首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Modifying plant architecture is considered a promising breeding option to enhance crop productivity. Modern chickpea (Cicer arietinum L.) cultivars with either compound (wild‐type) or simple leaf shapes are commercially grown but the relationships between leaf shape and yield are not well understood. In this study, a random sample of ‘Kabuli’ type progeny lines of both leaf types, derived from two crosses between modern American simple leaf cultivars and early‐flowering wild‐type breeding lines, were planted at different sowing densities. Leaf area development and final grain yield in genotypes of the two leaf types responded differently to changes in sowing densities. Compound leaf lines attained higher leaf area indices and higher grain yields at both low and high sowing densities. Yield responses of the simple leaf lines to increasing sowing density were significantly higher compared to compound leaf genotypes in two of three field experiments. The prospects for utilizing the simple leaf trait as a breeding target for short‐season growing areas are discussed.  相似文献   

2.
Wheat blast disease, caused by Magnaporthe oryzae (anamorph Pyricularia oryzae), produces severe damage to wheat production in South America. It was observed that many resistant cultivars contain the 2NS/2AS translocation from Triticum ventricosum. In this study, we evaluate the presence of the 2NS/2AS translocation in 57 advanced breeding lines and one variety ‘Caninde 1’ from Paraguayan wheat germplasm, using VENTRIUP‐LN2 primers. The germplasm ‘Caninde 1 and 22’ of the breeding lines, found positive for the presence of 2NS/2AS translocation, were inoculated with a single aggressive Magnaporthe pathotype P14‐039, to assess their response to wheat blast infection under controlled conditions. Based on the disease infection score, ten of the breeding lines, ‘Caninde 1’ and ‘Milan’ (positive control), were classified as resistant. Three of the remaining breeding lines were classified as moderately resistant, five as moderately susceptible and other four as susceptible. Our results show that the expression of 2NS/2AS‐based blast resistance is more dependent on genetic background of the inserted germplasm than previously envisioned.  相似文献   

3.
Strawberries are a common and important fruit in human diet because of their high content of essential nutrients and beneficial phytochemicals, which have relevant biological activity in human health. In this study, six cultivars and 15 selected F1 hybrids between S4 inbred lines and tester (cv. ‘Dukat’) were evaluated in a field trial over a period of two consecutive years. The amounts of total anthocyanin, phenolics and vitamin C in fruits and antiradical activity were analysed. General combining ability (GCA) and mid‐parent heterosis were also determined for those characteristics. Among all the genotypes tested, the inbred lines of ‘Senga Sengana’ 17 showed the highest breeding value based on GCA for all studied traits. Estimated heterosis varied among genotypes tested. The highest heterosis in terms of vitamin C occurred in the offspring of clone 1387 18‐15 × ‘Dukat’, but with regard to phenols and antiradical activity in hybrid ‘Teresa’ 18‐15 with cv. ‘Dukat’. This study revealed that the differentiation in chemical composition of strawberry fruits between genotypes is clearly dependent on individual genotype combinations and demonstrated the presence of heterosis in phytochemical contents in some specific genotypic combinations.  相似文献   

4.
In CMS (cytoplasmic male sterility)‐based hybrid rye (Secale cereale L.) breeding, effective pollen‐fertility restoration is an essential prerequisite for achieving maximum grain yield on the one hand and for minimizing ergot (Claviceps purpurea) infestation on the other. Restorer genes for the CMS‐inducing ‘Pampa’ cytoplasm derived from landraces collected in Iran and Argentina are used by breeders for achieving this goal. Here, restorer genes from four germplasm sources (‘Altevogt 14160’, ‘IRAN III’, ‘Trenelense’ and ‘Pico Gentario’) were analysed by producing three‐way cross hybrids between an elite CMS single cross and pollinators with and without a given restorer gene. Materials were evaluated on large drilled plots for restorer index (RI), grain yield, plant height and other traits in six environments. In experiment 1, a restorer gene from ‘Altevogt 14160’ was used. Seven pairs of marker‐selected carrier and non‐carrier backcross lines served as pollinators. In experiment 2, the pollinators were 17 backcross line pairs from the other three germplasm sources. These lines were grouped as high (RI > 67%) and low restorers (RI < 30%), respectively, using testcrosses with a highly diagnostic CMS tester. Hybrids carrying an exotic restorer gene suffered from a significant grain yield reduction by 4.4% and 9.4% and were 9.3 and 4.8 cm taller in experiments 1 and 2, respectively. Thousand‐kernel weight was reduced, whereas quality traits were only slightly affected. For all traits, significant genetic variance existed among the testcrosses to the presence vs. absence of a given exotic restorer gene. This offers a chance for the breeder to reduce or ultimately overcome the presently observed performance reductions brought about by exotic restorer genes.  相似文献   

5.
W. D. Branch 《Plant Breeding》2002,121(3):275-277
The objective of this study was to compare the variability among advanced large‐seeded ‘Georgia Browne’ mutant breeding lines induced by γ‐irradiation. Seeds of the small‐seeded, high‐yielding, disease‐resistant peanut cultivar ‘Georgia Browne’ were exposed to a 200 Gy dose of γ‐radiation. Several advanced (M6:7–M6:9)‘Georgia Browne’ mutant breeding lines were developed and evaluated at the University of Georgia, Coastal Plain Experiment Station over three consecutive years 1997‐99 for disease incidence, pod yield, total sound mature kernels (TSMK) grade, pod weight, seed weight and seed size distribution. Field performance tests showed significant differences among the advanced large‐seeded mutant breeding lines compared with ‘Georgia Browne’ for each of these variables. The results obtained demonstrate the beneficial use of mutation breeding for inducing and developing variable and desirable advanced mutant breeding lines within peanut cultivars.  相似文献   

6.
Cold tolerance is a complex trait, and QTL pyramiding is required for rice breeding. In this study, a total of seven QTLs for cold tolerance in the Japonica rice variety ‘Nipponbare’ were identified in an F2:3 population. A stably inherited major QTL, called qCTS11, was detected in the region adjacent to the centromere of chromosome 11. In a near‐isogenic line population, the QTL was further dissected into two linked loci, qCTS11.1 and qCTS11.2. Both of the homozygous alleles of qCTS11.1 and qCTS11.2 from ‘Nipponbare’ showed major positive effects on cold tolerance. Through pyramiding the linked QTLs in the cold‐sensitive Indica rice cultivar ‘93‐11’, we have developed a new elite, high‐yielding Indica variety with cold tolerance.  相似文献   

7.
Most durum wheat (Triticum durum) varieties possess only low winter hardiness due to their frost susceptibility. In North America and Central Europe, durum wheat is therefore typically sown in spring to circumvent the local winter conditions. However, the yield potential of durum in these regions could be much better exploited if durum varieties with increased frost tolerance were available, which could be sown in autumn. A factor limiting breeding for increased frost tolerance is the variation in the occurrence of frost stress across years. The ‘Weihenstephaner Auswinterungsanlage’ is a semi‐controlled test that exposes the plants to all weather conditions. Snow coverage of the plants, serving as frost protection, is prevented by the movable glass lid of the semi‐controlled test. In this study, different scorings for frost tolerance based on this semi‐controlled test were evaluated and compared with frost tolerance data in the field. Our results illustrate the potential of the ‘Weihenstephaner Auswinterungsanlage’ as an indirect selection tool for frost tolerance in durum breeding programmes, especially when regular frost tolerance data from the field are not available.  相似文献   

8.
The objectives of this study were to determine genetics of Al tolerance and whether the Al tolerance observed is governed by the same gene. The lines ‘L‐7903’ and ‘L‐4602’ have been developed through breeding programme as Al‐tolerant lines. These lines showed maximum root regrowth and minimum accumulation of Al and callose as compared to sensitive genotypes (‘BM‐4’ and ‘L‐4147’). Al tolerance in the parents, F1, F2 and backcross generations was estimated using the regrowth of the primary root after staining and scoring of fluorescent signals. The F1 hybrids responded similarly to the tolerant parents, indicating dominance of Al tolerance over sensitivity. The segregation ratios obtained for Al tolerance and sensitivity in the F2 and backcross generations were 3 : 1 and 1 : 1, respectively. Test of allelism confirmed the same gene was conferring Al tolerance in both genotypes (‘L‐7903’ and ‘L‐4602’) as the F1 was also tolerant and no segregation of tolerant : sensitive was recorded. These results indicated that Al tolerance is a monogenic dominant trait that can be easily transferred to agronomic bases through backcross breeding technique.  相似文献   

9.
Hexaploid triticale contains valuable genes from both tetraploid wheat and rye and plays an important role in wheat breeding programmes. In order to explore the potential of hexaploid triticale ‘Certa’ in wheat improvement, two crosses were made using ‘Certa’ as female parent, and common wheat cultivars ‘Jinmai47’ (JM47) and ‘Xinong389’ (XN389) as male parents. The karyotyping of BCF4:5 lines from Certa/JM47//JM47 and F5:6 lines from Certa/XN389 was investigated using sequential fluorescence in situ hybridization (FISH). One 1B(1R) substitution line and five 1BL.1RS whole‐arm translocation lines were identified, one of which was found lacking ω‐secalin locus. Many structural alterations on wheat chromosomes were detected in the progeny. Great morphologic differences resulting from genetic variations were observed, among which the photosynthetic capability was increased while grain quality was slightly improved. Compared with both parents, the stripe rust resistance at adult stage was increased in lines derived from Certa/JM47//JM47, while it was decreased in lines derived from Certa/XN389. These newly developed lines might have the potential to be utilized in wheat improvement programmes.  相似文献   

10.
Traditional and doubled haploid (DH) genotypes of oilseed Brassica spp. resistant, partially resistant, moderately susceptible, and susceptible to Albugo candida were compared for phenotypic development of host‐pathogen interaction and histology of host‐pathogen interaction. The partially resistant genotype showed pinhead‐size pustules, mainly on the upper surface of cotyledonary leaves. Relatively less mycelium was observed in the partially resistant genotype compared with the susceptible genotype. In resistant B. napus genotypes, there was neither pustule development nor any mycelial growth. In the moderately susceptible genotype, the pustules were similar to those in the partially resistant genotype in being of pinhead‐size and occasionally coalescing. However, ample mycelial growth in the mesophyll tissue in the moderately susceptible genotype was similar to that in the susceptible control B. rapa cv. ‘Torch’. The susceptible genotype B. rapa cv. ‘Torch’ also showed large coalescing pustules. In the non‐host B. juncea cv. ‘Commercial Brown’, no pustules were formed although some mycelial growth was observed beneath the epidermal cell layer and in the mesophyll cell layer of the cotyledonary leaf tissue. For inheritance studies, two partially resistant B. napus genotypes were crossed with a resistant B. napus genotype. Various generations viz., F1, F1(reciprocal), F2, and DHs produced from the crosses were inoculated with a zoospore suspension of race 7v of A. candida. The partially resistant phenotype appeared to be controlled by a single recessive gene designated as wpr with variable expression. The simple inheritance of partial resistance has implications for disease resistance breeding against white rust, as this type of resistance can be easily incorporated into elite breeding lines through conventional and DH breeding methods.  相似文献   

11.
A top‐cross‐mating design among 29 S4 inbred lines and tester (cultivar ‘Dukat’) was carried out to study their breeding value in terms of general combining ability (GCA). The objectives of this study were to evaluate the acidity, soluble solids and dry matter contents in fruits of progeny F1 in comparison with S4 inbred lines as well as the cultivars (S0); identify strawberry genotypes with high value of GCA for use in cultivar development; and determine mid‐parent heterosis regarding S4 inbred lines and cultivated strawberry. The 2‐year observations showed statistically significant differences between tested genotypes in terms of the studied traits. The highest breeding value based on GCA was estimated for Chandler 123‐5 for soluble solids and dry matter content, and Kent 7‐6 for acidity. Estimated mid‐parent heterosis had positive and negative values. The highest heterosis in terms of extract and dry matter content (26.71% and 17.50%, respectively) occurred in the offspring Chandler 123‐5 × ‘Dukat’, but as regards acidity in hybrid Chandler 123‐22 with cv. ‘Dukat’. The study of genetic divergence by dendrograms may help to identify parents suitable for obtaining hybrids with higher heterosis effects.  相似文献   

12.
A. Thiele    E. Schumann    A. Peil  W. E. Weber 《Plant Breeding》2002,121(1):29-35
In wheat, eyespot caused by PseudoCercosporella herpotrichoides, is one of the main foot‐rot diseases. Yield losses up to 40% occur in some years. Plant protection by fungicide application is possible, but a better way is through resistance breeding. Two resistance sources are currently used: Aegilops ventricosa and the old French variety ‘Cappelle Desprez’. A new source of resistance has been found in the accession AE120 of Ae. kotschyi from the Gatersleben gene bank with the genome constitution UUSvSv. This accession has been crossed and backcrossed twice to susceptible wheat varieties, and in each generation, plants with a relatively high level of resistance have been selected. From this material, lines have been developed and tested in F6 to F8. Finally, several lines could be classified as moderately resistant, such as the French variety ‘Cappelle Desprez’ after resistance determination during milk ripeness (DC75). No line reached the high resistance level achieved with Pch‐1 from Ae. ventricosa. The yield of these lines under infection conditions was higher compared with ‘Cappelle Desprez’. The line 6018‐96‐3 showed a high yield of 64.3 dt/ha compared with 59.6 dt/ha, on the average, in combination with the best expression of eyespot resistance in the adult growth stage over 3 years.  相似文献   

13.
L. Ml&#;ochová    O. Chloupek    R. Uptmoor    F. Ordon  W. Friedt 《Plant Breeding》2004,123(5):421-427
The outstanding semidwarf spring barley cultivar ‘Diamant’ was derived from the cv.‘Valticky’ by X‐ray mutagenesis. More than 120 European spring barley varieties trace back to ‘Diamant’. This variety and nine German spring barley cultivars having ‘Diamant’ in their pedigree, as well as four cultivars not related to ‘Diamant’, were analysed by amplified fragment length polymorphisms (AFLPs) and simple sequence repeats (SSRs) in order to identify genomic regions associated with traits derived from ‘Diamant’. The total number of SSRs tested was 122, of which 88 were polymorphic taking all varieties into account, with 51 for ‘Valticky’ and ‘Diamant’, i.e. 42.8%. A varying level of polymorphism was detected on individual chromosomes (11.1–78.6%). In addition, AFLP revealed a high level of polymorphism. Out of the total number of 1591 bands, 670 were polymorphic for all varieties studied with 182 for ‘Valticky’ and ‘Diamant’, i.e. 11.4%. Based on SSR and AFLP data UPGMA cluster analysis was carried out, but no grouping according to the relatedness with ‘Diamant’ or ‘Valticky’, respectively, was found. It is concluded from these results that the mutagenic effect leading to the development of ‘Diamant’ out of ‘Valticky’ affected many genetic loci and is thus larger than expected.  相似文献   

14.
Verticillium wilt (VW) is a soil‐borne disease of cotton that is destructive worldwide. Transferring desired traits from Gossypium barbadense is challenging through traditional interspecific introgression. We previously demonstrated that a molecular marker, BNL3255‐208, is associated with VW resistance in G. barbadense. This breakthrough opens the way for marker‐assisted selection (MAS) breeding. Here, the highly resistant G. barbadense cv. ‘Pima90‐53’ and the severe diseased Gossypium hirsutum cv. ‘CCRI8’ were used as donor parent and recipient parent, respectively. Our goal was to transfer the disease resistance from donor to recipient via MAS. Among 71 MAS obtained lines, as many as 19 lines had enhanced resistance. Among those lines, 11 lines showed high resistance and four lines displayed resistance to VW. Moreover, seven lines displayed improved fibre quality. After combining the markedly improved resistance and fibre properties, we identified two elite innovated introgression lines – ZY2 and ZY31 – that did not seem to differ in other agronomic traits from the recipient parent. This study first successfully transferred of G. barbadense resistance into G. hirsutum by MAS.  相似文献   

15.
Heterosis, or hybrid vigour, has been used to improve seed yield in several important crops for decades and it has potential applications in soybean. The discovery of over‐dominant quantitative trait loci (QTL) underlying yield‐related traits, such as seed weight, will facilitate hybrid soybean breeding via marker‐assisted selection. In this study, F2 and F2 : 3 populations derived from the crosses of ‘Jidou 12’ (Glycine max) × ‘ZYD2738’ (Glycine soja) and ‘Jidou 9’ (G. max) × ‘ZYD2738’ were used to identify over‐dominant QTL associated with seed weight. A total of seven QTL were identified. Among them, qSWT_13_1, mapped on chromosome 13 and linked with Satt114, showed an over‐dominant effect in two populations for two successive generations. This over‐dominant effect was further examined by six subpopulations derived from ‘Jidou12’ × ‘ZYD2738’. The seed weight for heterozygous individuals was 1.1‐ to 1.6‐fold higher than that of homozygous individuals among the six validation populations examined in different locations and years. Therefore, qSWT_13_1 may be a useful locus to improve the yield of hybrid soybean and to understand the molecular mechanism of heterosis in soybean.  相似文献   

16.
From mutant pools of two Taiwanese elite japonica cultivars, Tainung 67 and Taikeng 8, we identified 13 mutant lines possessing opaque endosperm with relatively low amylose contents (AC) ranging from 1.5% to 7.1%. Because of different AC, paste viscosities of these 13 mutant lines differed, as revealed by palatability and physicochemical properties. The mutated gene conferring opaque endosperm was isolated from the F2 population of one mutant line, WY1× indica cv. ‘Taichung Sen 17’, by positional cloning, revealing a G3018→A3018 substitution at exon 9 of Waxy leading to a non‐synonymous mutation from alanine to valine. Two additional alleles were identified from the other 12 mutant lines, for which single‐nucleotide substitutions G2708 → A2708 and G3029 → A3029 occurred in exons 8 and 9, leading to non‐synonymous mutations from arginine to histidine and glutamic acid to lysine, respectively. The three novel wx alleles had different effects on grain quality, specifically on eating and cooking quality, and could be applied in rice breeding programmes to develop new low AC varieties by marker‐assisted selection.  相似文献   

17.
Soybean mosaic virus (SMV) can cause serious yield losses in soybean. Soybean cultivar ‘RN‐9’ is resistant to 15 of 21 SMV strains. To well‐characterize this invaluable broad‐spectrum SMV‐resistance, populations (F1, F2 and F2:3) derived from resistant (R) × susceptible (S) and R × R crosses were tested for SMV‐SC18 resistance. Genetic analysis revealed that SC18 resistance in ‘RN‐9’ plus two elite SMV‐resistant genotypes (‘Qihuang No.1’ and ‘Kefeng No.1’) are controlled by independently single dominant genes. Linkage analysis showed that the resistance of ‘RN‐9’ to SMV strains SC10, SC14, SC15 and SC18 is controlled by more than one gene(s). Moreover, Rsc10‐r and Rsc18‐r were both positioned between the two simple sequence repeats markers Satt286 and Satt277, while Rsc14‐r was fine‐mapped in 136.8‐kb genomic region containing sixteen genes, flanked by BARCSOYSSR_06_0786 and BARCSOYSSR_06_0790 at genetic distances of 3.79 and 4.14 cM, respectively. Allelic sequence comparison showed that Cytochrome P450‐encoding genes (Glyma.06g176000 and Glyma.06g176100) likely confer the resistance to SC14 in ‘RN‐9’. Our results would facilitate the breeding of broad‐spectrum and durable SMV resistance in soybeans.  相似文献   

18.
The utility of combining simple sequence repeat (SSR) and single nucleotide polymorphism (SNP) marker genotyping was determined for genetically mapping a novel aphid (Aphis craccivora) resistance locus in cowpea breeding line SARC 1‐57‐2 and for introgressing the resistance into elite cultivars by marker‐assisted backcrossing (MABC). The locus was tagged with codominant SSR marker CP 171F/172R with a recombination fraction of 5.91% in an F2 population from ‘Apagbaala’ x SARC 1‐57‐2. A SNP‐genotyped biparental recombinant inbred line population was genotyped for CP 171F/172R, which was mapped to position 11.5 cM on linkage group (LG) 10 (physical position 30.514 Mb on chromosome Vu10). Using CP 171F/172R for foreground selection and a KASP‐SNP‐based marker panel for background selection in MABC, the resistance from SARC 1‐57‐2 was introduced into elite susceptible cultivar ‘Zaayura’. Five BC4F3 lines of improved ‘Zaayura’ that were isogenic except for the resistance locus region had phenotypes similar to SARC 1‐57‐2. This study identified a novel aphid resistance locus and demonstrated the effectiveness of integrating SSR and SNP markers for trait mapping and marker‐assisted breeding.  相似文献   

19.
Soybean (Glycine max (L.) Merr.) seed contains small amounts of tocopherol, a non‐enzymatic antioxidant known as lipid‐soluble vitamin E (VE). Dietary VE contributes to a decreased risk of chronic diseases in humans and has several beneficial effects on resistance to stress in plants, and increasing VE content is an important breeding goal for increasing the nutritional value of soybean. In this study, quantitative trait loci (QTLs) underlying VE content with main, epistatic and QTL × environment effects were identified in a population of F5 : 6 recombinant inbred lines from a cross between ‘Hefeng 25’ (a low‐VE cultivar) and ‘OAC Bayfield’ (a high‐VE cultivar). A total of 18 QTLs were detected that showed additive main effects (a) and/or additive × environment interaction effects (ae) in different environments. Moreover, 19 epistatic pairs of QTLs were found to be associated with α‐tocopherol (α‐Toc), γ‐tocopherol (γ‐Toc), δ‐tocopherol (δ‐Toc) and total VE (TE) contents. The QTLs identified in multienvironments could provide more information about QTL by environment interactions and could be useful for the marker‐assistant selection of soybean cultivars with high seed VE contents.  相似文献   

20.
The study investigated the cultivars of non‐obligatorily requiring vernalization plant Festulolium braunii and assessed the influence of non‐hardy reproductive and hardy vegetative structures on overwintering effect. The study was conducted taking into account systemic relations between these types of structures. The results show the cultivars differ according to the percentage of headed and overwintered plants, when the cultivars with the most abundant heading – ‘Felopa’ and ‘Sulino’ – are also better at overwintering. The positive correlation between heading and overwintering characteristics was also observed, what seemed to be a rather new finding. It can be explained by systemic effect: non‐hardy later reproductive structures induce the post‐generative regrowth of vegetative shoots, which during shorter days halt development and become potentially hardy. More detailed interpretation is also provided including discussion of causal mechanisms of the detected phenomenon. The authors suppose that these mechanisms constitute a survival strategy for such perennial plants. The observed late heading which represents reproductive structures could be applied in plant breeding as a marker of winter‐hardiness among perennial grass plants which non‐obligatorily demand vernalization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号