58%, for wheat 11.6% ± 1.17% and for triticale 10.7% ± 1.00%. The percentage of n–3 PUFA for maize was 2.5% ± 0.36%, for wheat 3.38% ± 0.44% and for triticale 3.1% ± 0.39%.  相似文献   

3.
Total lipid and fatty acid compositions were determined during embryogenesis and larval development in Eurasian perch (Perca fluviatilis). During embryonic development, perch did not catabolize lipids and fatty acids as an energy source. However, during larval development, there was an exponential relationship between the decrease in total lipids and the duration of starving (r 2=0.9957) and feeding (r 2=1). The duration of the starving period (10 days post hatching) was shorter than the feeding period (35 days post hatching). In both starved and fed larvae, there is an apparent preference in utilization of polyunsaturated fatty acids followed by monounsaturated fatty acids. Saturated fatty acids were utilized by neither fed perch larvae nor by starved perch larvae. In starved larvae, palmitoleic 16:1(n-7) and oleic 18:1(n-9) acids were the preferentially monounsaturated fatty acids catabolized and their contribution as energy source from total fatty acids catabolized over the first week was 37.6%. In fed larvae, these 2 nutrients were also the most monounsaturated fatty acids utilized as energy source and possibly also as precursors for others monounsaturated fatty acids biosynthesis. During the same period and among (n-6) polyunsaturated fatty acids, starved perch utilized less linoleic 18:2(n-6) and arachidonic 20:4(n-6) acids than fed larvae despite the fact that the starved perch were in more unfavorable nutritional conditions. In the case of (n-3) fatty acids, starved larvae utilized more linolenic acid 18:3(n-3) and less eicosapentaenoic 20:5(n-3) acid and docosahexaenoic 22:6(n-3) acid than fed perch. Starved larvae probably spared 20:5(n-3) and 22:6(n-3) for physiological functions.  相似文献   

4.
The desaturation and elongation of [1-14C]18:3n-3 was investigated in hepatocytes of the tropical warm freshwater species, zebrafish (Danio rerio) and Nile tilapia (Oreochromis niloticus). The hepatocyte fatty acid desaturation/elongation pathway was assayed before and after the fish were fed two experimental diets, a control diet containing fish oil (FO) and a diet containing vegetable oil (VO; a blend of olive, linseed and high oleic acid sunflower oils) for 10 weeks. The VO diet was formulated to provide 1% each of 18:2n-6 and 18:3n-3, and so satisfy the possible EFA requirements of zebrafish and tilapia. At the end of the dietary trial, the lipid and fatty acid composition was determined in whole zebrafish, and liver, white muscle and brain of tilapia. Both zebrafish and tilapia expressed a hepatocyte fatty acid desaturation/elongation pattern consistent with them being freshwater and planktonivorous fish. The data also showed that hepatic fatty acid desaturation/elongation was nutritionally regulated with the activities being higher in fish fed the VO diet compared to fish fed the FO diet. In zebrafish, the main effect of the VO diet was increased fatty acid Δ6 desaturase activity resulting in the production of significantly more 18:4n-3 compared to fish fed the FO diet. In tilapia, all activities in the pathway were greater in fish fed the VO diet resulting in increased amounts of all fatty acids in the pathway, but primarily eicosapentaenoic acid (EPA; 20:5n-3) and docosahexaenoic acid (DHA; 22:6n-3). However, the fatty acid compositional data indicated that despite increased activity, desaturation of 18:3n-3 was insufficient to maintain tissue proportions of EPA and DHA in fish fed the VO diet at the same level as in fish fed the FO diet. Practically, these results indicate that manipulation of tilapia diets in commercial culture in response to the declining global fish oil market would have important consequences for fish fatty acid composition and the health of consumers. Scientifically, zebrafish and tilapia, both the subject of active genome mapping projects, could be useful models for studies of lipid and fatty acid metabolism at a molecular biological and genetic level. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

5.
The efficiency of the rotifer Brachionus calyciflorus Pallas as a nutritional source for rearing larvae was studied in a coldwater cyprinid, the gudgeon Gobio gobio (L.), and in a percid, the perch Perca fluviatilis L., through their composition in fatty acids. Rotifer intake affected the fatty acid profiles of the larvae significantly, with an especially remarkable presence of the linoleic family. In gudgeon fed with rotifers, the polyunsaturated fatty acids (PUFA) reached 10.98% of the dry weight of the sample. This rate was highly influenced by the presence of the acids C18:2n-6 and C22:6n-3 which represented 66% of the total PUFA. In perch fed exclusively with rotifers, the PUFA represented 7.27% of the dry weight. In both cases, the ratio n-3/n–6 decreased by 75% and 73% after 10 days of feeding with B. calyciflorus. This variation was probably due to the exogenous supply in acids of the linoleic family through the rotifers and to the fact that these two species of fish seem to favour the mobilization of the n-3 PUFA such as C22:6n-3 for growth and survival. Moreover, with the utilization of rotifers. the reactions of elongation and desaturation from the C18:2n-6 and C18:1n-9 seemed to be much more important in the larvae. Lastly, the transition from a diet based on rotifers to one made up exclusively of frozen Artemia nauplii led to a significant reduction of fatty acids in fish. It reached 60.2% and 26.5% of the total fatty acids in the gudgeon and perch, respectively, and was observed especially at the level of the PUFA. On the other hand, a slight increase of the ratio n-3/n-6 was pointed out in the perch fed a mixed diet (co-feeding with rotifers and dry food), a phenomenon probably due to the reduction of C18:2n-6 in the larvae.  相似文献   

6.
The semi-intensive system of carp farming is dominant in inland aquaculture. Although it appears to be simple, this system has a whole range of options, from those based on traditional rearing methods with use of plants from the region where the fish are reared to production based on the use of high-quality concentrated feeds. In this paper, we conduct a comparative analysis of the effect of using cereal grains as opposed to compound feed (pelleted and extruded) on the quantity of fish produced, flesh quality, histological changes in the digestive tract, water quality, and structure of the biocoenosis in the pond ecosystem. When the fish are fed cereal grains, production ranges from 500 to 1500 kg/ha, while using compound feed gives production that is twice as great. The proportions of protein and water are higher and that of lipids lower in flesh of common carp reared on compound feed in relation to fish fed cereal grains. Use of extruded feed gives better content of n-3 polyunsaturated fatty acids and a better n-3/n-6 ratio than when pelleted feed and cereal grains are used. Comparison of water quality in carp ponds under conditions of using various types of feed indicates that there are no significant differences. Although it was expected that feed with a higher percentage of proteins would cause disturbances in the aquatic ecosystem, their continual incorporation into the cycling of matter in the water contributes to maintenance of ecological equilibrium and even indirectly promotes growth of the common carp.  相似文献   

7.
Rainbow trout (Oncorhynchus mykiss Walbaum) were fed purified diets containing fish oil for six weeks and then soybean lecithin or soybean oil for 25 days. The gastrointestinal tract segments, stomach, midgut and hindgut were then sampled for lipid and fatty acid composition and electron microscopy. Membrane lipid class composition was fairly similar in all three segments of trout fed fish oil. Hindgut contained slightly more phosphatidylserine than stomach and midgut, while midgut contained more phosphatidylcholine and less lysophospatidylcholine/sphingomyelin. Feeding soybean products appeared to marginally decrease free cholesterol. The fatty acid compositions of the main lipid classes showed significant regional differences. In control fish, stomach had higher levels of arachidonic acid (20:4n-6) and n-6 polyunsaturated fatty acids than midgut and hindgut, and lower content of docosahexaenoic acid (22:6n-3) and n-3 polyunsaturated fatty acids. Midgut phosphatidylethanolamine also had higher levels of saturated fatty acids and less n-3 polyunsaturated fatty acids than the other tissues. Feeding soybean products decreased the n-3/n-6 ratio mainly due to increases in linoleic (18:2n-6) and 20:4n-6 and decreases in 22:6n-3 and eicosapentaenoic acid (20:5n-3). Phosphatidylcholine and to a lesser extent phosphatidylethanolamine adapted more readily to dietary changes by major increases in 18:2n-6 and C20−22 n-6 polyunsaturated fatty acids. The composition of phosphatidyl-serine and -inositol appeared to be under more strict metabolic control. Linoleic acid hardly increased at all while the increase in other n-6 polyunsaturated fatty acids was less pronounced than for the other lipid classes. Regardless of lipid class, stomach resisted dietary changes more strongly than midgut and hindgut. Increases in n-6 polyunsaturated fatty acids were minor as were the loss of n-3 polyunsaturated fatty acids. The dead-end product 20:2n-6 accumulated to a higher degree in hindgut phosphatidyl-ethanolamine and -coline compared to midgut and stomach, suggesting that the activity of Δ6 desaturation is higher in the anterior part of the intestine where most of the lipid is absorbed. Feeding soybean oil caused massive accumulation of free lipid droplets in midgut enterocytes while little lipid droplets were observed in trout fed fish oil or soybean lecithin. Since both soybean products influenced intestinal composition to the same degree, altered fatty acid profiles in membranes is not responsible for the observed lipid accumulation. This supports previous observations in Arctic charr (Salvelinus alpinus L.), suggesting that fish may require exogenous phospholipids in order to sustain a sufficient rate of lipoprotein synthesis. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

8.
为评估不同养殖环境对禾花鲤(Cyprinus carpio)肌肉营养与品质的影响,采用国标法检测稻田和池塘2种养殖环境下禾花鲤肌肉常规营养成分、质构特性、氨基酸和脂肪酸组成。结果显示,池塘组禾花鲤肌肉粗蛋白和粗脂肪含量显著高于稻田组(P<0.05),水分含量显著低于稻田组(P<0.05),灰分含量2组差异不显著(P>0.05);池塘组肌肉粘性显著高于稻田组(P<0.05),内聚性和剪切力显著低于稻田组(P<0.05),其他质构指标2组间差异不显著(P>0.05);肌肉氨基酸测定结果显示,池塘组氨基酸总量(?TAA)、鲜味氨基酸(DAA)、必需氨基酸(EAA)、非必需氨基酸(NEAA)显著高于稻田组(P<0.05),?EAA/TAA和?EAA/NEAA显著低于稻田组(P<0.05),2组禾花鲤必需氨基酸构成比例均符合FAO/WHO标准;在鲜味氨基酸含量方面,池塘组主要的4种呈味氨基酸含量均显著高于稻田组(P<0.05)。根据氨基酸评分(AAS)和化学评分(CS)标准,2组禾花鲤肌肉第一、二限制性氨基酸均分别为色氨酸(Trp)和缬氨酸(Val);在脂肪酸测定结果中显示,池塘组单不饱和脂肪酸(∑MUFA)含量显著高于稻田组(P<0.05),但多不饱和脂肪酸(∑PUFA)、EPA+DHA和∑n-3PUFA/ ∑n-6PUFA显著低于稻田组(P<0.05)。综上所述,池塘和稻田养殖条件下,禾花鲤均为优质的蛋白质来源,但不同养殖环境对禾花鲤肌肉营养与品质有显著影响。从常规营养成分、氨基酸评分方面看,池塘养殖条件下禾花鲤肌肉营养价值更高;从脂肪酸角度来看,稻田养殖禾花鲤肌肉具有较高的EPA+DHA含量以及n-3/n-6多不饱和脂肪酸比例,更适合高血脂和心血管疾病等患者食用,从质构性来看,稻田养殖环境下禾花鲤肌肉更具嚼劲。  相似文献   

9.
Replacement of fish oil with sustainable alternatives, such as vegetable oil, in aquaculture diets has to be achieved without compromising the nutritional quality, in terms of n-3 highly unsaturated fatty acid (HUFA) content, of the product. This may be possible if the level of replacement is not too high and oil blends are chosen carefully but, if high levels of fish oil are substituted, a fish oil finishing diet prior to harvest would be required to restore n-3HUFA. However, a decontaminated fish oil would be required to avoid increasing undesirable contaminants. Here we test the hypotheses that blending of rapeseed and soybean oils with southern hemisphere fish oil will have a low impact upon tissue n-3HUFA levels, and that decontamination of fish oil will have no major effect on the nutritional quality of fish oil as a feed ingredient for Atlantic salmon. Salmon (initial weight ~ 0.8 kg) were fed for 10 weeks with diets in which 60% of fish oil was replaced with blends of soybean, rapeseed and southern hemisphere fish oil (SVO) or 100% decontaminated northern fish oil (DFO) in comparison with a standard northern fish oil diet (FO). Decontamination of the oil was a two-step procedure that included treatment with activated carbon followed by thin film deodorisation. Growth performance and feed efficiency were unaffected by either the SVO or DFO diets despite these having lower gross nutrient and fatty acid digestibilities than the FO diet. There were also no effects on the gross composition of the fish. Liver and, to a lesser extent flesh, lipid levels were lower in fish fed the SVO blends, due to lower proportions of neutral lipids, specifically triacylglycerol. Tissue lipid levels were not affected in fish fed the DFO diet. Reflecting the diet, flesh eicosapentaenoic acid (EPA) and total n-3 fatty acids were higher, and 18:1n-9 lower, in fish fed DFO than FO, whereas there were no differences in liver fatty acid compositions. Flesh EPA levels were only slightly reduced from about 6% to 5% although docosahexaenoic acid (DHA) was reduced more severely from around 13% to about 7% in fish fed the SVO diets. In contrast, the liver fatty acid compositions showed higher levels of n-3 HUFA, with DHA only reduced from 21% to about 18% and EPA increased from under 8% to 9–10% in fish fed the SVO diets. The evidence suggested that increased liver EPA (and arachidonic acid) was not simply retention, but also conversion of dietary 18:3n-3 and 18:2n-6. Increased HUFA synthesis was supported by increased hepatic expression of fatty acyl desaturases in fish fed the SVO diets. Flesh n-3HUFA levels and desaturase expression was significantly higher in fish fed soybean oil than in fish fed rapeseed oil. In conclusion, partial replacement of fish oil with blends of vegetable oils and southern hemisphere fish oil had minimal impact on HUFA levels in liver, but a greater effect on flesh HUFA levels. Despite lower apparent digestibility, decontamination of fish oil did not significantly impact its nutritional quality for salmon.  相似文献   

10.
The effect of semi-continuous culture on the nutritional value of microalgae was tested in the rotifer Brachionus plicatilis in short-term enrichment experiments. Isochrysis aff. galbana clone T-ISO was cultured semi-continuously with renewal rates from 10 to 50% of the volume of the culture per day and used to feed the rotifers. After 24 h, dramatic differences in dry weight and protein, lipid and carbohydrate contents were observed in the rotifers depending on the renewal rate applied to the microalgal culture. Rotifers fed T-ISO cultured with low renewal rates showed low dry weight and organic content, whereas rotifers fed microalgae from nutrient-sufficient, high renewal rate cultures showed higher dry weight and increases up to 60% in protein, 35% in lipid and 100% in carbohydrate contents. Feed conversion rate (FCR) and organic FCR decreased with increasing renewal rates, indicating a more efficient assimilation of the microalgal biomass obtained at high growth rates. The fatty acid profile of rotifers reflected that of T-ISO, with maximum content of polyunsaturated fatty acids (PUFAs), n-3 fatty acids and docosahexaenoic acid (DHA) being found in the rotifers fed microalgae from the renewal rate of 40%. Results demonstrate that the biochemical composition of B. plicatilis is strongly modified through the use of semi-continuous cultures of microalgae in short-term enrichment processes. This technique provides an excellent tool to improve the nutritional value of the live feed used in fish larvae cultures.  相似文献   

11.
锯缘青蟹幼体饵料的营养强化   总被引:15,自引:0,他引:15       下载免费PDF全文
翁幼竹 《水产学报》2001,25(3):227-231
用酵母、水球藻、鱼油强化和豆油强化四种不同方式培养轮虫,再分别投喂锯缘青蟹幼体,分析测定轮虫和体的生化组成,结果显示,(1)不同方式培养的轮虫之间以及摄食这些轮虫的锯缘青蟹幼体之间的蛋白质含量都没有显著差异;(2)轮虫的脂类含量和脂肪酸组成与培养方式密切相关,小球藻轮虫的脂类含量最高,20:5n-3(EPA)占总脂肪酸的比例也最高 ,为18.05%,鱼油轮虫则含有最多的22:6n-3(DHA),占总脂肪酸3.16%,脂类含量仅次于小球藻轮虫;(3)锯缘青蟹幼体的脂类含量和脂肪酸组成受相应饵料营养成分的影响。另外,幼体培育实验也发现,饵料营养成分影响幼体的存活率,结果表明,提高轮虫的EPA和DHA含量,尤其晨DHA含量,将有利于锯缘青蟹幼体的存活和发育。  相似文献   

12.
Fish is a nutritious food for the whole family and a good source of protein and n-3 fatty acids. The fish-processing industry produces tonnes of fish-processing waste and by-products annually. Disposal of untreated by-products of the fish-processing industry may cause environmental pollution. Sardinella gibbosa or goldstripe sardinella is commonly used in surimi and fish cracker productions in Malaysia. However, data on the nutritional composition of goldstripe sardinella fillets (GSF) and by-products (GSB) remain limited. The objectives of this study are to determine the nutritional composition and thermal properties of fillets and by-products of S. gibbosa. Results showed that the protein and moisture contents of GSF were higher than GSB. Conversely, the ash and fat levels of GSF were lower than GSB. Levels of saturated fatty acids (SFA) in GSF and GSB were higher than monounsaturated fatty acids (MUFA) and polyunsaturated fatty acids. Palmitic acid and oleic acid were the major SFA and MUFA found in GSF and GSB. Both GSF and GSB contain higher percentages of DHA and EPA. Melting and crystallization profiles of the oil from S. gibbosa fillets were similar to by-product oil, which was related to their fatty acid content.  相似文献   

13.
The importance of long-chain polyunsaturated fatty acids, especially the eicosanoid precursors, is addressed in this paper. It has been generally recognized that eicosapentaenoic (EPA, 20:5n-3) and docosahexaenoic acid (DHA, 22:6n-3) are of significant importance in fish reproduction while arachidonic acid (AA, 20:4n-6) has often been overlooked. The ratio between C20 fatty acids EPA and AA might be important for many physiological functions depending on the species evolution and its requirements. Arctic char (Salvelinus alpinus) has a much more pronounced freshwater history and therefore different fatty acid requirements than the other commonly farmed salmonids such as salmon (Salmo salar), brown trout (Salmo trutta) and rainbow trout (Oncorhynchus mykiss). Therefore there is reason to formulate a feed that is more suitable for farming of this freshwater species. In this study, freshwater wild-origin char eggs were compared to farmed eggs of char. The ratio n-3/n-6 of total phospholipids of eggs was much lower in the wild fish, 3.5 versus 13.5, and the hatching rate of eggs from natural environment was much higher (20–70% vs. >80%). We conclude that feed based on marine raw product does not fulfill the requirements for essential fatty acids for freshwater char and we suggest that AA is supplemented to the broodstock diet and that at least linoleic acid (18:2n-6) is included in the on-growth diet formulas to lower the n-3/n-6 fatty acid ratio.  相似文献   

14.
Three diets in which the lipid component was supplied either as fish oil (FO), linseed oil (LO) or olive oil (OO) were fed to duplicate groups of juvenile turbot (Scophthalmus maximus) of initial weight 1.2 g for a period of up to 12 weeks. The latter two diets resulted in a significant reduction in specific growth rate and an increased mortality compared to the FO (control) fed fish. A liver histopathology was evident in around half of the fish fed the LO and OO diets but was absent in fish fed FO. The lesion showed indications of cellular alterations consisting of foci of densely basophilic cells but without evidence of inflammatory activity. The total lipid fatty acid composition of the carcass from fish fed LO had increased percentages of 18:2n-6 and 18:3n-3, but decreased percentages of all other polyunsaturated fatty acids (PUFA) including the physiologically important 20:4n-6, 20:5n-3 and 22:6n-3, compared to fish fed FO. Almost 2/3 of the total fatty acids in the carcass of OO-fed fish were monounsaturated while the percentages of total saturated fatty acids and all other PUFA, except 18:2n-6, were significantly reduced compared to fish fed FO. Broadly similar effects on total lipid fatty acid composition were observed in liver. In the liver glycerophospholipid classes of fish fed LO, percentages of 18:2n-6, 18:3n-3 and 20:3n-3 were significantly increased whereas all C20 and C22 PUFA, with the exception of 20:5n-3 in PI, were significantly reduced compared to fish fed FO. The liver glycerophospholipids of fish fed OO all showed significantly increased total monounsaturates, 18:2n-6, 20:2n-6, 18:2n-9 and 20:2n-9 as well as reduced percentages of 20:4n-6 and 22:6n-3, compared to fish fed FO. The brain glycerophospholipids showed broadly similar changes in response to dietary treatment although the magnitude of fatty acid alterations was less than those observed in liver. The greater mortalities in the OO-fed fish compared to the LO-fed fish suggests that incorporation of 18:3n-3 into tissue phospholipids can offset losses of long-chain PUFA more effectively than incorporation of 18:1n-9. However, levels of dietary long-chain PUFA must be optimised to allow normal growth and development. We conclude that the very low flux through the fatty acid desaturase/elongase pathways in turbot is not up-regulated by diets deficient in 20:5n-3 and 22:6n-3.  相似文献   

15.
Tomita  Yuki  Ando  Yasuhiro 《Fisheries Science》2009,75(2):445-451
Positional distribution of fatty acids in triacyl-sn-glycerols (TAG) of the flathead flounder Hippoglossoides dubius has been reinvestigated in order to accurately determine the contents of tetracosahexaenoic acid (24:6n-3) in the sn-1, sn-2, and sn-3 positions. Flesh TAG obtained from three flounders were subjected to stereospecific analysis using a suitable procedure for fish TAG analysis. The 24:6n-3 acid was found in the three positions at the concentrations of 0.3–5.5 mole% (the sn-1 position), 1.6–23.3 mole% (the sn-2 position), and 0.6–8.9 mole% (the sn-3 position). In contrast to a previous analysis, the present analysis revealed that 24:6n-3 is preferentially esterified in the sn-2 position followed by the sn-3 and sn-1 positions. Other polyunsaturated fatty acids, docosahexaenoic acid (22:6n-3; DHA) and docosapentaenoic acid (22:5n-3; DPA), showed a similar distribution pattern. These results indicate that the general tendency observed for long-chain polyunsaturated fatty acids in marine fish TAG can be extended to the distribution of 24:6n-3 in flathead flounder TAG. Because the use of flathead flounders is entirely for human food, we thus intake 24:6n-3 concentrated in the sn-2 position of their TAG.  相似文献   

16.
As the supply of marine fish oil is becoming a limiting factor in the production of Atlantic salmon (Salmo salar), new diets and alternative sources of energy are being tested. Plant oils are natural potential candidates to replace fish oil, but the different levels of essential polyunsaturated fatty acids may influence the health and growth of salmon. In this study, we have investigated the resistance to transport stress and bacterial infection, phagocytic activity in head kidney macrophages and eicosanoid metabolism in salmon fed three different diets. In high-energy fishmeal based diets, 50% and 100% of the supplementary fish oil (FO) was replaced with soybean oil (SO). The three dietary groups were fed for 950 day-degrees at 5 °C (27 weeks) and 12 °C (11 weeks) before challenging the fish with Aeromonas salmonicida, analyzing the lipid composition of head kidney and examining macrophage function in vivo and in vitro. Dietary fatty acids affected the lipid composition of the kidney. The level of eicosanoid precursor’s 20:4n-6 and 20:3n-6 were 3 and 7-fold higher in the 100% SO group compared with the FO group. The total fraction of n-3 lipids in kidney was 19% in the SO group, compared to 16% and 12% in the 50% or 100% SO groups, respectively. However, the production of leucotriene B4 (LTB) and prostaglandin E2 (PGE) immunoreactive materiel from exogenously added arachidonic acid in head kidney macrophages was only affected by the composite diet (increased) at 5 °C. In addition, the phagocytic activity of kidney macrophages in vivo and in vitro was not affected by diet. No effect of diet was observed on transport stress or susceptibility to a bacterial infection with Aeromonas salmonicida. Atlantic salmon therefore seems to tolerate a diet solely based on soybean oil as lipid source, without any detrimental effects on growth, health and immune functions.  相似文献   

17.
Feeding experiments and laboratory analyses were conducted to establish the essential fatty acid (EFA) requirement of red drum (Sciaenops ocellatus). Juvenile red drum were maintained in aquaria containing brackish water (5 ± 2‰ total dissolved solids) for two 6-week experiments. Semipurified diets contained a total of 70% lipid consisting of different combinations of tristearin [predominantly 18:0] and the following fatty acid ethyl esters: oleate, linoleate, linolenate, and a mixture of highly unsaturated fatty acids (HUFA) containing approximately 60% eicosapentaenoate plus docosahexaenoate. EFA-deficient diets (containing only tristearin or oleate) rapidly reduced fish growth and feed efficiency, and increased mortality. Fin erosion and a “shock syndrome” also occurred in association with EFA deficiency. Of the diets containing fatty acid ethyl esters, those with 0.5–1% (n-3) HUFA (0.3–0.6% eicosapentaenoate plus docosahexaenoate) promoted the best growth, survival, and feed efficiency; however, the control diet containing 7% menhaden fish oil provided the best performance. Excess (n-3) HUFA suppressed fish weight gain; suppression became evident at 1.5% (n-3) HUFA, and was pronounced at 2.5%. Fatty acid compositions of whole-body, muscle and liver tissues from red drum fed the various diets generally reflected dietary fatty acids, but modifications of these patterns also were evident. Levels of saturated fatty acids appeared to be regulated independent of diet. In fish fed EFA-deficient diets (containing only tristearin or oleate), monoenes increased and (n-3) HUFA were preferentially conserved in polar lipid fractions. Eicosatrienoic acid [20:3(n-9)] was not elevated in EFA-deficient red drum, apparently due to their limited ability to transform fatty acids. Red drum exhibited some limited ability to elongate and desaturate linoleic acid [18:2(n-6)] and linolenic acid [18:3(n-3)]; however, metabolism of 18:3(n-3) did not generally result in increased tissue levels of (n-3) HUFA. Based on these responses, the red drum required approximately 0.5% (n-3) HUFA in the diet (approximately 7% of dietary lipid) for proper growth and health.  相似文献   

18.
The fatty acid composition of pikeperch (Sander lucioperca) was determined according to their physiological status, during starvation (10 days) and feeding (28 days). In starved larvae, polyunsaturated, monounsaturated and saturated fatty acids were utilized as metabolic substrates until day 9. At day 10, all fatty acid levels remained stable or, at least, increased in larval body. Among fatty acids, docosahexaenoic acid 22:6 n-3 was used preferentially (20.3% from total fatty acids utilized) followed by palmitoleic acid 16:1 n-7 (13.9%) and then by oleic 18:1 n-9 (12.3%), linoleic 18:2 n-6 (10.1%), linolenic 18:3 n-3 (9.7%) and eicosapentaenoic 20:5 n-3 (9.1%) acids. On the other hand, arachidonic acid 20:4 n-6 was utilized very lowly (0.3%). In fed larvae, no utilization of body fatty acids was observed during the experiment. It seems that energy requirements (and others) of fed larvae were satisfied by feed.  相似文献   

19.
本研究比较和分析网箱与微流水两种养殖模式下体质量(76.5±17.8)g和(67.2±8.1)g的齐口裂腹鱼Schizothorax prenanti肌肉常规营养成分。结果显示:两组齐口裂腹鱼肌肉中一般营养成分含量不存在显著性差异,均含有18种氨基酸;除色氨酸(Trp)和组氨酸(His)外,网箱组齐口裂腹鱼肌肉中其余氨基酸、氨基酸总量、必需氨基酸总量和鲜味氨基酸总量均显著低于微流水组。氨基酸评分(AAS)和化学评分(CS)结果显示:两组齐口裂腹鱼肌肉中必需氨基酸构成合理,色氨酸均为第一限制性氨基酸,赖氨酸在必需氨基酸中评分最高。两组齐口裂腹鱼肌肉中均含有21种脂肪酸,网箱组饱和脂肪酸(SFA)总量和单不饱和脂肪酸(MUFA)含量显著低于微流水组,而多不饱和脂肪酸(PUFA)含量显著高于微流水组,且n-3/n-6比值要高于网箱组。综上所述,微流水养殖的齐口裂腹鱼营养价值更高。  相似文献   

20.
胡凯  陈康  冯琳  姜维丹  刘杨  周小秋 《水产学报》2022,46(10):1957-1968
为探索磷对生长期草鱼肌肉常规营养组成和理化特性,肌肉中游离氨基酸、呈味核苷酸和游离脂肪酸组成的影响,实验选择初始体质量为[(256.22±0.60) g]的健康草鱼540尾,随机分为6组,每组3个重复,分别饲喂含有效磷0.95 (基础饲料组,未添加)、2.46、3.96、5.68、7.10和8.75 g/kg的饲料60 d。结果显示,饲料中适宜水平有效磷显著提高了生长期草鱼肌肉蛋白质、水分、羟脯氨酸、∑氨基酸、∑鲜味氨基酸(UAAs)、∑甜味氨基酸(SAAs)、肌苷酸(IMP)、∑不饱和脂肪酸、∑多不饱和脂肪酸(PUFA)含量以及pH0 h和pH12 h,而肌肉剪切力、组织蛋白酶B和L活性、乳酸、饱和脂肪酸(SFA)含量显著降低。此外,当饲料中有效磷水平分别增加到3.96和5.68 g/kg时,生长期草鱼肌肉IMP和∑呈味氨基酸(UAAs+SAAs)的滋味活性值(TAV)分别达到最大值。适宜水平有效磷还显著提高了生长期草鱼肌肉PUFA/UFA及n-3 PUFAs/n-6 PUFAs比值。研究表明,适宜水平有效磷提高了生长期草鱼肌肉蛋白质含量、肌肉嫩度、系水力和pH值,增加肌肉呈味氨基酸...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号