首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
Stachyose is an unfavorable sugar in soybean meal that causes flatulence for non‐ruminant animals. Understanding the genetic control of stachyose in soybean will facilitate the modification of stachyose content at the molecular level. The objective of this study was to identify quantitative trait loci (QTL) associated with seed stachyose content using simple sequence repeat (SSR) and single nucleotide polymorphism (SNP) markers. A normal stachyose cultivar, ‘Osage’, was crossed with a low stachyose line, V99‐5089, to develop a QTL mapping population. Two parents were screened with 33 SSR and 37 SNP markers randomly distributed on chromosome 10, and 20 SSR and 19 SNP markers surrounding a previously reported stachyose QTL region on chromosome 11. Of these, 5 SSR and 16 SNP markers were used to screen the F3:4 lines derived from ‘Osage’ x V99‐5089. Seed samples from F3:5 and F3:6 lines were analyzed for stachyose content using high‐performance liquid chromatography (HPLC). Composite interval mapping analysis indicated that two stachyose QTL were mapped to chromosome 10 and 11, explaining 11% and 79% of phenotypic variation for stachyose content, respectively. The SSR/SNP markers linked to stachyose QTL could be used in breeding soybean lines with desired stachyose contents. Chi‐square tests further indicated that these two QTL probably represent two independent genes for stachyose content. Therefore, a major QTL was confirmed on chromosome 11 and a novel QTL was found on chromosome 10 for stachyose content.  相似文献   

2.
    
A genetic linkage map of walnut containing 2,220 single nucleotide polymorphisms (SNPs) in 16 linkage groups (LGs) was constructed using an F1 mapping population from a cross between “Chandler” and “Idaho,” two contrasting heterozygous parents. Five quantitative yield traits, lateral fruitfulness, harvest date and three nut traits (shell thickness, nut weight and kernel fill) were then mapped on to linkage groups. A significant quantitative trait locus (QTL) in LG 11 with negative additive effects suggested heterozygote superiority in the expression of lateral bearing. A set of three QTLs explaining ~10% of the variation in harvest date was located in LG 1. Shell thickness, nut weight and kernel fill were under the control of two to three linked pleiotropic QTLs in LG 1 segregating from “Idaho.” The marginal positive additive effects of QTLs for harvest date, shell thickness and nut weight and small negative additive effects for kernel fill suggested that the QTLs had a marginal effect on the expression of these traits.  相似文献   

3.
    
The stem solidness trait in wheat has been the most effective mechanism for management of the wheat stem sawfly (WSS) for six decades. However, recent results have shown that in certain genotypes, the degree of stem solidness is not a useful indicator of WSS resistance. A morphological characterization of solidness expression indicated that in the genotype ‘Conan’, very solid pith undergoes rapid retraction during stem maturation, resulting in significantly less solidness at maturity. In other solid‐stemmed genotypes, including the standard WSS‐resistant cultivar ‘Choteau’, dense pith in the stem remains nearly unchanged throughout plant development. In cage trials, ‘Conan’ plants were less preferred for oviposition by the WSS when paired with ‘Choteau’ plants. Field bioassays using near‐isogenic lines differing for alleles at Qss.msub‐3BL showed that the Conan allele provides higher levels of early stem solidness and rapid pith retraction during stem maturation. These results suggest that the traditional approach for increasing WSS resistance by selecting for increasing stem solidness needs to be modified to consider temporal variations in pith expression associated with alleles at Qss.msub‐3BL.  相似文献   

4.
5.
    
Little is known about the extent or diversity of resistance in soft red winter wheat (Triticum aestivum L.) to stripe rust, caused by the fungal pathogen Puccinia striiformis f.sp. tritici. The soft red winter (SRW) wheat cultivar ‘USG 3555’ has effective adult‐plant resistance to stripe rust, which was characterized in a population derived from ‘USG 3555’/‘Neuse’. The mapping population consisted of 99 recombinant inbred lines, which were evaluated for stripe rust infection type (IT) and severity to race PST‐100 in field trials in North Carolina in 2010 and 2011. Genome‐wide molecular‐marker screenings with 119 simple sequence repeats and 560 Diversity Arrays Technology (DArT) markers were employed to identify quantitative trait loci (QTL) for stripe rust resistance. QTL on chromosomes 1AS, 4BL and 7D of ‘USG 3555’ explained 12.8, 73.0 and 13.6% of the variation in stripe rust IT, and 13.5, 72.3 and 10.5% of the variation in stripe rust severity, respectively. Use of these and additional diagnostic markers for these QTL will facilitate the introgression of this source of stripe rust resistance into SRW wheat lines via marker‐assisted selection.  相似文献   

6.
    
Soybean is one of the most important crops worldwide for its protein and oil as well as the health beneficial phytoestrogens or isoflavone. This study reports a relatively dense single nucleotide polymorphism (SNP)‐based genetic map based on ‘Hamilton’ by ‘Spencer’ recombinant inbred line population and quantitative trait loci (QTL) for seed isoflavone contents. The genetic map is composed of 1502 SNP markers and covers about 1423.72 cM of the soybean genome. Two QTL for seed isoflavone contents have been identified in this population. One major QTL that controlled both daidzein (qDZ1) and total isoflavone contents (qTI1) was found on LG C2 (Chr 6). And a second QTL for glycitein content (qGT1) was identified on the LG G (Chr 18). These two QTL in addition to others identified in soybean could be used in soybean breeding to optimize isoflavone content. This newly assembled soybean linkage map is a useful tool to identify and map QTL for important agronomic traits and enhance the identification of the genes involved in these traits.  相似文献   

7.
    
Durum wheat is the most important tetraploid wheat mainly used for semolina and pasta production, but is notorious for its high susceptibility to Fusarium head blight (FHB). Our objectives were to identify and characterize quantitative trait loci (QTL) in winter durum and to evaluate the potential of genomic approaches for the improvement of FHB resistance. Here, we employed an international panel of 170 winter and 14 spring durum lines, phenotyped for Fusarium culmorum resistance at five environments. Heading date, plant height and mean FHB severity showed significant genotypic variation with high heritabilities and FHB resistance was negatively correlated with both heading date and plant height. The dwarfing gene Rht‐B1 significantly affected FHB resistance and the genome‐wide association scan identified eight additional QTL affecting FHB resistance, explaining between 1% and 14% of the genotypic variation. A genome‐wide prediction approach yielded only a slightly improved predictive ability compared to marker‐assisted selection based on the four strongest QTL. In conclusion, FHB resistance in durum wheat is a highly quantitative trait and in breeding programmes may best be tackled by classical high‐throughput recurrent phenotypic selection that can be assisted by genomic prediction if marker profiles are available.  相似文献   

8.
9.
    
Soybean seed protein and oil concentrations are important traits that directly affect the quality of soyfoods. Many studies and breeding programmes have been conducted to find major quantitative trait loci (QTL) that regulate protein and oil concentrations and to develop soybean cultivars with high protein and/or oil content. The purpose of this study was to identify these QTL using a selected breeding population. The population was tested in field conditions over a period of 3 years. Seed protein and oil concentrations were measured each year. Single‐nucleotide polymorphisms (SNPs) were used to construct genetic map using a 180K SoyaSNP array, which identified 1,570 SNPs. We identified 12 QTL for seed protein, 11 for seed oil concentration and four for both traits. Among these, 17 QTL were closely mapped to previously reported QTL, whereas ten sites were novel. Several QTL were detected across at least two experimental years. These loci are good candidate QTL for optimal seed protein and oil concentrations. Our results demonstrate that favourable target QTL can be successfully identified using selected breeding populations.  相似文献   

10.
    
The objective of this study was to determine quantitative trait loci (QTL) underlying ten floral and related traits in Aquilegia. The traits assessed were calyx diameter, corolla diameter, petal length, petal blade length, sepal length, sepal width, spur length, spur width, plant height and flower number. These are important traits for ornamental value and reproductive isolation of Aquilegia. QTL analysis of these traits was conducted using single‐marker analysis and composite interval mapping (CIM). We used an F2 population consisting of 148 individuals derived from a cross between the Chinese wild species Aquilegia oxysepala and the cultivar Aquilegia flabellata ‘pumila’. Resulting CIM analysis identified 39 QTLs associated with these traits, which were mapped on seven linkage groups. These QTLs could explain 1.22–53.28% of the phenotypic variance. Thirty‐one QTLs, which explained more than 10% of the phenotypic variation, were classified as major QTLs. Graphical representations of the QTLs on seven linkage groups were made. Our research provides the potential for future molecular assisted selection breeding programmes and the cloning of target genes through fine mapping.  相似文献   

11.
    
Maize kernel row number (KRN) is an important agronomic trait. In this study, 13 quantitative trait loci (QTL) for maize KRN were identified in different environments using F2:3 and F2:4 populations developed from two inbred lines. These QTL are distributed on chromosomes 2,3,5,8 and 10, and the genic effects are additive or partially dominant. Using the BC3F2:3 populations developed from the same parental lines, QTL of KRN located on chromosomes 5 and 10 were also identified in two environments. Three BC5F2:3 populations were used to confirm the major QTL for KRN between ssr1430 and umc1077 on chromosome 10(qKRN10). This result will facilitate the fine mapping and map‐based cloning of this major QTL in the future.  相似文献   

12.
    
Phosphorus (P) is the second most growth limiting macronutrient after nitrogen and plays several important roles in all organisms including plants. In soil, P is available in both organic and inorganic forms. P deficiency reduces the growth and yield of several crop plants. Plants respond to P deficiency by the phenotypic changes especially by the modification of root architecture. Molecular marker‐assisted breeding (MAB) has been proposed as an important tool to identify and develop improved varieties of crop plants with efficient P‐use efficiency (PUE). Identification of quantitative trait loci (QTLs) for traits related to PUE has been considered as the first step in marker‐assisted selection (MAS) and improvement of crop yield programmes. In this review, we describe in detail on architectural changes of roots under P deficiency that are reported in various crops and discuss the efforts made to improve PUE using molecular marker tools. Details on QTLs identified for low P‐stress tolerance in various crop plants are presented. These QTLs can be used to improve PUE in crop plants through MAS and breeding, which may be beneficial to improve the yields under P‐deficient soil. Development of new and improved varieties using MAB will limit the use of non‐renewable fertilizers and improve PUE of key crop plants in low input agriculture.  相似文献   

13.
    
The growth period traits of soybean (Glycine max L. Merr.) are quantitatively inherited and crucial for its adaptation to different environments. Association analysis and linkage mapping were used to identify the quantitative trait loci (QTLs) for days to flowering (DF), days from flowering to maturity (DFM) and days to maturity (DM). Considering the effect of sowing date, the phenotypes were evaluated in three or four sowing‐date‐experiments in each year. A total of 96 associations, involving 19 SSRs corresponding to DF, DFM and/or DM, were identified by association mapping. Six, eight and two QTLs were observed relating to DF, DFM and DM by linkage mapping, respectively, and some QTLs were shared by DF, DFM and DM. Four SSRs (Satt150, Satt489, Satt172 and Sat_312) were found to be related to the growth period traits using the two mapping methods. In summary, association analysis and linkage mapping can complement and verify results from both methods to identify QTLs in soybean, and these findings may be useful in facilitating the selection of growth period–related traits via marker‐assisted selection.  相似文献   

14.
    
White rust caused by Puccinia horiana Henn. adversely affects chrysanthemum (Chrysanthemum morifolium Ramat.) production. The breeding of resistant varieties is effective in controlling the disease. Here we aimed to develop DNA markers for the strong resistance to P. horiana. We conducted a linkage analysis based on the genome-wide association study (GWAS) method. We employed a biparental population for the GWAS, wherein the single nucleotide polymorphism (SNP) allele frequency could be predicted. The population was derived from crosses between a strong resistant “Southern Pegasus” and a susceptible line. The GWAS used simplex and double-simplex SNP markers selected out of SNP candidates mined from ddRAD-Seq data of an F1 biparental population. These F1 individuals segregated in a 1:1 ratio of resistant to susceptible. Twenty-one simplex SNPs were significantly associated with P. horiana resistance in “Southern Pegasus” and generated one linkage group. These results show the presence of a single resistance gene in “Southern Pegasus”. We identified the nearest SNP marker located 2.2 cM from P. horiana resistance locus and demonstrated this SNP marker-resistance link using an independent population. This is the first report of an effective DNA marker linked to a gene for P. horiana resistance in chrysanthemum.  相似文献   

15.
16.
    
  相似文献   

17.
    
The objectives of the study were to (i) demonstrate that the hybridization data from microarrays can yield information on sequence variation between two inbred lines, an introgression line ‘Mogeor’ and its genetic background ‘Moneymaker’; (ii) characterize, by means of the identified SFPs, the introgressed genomic segments of ‘Mogeor’, carrying resistance genes; and (iii) deliver a set of genetically anchored SFPs potentially useful for breeding. In this work, the GeSNP software was used to identify SFPs in tomato using Affymetrix data from a previous experiment. Sequencing of 12 putative polymorphism‐containing amplicons yielded a SFP probe set validation rate of 90%. In total, 92 Gene Models putatively harbouring SFPs were identified, distributed as following: 61 Gene Models on chromosome 9, and one to eight on the remaining tomato chromosomes apart from chromosomes 7, 8 and 12. Newly discovered SFPs from microarray data can thus provide not only useful information for definition of introgressed genomic regions, but also identification of candidate genes and new markers for MAS.  相似文献   

18.
    
A population of 112 F1-derived doubled haploid lines was produced from a reciprocal cross of Brassica juncea. The parents differed for seed quality, seed color and many agronomic traits. A detailed RFLP linkage map of this population, comprising 316 loci, had been constructed, and was used to map quantitative trait loci (QTL) for seed yield and yield components, viz. siliqua length, number of seeds per siliqua, number of siliques per main raceme and 1000-seed weight. Stable and significant QTLs were identified for all these yield components except seed yield. For yield components, a selection index based on combined phenotypic and molecular data (QTL effects) could double up the efficiency of selection compared to the expected genetic advance by phenotypic selection. Selection indices for high seed yield, based on the phenotypic data of yield and yield components, could only improve the efficiency of selection by 4% of the genetic advance that can be expected from direct phenotypic selection for yield alone. Inclusion of molecular data together with the phenotypic data of yield components in the selection indices did not improve the efficiency of selection for higher seed yield. This is probably due to often negative relationships among the yield components. Most of the QTLs for yield components were compensating each other, probably due to linkage, pleiotropy or developmentally induced relationships among them. The breeding strategy for B. juncea and challenges to marker assisted selection are discussed.  相似文献   

19.
    
  相似文献   

20.
  总被引:1,自引:0,他引:1  
Y. L. Li    Y. B. Dong    S. Z. Niu    D. Q. Cui 《Plant Breeding》2007,126(5):509-514
Popping volume (PV), flake size (FS) and popping rate (PR) are three important popping characteristics in popcorn ( Zea mays L.). We developed 259 F2:3 lines from a cross between a dent corn inbred 'Dan232' and a popcorn inbred 'N04' that were grown during spring and summer to evaluate the three popping characteristics. Fifteen quantitative trait loci (QTL) were detected on chromosomes 1, 2, 5, 6, 7 and 8 using composite interval mapping. The numbers of QTL were 6, 4 and 5 for PV, FS and PR, respectively, with phenotypic variance explained ranging from 4.9% to 15.6% for a single QTL, accounting for a total of 54.0%, 34.5% and 39.1% of the total phenotypic variance respectively. Partially dominance and overdominance effects played an important role in popping characteristics. Only 13 pairs of digenic interactions were detected. The QTL on chromosome bin 1.05–1.06 for PV and PR, and 5.07 for FS were in accordance with previous reports and could be good candidate QTL for marker-assisted selection. There was a significant correlation amongst QTL on chromosomes 1, 6 and 8 for PV and PR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号