首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
【目的】明确除草活性菌株HZ-011的发酵培养基各因素配比及最适发酵条件,为该菌作为除草剂的研发和农田应用提供理论依据。【方法】以产孢量为目标,通过固体培养基筛选确定菌株HZ-011生长的基础培养基;采用单因素试验优化菌株HZ-011的发酵培养基和最佳发酵条件;利用中心组合设计(Central composite design,CCD)原理对菌株HZ-011的液体培养基成分及配比进行优化;通过响应面法分析培养基各成分间的交互作用;用菌株HZ-011发酵液对盆栽杂草(藜、密花香薷、冬葵和反枝苋)进行致病性试验。【结果】经过优化,菌株HZ-011的培养基最佳配比为蔗糖48.744 g/L、蛋白胨15.626 g/L、NaCl 0.214 g/L和K2HPO4 0.428 g/L,最佳发酵条件为pH 7、温度25℃、培养时间5 d、装液量180 mL和转速180 r/min。盆栽试验结果表明,菌株HZ-011对藜和反枝苋全部致死,对密花香薷的致病率为75%,对冬葵的致病率为40%。【结论】优化后的培养基提高了菌株HZ-011的产孢量,为该菌株应用于农田杂草生物防治打下基础。  相似文献   

2.
【目的】 研究采用单因素试验设计和响应面分析法对产二氢大豆苷元菌株发酵培养基的主要营养成分进行优化。【方法】 以脑浸心肉汤培养基(BHI)为基础,通过单因素试验确定主要因素(碳源、氮源、生长因子和无机盐)及其适宜的浓度范围,利用Box-Behnken中心组合试验设计,采用响应面法进行回归分析,确定培养基中的最佳组成成分。【结果】 通过单因素试验确定了葡萄糖、蛋白胨、VB1和KH2PO4能够提高二氢大豆苷元的产量,响应面分析法进一步确定在以BHI为基础的条件下,葡萄糖的补充量为10.22 g/L、蛋白胨为6.00 g/L、VB1为0.49 g/L、KH2PO4为0.82 g/L。验证试验显示在培养基优化后的条件下,DHD的产生量为0.27 μg/mL,与预测值0.28 μg/mL接近。【结论】 利用单因素试验和响应面法,分析明确了产二氢大豆苷元菌株发酵培养基最佳成分为38 g/L的BHI、10.22 g/L的葡萄糖、6.00 g/L的蛋白胨、0.49 g/L的VB1、0.82 g/L的KH2PO4。  相似文献   

3.
【目的】研究从腐烂紫菜中分离的Stenotrophomonas sp.Z705菌株产琼胶酶的最佳发酵条件和培养基组成。【方法】采用单因素试验,分析装液量、摇床转速、发酵时间、初始pH、发酵温度、盐度等因素对Stenotrophomonas sp.Z705菌株发酵产琼胶酶活力的影响,从中筛选出该菌株的最佳发酵条件。在此基础上,采用单因素试验和L9(33)正交试验,分析不同氮源和碳源对Stenotrophomonas sp.Z705菌株发酵产琼胶酶活力的影响,从中筛选出该菌株最佳培养基的组成。【结果】Stenotrophomonas sp.Z705菌株发酵产琼胶酶的最佳条件为:装液量25mL、摇床转速200r/min、发酵时间23h、初始pH 7.2、发酵温度28℃、盐度3.4%;最佳培养基组成为:牛肉膏5.0g/L、酵母浸膏1.50g/L、琼胶0.30g/L。【结论】在最佳组成培养基和发酵条件下,该菌株产琼胶酶活力稳定在87.1U/mL左右,比优化前提高了60.4%。  相似文献   

4.
利用从药用植物牡蒿(Artemisia japonica)中分离筛选出的1株猕猴桃褐腐病生防菌株GMH31,采用含毒介质平板法进行抑菌试验,通过单因子试验和正交试验,对该菌株的最适发酵培养基成分(包括碳源、氮源、无机盐离子、微量元素)及发酵条件(包括发酵时间、温度、pH、转数、装液量、接种量)进行了优化。结果显示:尤韦可拟盘多毛孢菌株GMH31培养基组分最佳配比为麦芽糖35 g/L、氯化铵12 g/L、K_2HPO_40.1 g/L、甘氨酸0.015 g/L,最佳发酵条件为培养时间14 d、培养温度26℃、初始pH 6.0、摇床转速120 r/min、250 m L装液量100 m L、接菌量为装液量的6%。在最佳发酵培养基和培养条件下,GMH31菌株发酵滤液对猕猴桃褐腐病菌的抑制率提高了16.45%。  相似文献   

5.
高产花生四烯酸的高山被孢霉菌株发酵条件优化   总被引:1,自引:0,他引:1  
【目的】对高产花生四烯酸(Arachidonic acid,简称ARA)的高山被孢霉(Mortierella alpina)菌株发酵条件进行优化,以期获得更高的菌体生物量和ARA产量。【方法】以前期筛选出的3株高产ARA菌株为供试菌株,采用单因素试验筛选出最佳碳、氮源,通过正交试验优化培养基配方并筛选最适生长温度。【结果】M. alpina生长的最佳碳源为葡萄糖,最佳氮源为酵母浸粉,最适生长温度为20℃。其中D1菌株的最佳培养基配方:葡萄糖120 g/L,KH2PO41 g/L,酵母浸粉15 g/L,初始pH 5. 5; N24菌株的最佳培养基配方:葡萄糖120 g/L,KH2PO41 g/L,酵母浸粉20 g/L,初始pH 6. 0; 11f01菌株的最佳培养基配方:葡萄糖120 g/L,KH2PO41 g/L,酵母浸粉15 g/L,初始pH 6. 0。优化后3株菌的生物量分别为26. 67、27. 07和23. 02 g/L,分别增加了22. 0%、15.39%和23. 73%; ARA含量分别为4. 29、4. 39和3. 45 g/L,分别增加了38. 79%、23. 16%、64. 59%。【结论】对M. alpina发酵条件进行优化后,3株菌的菌体生物量和ARA含量均明显提高。  相似文献   

6.
响应面法优化Xenorhabdus nematophila发酵培养基的研究   总被引:1,自引:0,他引:1  
【目的】提高Xenorhabdus nematophilaYL001的抗菌活性,为该菌株杀菌活性成分的提取分离及生物农药的开发应用奠定基础。【方法】以YSG培养基为基础,采用单因子试验方法,对最佳碳源和氮源进行筛选,并采用全因子中心组合试验设计和响应面法对其最佳配比进行优化。【结果】YL001菌株的最佳碳源为玉米粉,氮源为豆饼粉,培养基的最佳组成为:玉米粉9.69 g/L,豆饼粉76.50 g/L,MgSO41.07 g/L,(NH4)2SO41.79 g/L,KH2PO40.63 g/L,K2HPO40.80 g/L,Na2SO41.25 g/L,在此条件下,YL001菌株抗菌活性达268.9 U/mL。【结论】培养基优化后YL001菌株的抗菌活性与试验的预测值接近,表明响应面法在培养基优化中十分有效,相对简单,且节省时间和材料。  相似文献   

7.
【目的】为测定生菜花粉的活力,优化生菜花粉离体萌发培养基,筛选最适的培养时间、温度及转速。【方法】以生菜品种‘S39’为材料,使用BK培养基和ME3培养基测定生菜花粉的萌发率,并在这两种培养基的基础上添加不同质量浓度聚乙二醇1500和聚乙二醇4000,测定不同培养温度、时间及转速下的花粉萌发率。【结果】生菜花粉在BK培养基和ME3培养基中萌发率均极低,添加300 g/L聚乙二醇4000能极显著提高生菜花粉的萌发率。最适的培养条件为33℃100 r/min摇床中避光培养12 h。【结论】采集生菜‘S39’完全开放时期的花粉,使用优化后的培养基:200 g/L蔗糖+0.1 g/L H3BO3+0.236 g/L Ca(NO3)2·4H2O+0.04 g/L CaCl2·H2O+0.12 g/L MgSO4·7H2O+300 g/L聚乙二醇4 000在3...  相似文献   

8.
【目的】分离鉴定高效富铁酿酒酵母菌株,优化其培养基组分和发酵条件。【方法】从果园根际土壤中分离选育耐铁酿酒酵母菌,对其进行形态学、生理生化分析和26 S rDNA基因序列分析鉴定;采用单因素试验,分别设置不同碳源种类(葡萄糖、蔗糖、乳糖、果糖、麦芽糖)、氮源种类(硫酸铵、酵母膏、蛋白胨、尿素)及不同质量浓度Fe2+(100,200,300,…,1 000,1 200,1 600,2 000μg/mL)、碳源(10,20,30,40,50,60,70,80,90 g/L)、氮源(无机氮源2,4,6,8,10,20 g/L;有机氮源4,8,12,16,20,24,28 g/L)、无机盐(MgSO4·7H2O 0.3,0.5,1.0,1.5,2.0 g/L;KH2PO4 0.5,1.5,2.5,3.5,4.5 g/L)的培养基进行试验,探究不同培养基组分对酿酒酵母富铁能力的影响。采用单因素试验研究温度(26,28,30,32,34,36,38℃)、初始pH值(3.5,4.0,4.5,...  相似文献   

9.
解磷菌株黑曲霉PSFM发酵条件优化研究   总被引:1,自引:1,他引:0  
【目的】利用液体培养法探究不同碳源、氮源、无机盐和微量元素浓度以及发酵时间、温度、初始pH、转速、接种量等条件对解磷菌解磷特性的影响,获得解磷菌的最佳发酵培养基和培养条件。【方法】采用单因素及正交试验法,对一株分离自土壤的解磷真菌黑曲霉(Aspergillus niger)PSFM菌株的基础发酵培养基和发酵条件(发酵时间0~10 d、温度20~40℃、初始pH值3.0~11.0、接种量1%~11%、转速120~300 rpm)进行优化,测定其发酵液吸光度值,以解磷量的高低作为评价发酵培养基及发酵条件优劣的指标。【结果】分别在无机磷和有机磷液体培养基、简单培养基(SP)、NBRIY、NBRIP、NBRIYP培养基中培养6 d后,以无机磷液体培养基的PSFM菌株解磷能力最高,解磷量为526.42 mg/L。在12种不同碳源培养基中,PSFM均能正常生长,其解磷能力由大到小依次为:木糖>葡萄糖>乳糖>蔗糖>麦芽糖>半乳糖>山梨糖>甘露糖>果糖>可溶性淀粉>鼠李糖>甘油。以硝酸钠、尿素、酵母浸膏、氯化铵、硝酸镁、硝酸铵、色氨酸、乙酸铵、牛肉浸膏、胰-蛋白胨、甘氨酸、酪氨酸、丙氨酸和精氨酸为氮源时,硫酸铵为唯一氮源的解磷效果最好,菌株PSFM发酵液中有效磷含量最高(990.31 mg/L)。菌株PSFM的解磷能力均随着最佳培养基中NaCl、KCl、MgSO4·7H2O、FeSO4·7H2O和MnSO4·7H2O浓度的增加呈先提高后降低趋势,当其浓度分别为0.03%、0.01%、0.03%、0.001%、0.001%时,菌株PSFM的解磷能力均最强。在不同发酵条件下,以发酵6 d、温度28℃、初始pH 6.0、5%接种量、转速300 rpm的PSFM解磷能力最强,解磷量分别为599.24、528.23、603.69、530.57和731.48 mg/L。【结论】最适合PSFM菌株的基础发酵培养基为无机磷液体培养基,碳源为1.0%木糖,氮源为0.10%硫酸铵,最佳无机盐配方为:NaCl 0.10 g/L、KCl 0.70 g/L、MgSO4·7H2O 0.70 g/L、FeSO4·7H2O 0.01 g/L、MnSO4·7H2O 0.01 g/L;最佳培养条件为:温度28℃,初始pH 6.0,转速180 rpm,接种量5%,发酵时间为6 d。  相似文献   

10.
【目的】微生物在雪茄烟叶发酵过程中起关键作用,为更好地提高雪茄烟品质,需要筛选雪茄优势菌并应用于雪茄烟叶发酵,为此需优化扩大优势菌株的生物量。【方法】对从雪茄烟中筛选出的一株优势菌株ZLX10进行16S测序、生理生化分析以及菌株鉴定,同时通过单因素和正交试验优化培养基成分(碳源、氮源和无机盐)及培养条件(接种量、装液量和种龄),以提高其生物量。【结果】经16S rDNA序列比对,菌株ZLX10与莫海威芽孢杆菌(Bacillus mojavensis,MT043920.1)的序列同源性达到99.86%,该菌株具有很强的多糖和蛋白大分子降解能力,可以鉴定为莫海威芽孢杆菌。经单因素和正交试验得到菌株ZLX10的最优培养基配方为碳源(蔗糖)50 g/L、氮源(酵母提取物)20 g/L、无机盐(MgSO4) 0.25 g/L,最佳培养条件为接种量1%(V/V)、装液量为250 mL中装30 mL、种龄24 h。在最优培养条件下培养24 h,菌株ZLX10的生物量是优化前的1.98倍。【结论】通过优化条件可以明显提高菌株ZLX10的生物量,为应用于人工接种发酵雪茄烟叶提供基础。  相似文献   

11.
解磷菌株黑曲霉PSFM发酵条件优化研究   总被引:1,自引:0,他引:1  
【目的】利用液体培养法探究不同碳源、氮源、无机盐和微量元素浓度以及发酵时间、温度、初始pH、转速、接种量等条件对解磷菌解磷特性的影响,获得解磷菌的最佳发酵培养基和培养条件。【方法】采用单因素及正交试验法,对一株分离自土壤的解磷真菌黑曲霉(Aspergillus niger)PSFM菌株的基础发酵培养基和发酵条件(发酵时间0~10d、温度20~40℃、初始pH值3.0~11.0、接种量1%~11%、转速120~300rpm)进行优化,测定其发酵液吸光度值,以解磷量的高低作为评价发酵培养基及发酵条件优劣的指标。【结果】分别在无机磷和有机磷液体培养基、简单培养基(SP)、NBRIY、NBRIP、NBRIYP培养基中培养6d后,以无机磷液体培养基的PSFM菌株解磷能力最高,解磷量为526.42mg/L。在12种不同碳源培养基中,PSFM均能正常生长,其解磷能力由大到小依次为:木糖〉葡萄糖〉乳糖〉蔗糖〉麦芽糖〉半乳糖〉山梨糖〉甘露糖〉果糖〉可溶性淀粉〉鼠李糖〉甘油。以硝酸钠、尿素、酵母浸膏、氯化铵、硝酸镁、硝酸铵、色氨酸、乙酸铵、牛肉浸膏、胰-蛋白胨、甘氨酸、酪氨酸、丙氨酸和精氨酸为氮源时,硫酸铵为唯一氮源的解磷效果最好,菌株PSFM发酵液中有效磷含量最高(990.31mg/L)。菌株PSFM的解磷能力均随着最佳培养基中NaCl、KCl、MgSO4·7H2O、FeSO4·7H2O和MnSO4·7H2O浓度的增加呈先提高后降低趋势,当其浓度分别为0.03%、0.01%、0.03%、0.001%、0.001%时,菌株PSFM的解磷能力均最强。在不同发酵条件下,以发酵6d、温度28℃、初始pH6.0、5%接种量、转速300rpm的PSFM解磷能力最强,解磷量分别为599.24、528.23、603.69、530.57和731.48mg/L。【结论】最适合PSFM菌株的基础发酵培养基为无机磷液体培养基,碳源为1.0%木糖,氮源为0.10%硫酸铵,最佳无机盐配方为:NaCl0.10g/L、KCl0.70g/L、MgSO·47H2O 0.70g/L、FeSO4·7H2O 0.01g/L、MnSO·47H2O 0.01g/L;最佳培养条件为:温度28℃,初始pH6.0,转速180rpm,接种量5%,发酵时间为6d。  相似文献   

12.
采用单因素试验和正交试验,对解淀粉芽孢杆菌菌株XZ-1的发酵培养基成分和发酵条件进行了优化。结果表明:XZ-1的发酵培养基的最佳碳源、氮源和无机盐分别为糊精、蛋白胨和氯化钾;其培养基最佳组分为糊精10 g/L,蔗糖5 g/L,蛋白胨10 g/L,氯化钠7 g/L;最佳发酵培养条件为培养基初始p H值6,发酵温度27℃,发酵时间36 h,装液量100 m L/250 m L,接种量3%,转速150 r/min。  相似文献   

13.
采用单因素试验和正交试验,对解淀粉芽孢杆菌菌株XZ-1的发酵培养基成分和发酵条件进行了优化。结果表明:XZ-1的发酵培养基的最佳碳源、氮源和无机盐分别为糊精、蛋白胨和氯化钾;其培养基最佳组分为糊精10 g/L,蔗糖5 g/L,蛋白胨10 g/L,氯化钠7 g/L;最佳发酵培养条件为培养基初始p H值6,发酵温度27℃,发酵时间36 h,装液量100 m L/250 m L,接种量3%,转速150 r/min。  相似文献   

14.
【目的】以2株不同的木质素降解菌[菌株A(构巢曲霉Aspergillus nidulans)、菌株Q(栓菌属1种Trametes sp.)]为材料,分别制作应用于园林绿化废弃物降解或者堆肥的高效固体发酵菌剂。【方法】采用单因素试验确定固体发酵培养基的碳氮源和外加营养组分种类,再通过正交试验对碳氮源添加量进行优化,最后根据碳氮源优化结果,采用均匀实验结合人工神经网络算法寻找2株木质素降解菌的外加营养组分接种量和最佳固体培养基发酵条件。【结果】优化后的菌株Q固体菌剂培养基基质以麸皮30.000 g作为基底,添加豆饼粉3.000 g和玉米粉0.188 g;外加营养组分(按基质的质量比)为硫酸镁(MgSO4) 1.434%、磷酸二氢钾(KH2PO4)0.115%和硫酸亚铁(FeSO4·7H2O)1.497%;接种条件为接菌量6.000%、料水比(质量比)1.000∶0.992、保护剂1.000%。优化后的菌株A固体菌剂培养基基质以麸皮30.000 g作为基底,添加豆饼粉1.500 g和...  相似文献   

15.
【目的】探索一株防治藜、冬葵等阔叶杂草的生防菌株极细链格孢(Alternaria tenuissima)HZ-1的发酵工艺.【方法】采用液固双相发酵方式,通过单因素和正交设计试验,对该菌株固态发酵基质、最适碳氮源和固-液发酵条件进行研究.【结果】HZ-1最佳产孢的固态基质为麦麸,最适碳源为麦麸(40 mg/g),最适氮源为蛋白胨(50 mg/g).正交优化试验得出该菌最适固-液发酵条件为:培养基初始含水量为300 mg/g,适宜的接种量为0.3 mL/g,初始pH值7.4,最适温度为24.3℃,发酵最适时间为216 h.【结论】研究结果可为该极细链格孢菌菌株除草活性物质的分离及工业化生产提供依据.  相似文献   

16.
【目的】贝莱斯芽孢杆菌FJ17-4对许多病原菌具有较强的抑制作用,为提高其生防作用,开展FJ17-4发酵技术研究。【方法】以发酵液的OD600值为评估指标,采用单因素和正交试验方法对发酵培养基和发酵条件进行筛选和优化,获得最佳发酵培养基和发酵条件后,进一步对优化后发酵液的菌体数、病原菌抑制率和室内盆栽防治效果进行测定和分析。【结果】菌株FJ17-4的最佳培养基配方为黄豆粉12.5 g·L-1、玉米粉5.0 g·L-1、K2HPO4 12.5g·L-1,最佳发酵条件为:初始pH 7.0,培养温度30℃,装液量20%(50 mL/250 mL),接种量12.5%,转速180r·min-1,发酵培养时间40 h。优化后发酵液的OD600值和菌体数量分别为1.52×1010、1.03×1010 cfu·mL-1,比优化前分别提高了25.62%和21.95%...  相似文献   

17.
【目的】 采用响应面法对红枣黑斑病的拮抗细菌JK1培养基进行优化,提高其发酵产物中芽孢的浓度。为该菌应用提供数据。【方法】单因素实验确定培养基碳氮源物质,Plackett-Burman试验分析发酵培养基中对JK1发酵影响最重要的主要因素;运用最陡爬坡法对主要因素进行试验,获得主要因素的最适范围。通过响应面分析得到主要因素的最优水平。【结果】优化后的培养基组成为:麦芽浸粉 25.00 g/L、葡萄糖 0.57 g/L、大豆蛋白胨 12.5 g/L、NaCl 2.7 g/L、K2HPO4 0.25 g/L 、MgSO4 0.625 g/L。【结论】在最优发酵培养基培养下,多粘类芽孢杆菌的芽孢数提高了3.4倍,达到4.92×109CFU/mL。  相似文献   

18.
【目的】以阿扎霉素产生菌马来西亚链霉菌ECO-00002为试验菌株,优化种子培养基成份和培养条件,提高菌体的生物量。【方法】采用Plackett-Burman试验筛选适宜的碳氮源成分,并通过Response-Surface-Analysis(RSA)试验,找出其最大响应值;进一步通过对比试验,确定复合维生素、复合盐、CaCO_3的配比,同时优化pH值、装液量等种子培养条件。【结果】菌株种子生长主要的影响碳氮源为葡萄糖、酵母膏、麦芽膏,其最大响应值分别为1.45%、1.50%和2.0%;无机盐为CaCO_3 3.00 g/L、MgSO_4·7H_2O 1.00 g/L、MnSO_4·4H_2O 0.10 g/L、KH_2PO_4 0.20 g/L;培养条件为初始pH 7.50,装液量100 mL/500 mL,培养温度28℃,培养时间为200 r/min振荡培养40 h。【结论】在优化的种子培养基和培养条件下,菌株菌体生物量由原来的4.09 g提高到8.91 g,提高率为117.70%,优化效果显著。  相似文献   

19.
对果胶酶高产菌株黑曲霉(Aspergillus niger)SW06进行液体发酵工艺条件优化.首先采用单因素试验设计果胶酶发酵的最适温度和pH值,并筛选了最适的碳源、氮源和无机盐.在此基础上,采用中心组合设计进行回归分析及响应面分析,确定培养基的最佳组合.结果表明,果胶酶发酵的最适温度为28℃,最适pH值为5,最适碳源、氮源分别为果糖、蛋白胨.回归分析得到的优化发酵条件为:100 mL培养基中含果糖4.89 g、蛋白胨0.50 g、果胶0.60 g.在最优条件下发酵,果胶酶活最高可达4 175.65 U/mL.  相似文献   

20.
【目的】优化戊糖片球菌C1C-4发酵工艺,获取活菌数高、经济效益好的菌株制剂。【方法】以活菌数为参考指标,采用单因子试验和正交试验对其发酵培养基主要成分氮源、碳源、无机盐质量浓度进行优化,在此基础上对其生长曲线进行测定并对其发酵产物保存温度做优化。【结果】方差分析表明,氮源和碳源对戊糖片球菌的生长有显著影响(P<0.05),无机盐的影响则不显著(P>0.05)。正交试验得到的最优培养基配比为豆粕粉35g/L、蔗糖35g/L、无机盐1.5g/L,相应的活菌数为6.02×109 CFU/mL。采用优化过的培养基对戊糖片球菌进行摇菌培养,结果表明戊糖片球菌在0~8h生长缓慢;12~24h则进入对数生长期;28h过后为平台期,发酵时间以28~32h为最优。高温(37℃)和常温(25℃)比低温(4℃)条件下戊糖片球菌菌粉活菌数随时间下降更快,保存时间较短,故戊糖片球菌菌粉应置于低温环境下保存。【结论】培养基成分和发酵条件的优化提高了戊糖片球菌的发酵效率,储藏温度的优化能延长发酵产品的保质期。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号