首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
多环境下水稻DH群体剑叶长度的QTL分析   总被引:6,自引:1,他引:5  
曹刚强  高用明  朱军 《作物学报》2007,33(2):223-229
种植由籼稻品种和粳稻品种杂交衍生的DH群体,连续4年测定剑叶长度,运用基于混合模型的复合区间作图法,定位其QTL及上位性互作,估算遗传主效应和环境互作效应。结果表明,全部18个QTL都参与了上位性的形成,其中3个没有自身的遗传效应,但参与了3对上位性互作,这是传统方法不能发现的。另外,一个QTL可与多个QTL发生互作,这可能预示着存在更高阶互作。QTL与上位性互作可以具有不受环境影响而稳定表达的效应,以及与环境的互作效应。有些QTL与环境的互作效应可以在多环境下被检测到,但却不具有主效应,这种QTL可能易受环境因子的影响。QTL与环境的互作效应为随机效应,一个QTL或一对上位性与环境的互作效应总和理论上应等于零,否则会影响对遗传效应的估算,因此多环境下估算的遗传效应更可靠。  相似文献   

2.
Soybean (Glycine max [L.] Merr.) is cultivated primarily for its protein and oil in the seed. In addition, soybean seeds contain nutraceutical compounds such as tocopherols (vitamin E), which are powerful antioxidants with health benefits. The objective of this study was to identify molecular markers linked to quantitative trait loci (QTL) that affect accumulation of soybean seed tocopherols. A recombinant inbred line (RIL) population derived from the cross ‘OAC Bayfield’ × ‘OAC Shire’ was grown in three locations over 2 years. A total of 151 SSR markers were polymorphic of which a one‐way analysis of variance identified 42 markers whereas composite interval mapping identified 26 markers linked to tocopherol QTL across 17 chromosomes. Individual QTL explained from 7% to 42% of the total phenotypic variation. Significant two‐locus epistatic interactions were identified for a total of 122 combinations in 2009 and 152 in 2010. The multiple‐locus models explained 18.4–72.2% of the total phenotypic variation. The reported QTL may be used in marker‐assisted selection (MAS) to develop high tocopherol soybean cultivars.  相似文献   

3.
Epistasis is a pervasive phenomenon in biology. Nevertheless, attempts at identifying epistatic interactions with quantitative trait loci (QTL) analyses have yielded inconsistent results. In this study, we attempt to determine the genetic control of outbreeding depression and the possible role of epistasis following a wide cross in common bean (Phaseolus vulgaris L.). A recombinant inbred population, derived from a cross between Andean and Mesoamerican common bean cultivars, was evaluated in two markedly contrasting environments. A low-density linkage map based on AFLPs was used to locate QTLs for the number of days to maturity, average daily biomass and seed yield accumulation, and harvest index. Both independently acting and digenic epistatic QTLs of similar magnitude were identified. A majority of the loci involved in these epistatic interactions did not have an independent effect. Although we did find evidence for strong epistatic control of the traits investigated, we also found, in contrast to other recent studies, that there was no evidence for a bias toward coadapted gene complexes at the level of digenic epistasis. We discuss these results in relation to the role of epistasis in the evolutionary history of the species and methodological difficulties in detecting epistasis. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

4.
B. Kjær  J. Jensen 《Euphytica》1996,90(1):39-48
Summary The positions of quantitative trait loci (QTL) for yield and yield components were estimated using a 85-point linkage map and phenotype data from a F1-derived doubled haploid (DH) population of barley. Yield and its components were recorded in two growing seasons. Highly significant QTL effects were found for all traits at several sites in the genome. A major portion of the QTL was found on chromosome 2. The effect of the alleles in locus v on thousand grain weight and kernels per ear explained 70–80% of the genetic variation in the traits. QTL × year interaction was found for grain yield. Several different QTL were found within the two-rowed DH lines compared to those found in the six-rowed DH lines. Epistasis between locus v and several loci for yield and yield components indicates that genes are expressed differently in the two ear types. This may explain the difficulties of selecting high yielding lines from crosses between two-rowed and six-rowed barley.Abbreviations DH doubled haploid - QTL quantitative trait locus/loci - RAPD random amplified polymorphic DNA - RFLP restriction fragment length polymorphism - T. Prentice Tystofte Prentice - V. Gold Vogelsanger Gold  相似文献   

5.
株高是典型的数量性状,易受遗传背景和环境等因素的影响。单片段代换系和双片段聚合系减少了个体间遗传背景的干扰,是鉴定QTL和研究QTL上位性的新型遗传材料。本研究采用随机区组试验设计方法以初级单片段代换系间杂交衍生的16个次级单片段代换系和15个双片段聚合系分析了株高及其构成因素QTL的加性效应及加性×加性上位性效应。共鉴定出11个QTL,其中3个株高QTL,1个倒1节间长QTL,2个倒2节间长QTL,2个倒3节间长QTL和3个倒4节间长QTL,分布于第4、6和10染色体上。鉴定出23对双基因互作,其中7对为没有显著效应的座位间互作,16对为有显著效应的QTL与没有显著效应的座位间互作。结果表明,QTL加性效应和QTL间的上位性效应都是株高及构成因素的重要遗传组成。通过单片段代换系杂交衍生的次级单片段代换系和双片段聚合系可提高QTL鉴定和上位性分析的灵敏度。  相似文献   

6.
Stem strength is one of the major influencing factors of lodging in soybean [Glycine max (L.) Merr.] as well as other crops. To identify quantitative trait loci (QTL) associated with stem strength and related traits in soybean, a recombinant inbred line (RIL) population consisting of 165 lines derived from Zhongdou No. 29 × Zhongdou No. 32 was used in 3 years. Significant positive correlations were found among the four traits (stem strength, stem diameter, number of nodes, root dry weight). A linkage map spanning 1,240.7 cM was constructed using 245 SSR (simple sequence repeat) markers and a phenotypic marker (leaflet shape). By composite interval mapping and two-round strategy of QTL meta-analysis, 32 consensus QTL and 19 unique QTL were identified, respectively. Of eight pleiotropic unique QTL, two QTL (uq.A2-2 and uq.A2-3) located at the intervals of 23.2–26.8 and 38.5–42.4 cM on linkage group A2, respectively, were associated with all the four traits. Additive × environment (ae) interaction effects, epistasis (aa) and epistasis × environment (aae) interaction effects of QTL were detected as well. The results provide useful information for further genetic studies on stem strength of soybean.  相似文献   

7.
8.
In an earlier advanced‐backcross quantitative trait locus (QTL) analysis of an interspecific cross of Gossypium hirsutum cv. ‘Xinluzhong 36’(‘XLZH36’) and G. barbadense cv. ‘Xinhai 21’(‘XH21’), a QTL for fibre strength in the chromosome segment introgression line IL23‐09 was analysed. Single marker analysis revealed that the markers on chro.23 were associated with fibre strength. Using composite interval mapping with the F2 population (1296 plants), a QTL for fibre strength was detected on chro. 23. The QTL explained 8.9% and 15.9% of phenotypic variances in the F2 and F2 : 3 generations, respectively. Substitution mapping suggested that the QTL was located at a physical distance of 23.4 kb between the markers BNL1414 and the single nucleotide polymorphism (SNP) locus D09_43776813 C‐G. We designated this QTL as qFS‐chr.23 (quantitative trait locus for fibre strength on chro.23). This work provides a valuable genetic resource for the breeding of high fibre quality in cotton and will facilitate future efforts for map‐based cloning.  相似文献   

9.
Bacterial blight (BB), caused by Xanthomonas oryzae pv. oryzae (Xoo), is a worldwide rice disease. QTL providing BB resistance were identified using a set of introgression lines (ILs) derived from a cross between Teqing and Lemont, and 3924 evenly distributed SNP markers developed from the two parents. After inoculating three Xoo pathotypes, CII, CIV and CV, seven major BB resistance‐associated QTL were detected. The alleles at all loci with improved BB resistance were from the Teqing background. Four QTL resistance to CII and CIV were identified in the reciprocal backgrounds across 2 years. Six QTL conferring resistance to CV identified in Teqing background were not detected in Lemont background, indicating that genetic background had a strong effect on the BB resistance‐associated QTL. Based on the interactions of 27 significant digenic QTL pairs among the seven main‐effect QTL, the QTL were divided into three strain‐specific groups. Genotype analyses of resistant ILs suggest that rice lines with a high level of resistance to BB can be achieved by pyramiding R gene(s) and QTL that interact with R gene(s).  相似文献   

10.
The oil accumulation in the developing soybean seed has been shown to be a dynamic process with different rates and activities at different phases affected by both genotype and environment. The objective of the present study was to investigate additive, epistatic and quantitative trait loci (QTL) × environment interaction (QE) effects of the QTL controlling oil filling rate in soybean seed. A total of 143 recombinant inbred lines (RILs) derived from the cross of Charleston and Dongnong 594 were used in this study to obtain 2 years of field data (2004 and 2005). A total of 26 QTL with significantly unconditional and conditional additive (a) effect and/or additive × environment interaction (ae) effect at different filling stages were identified on 14 linkage groups. Among the QTL with significant a effects, 18 QTL showed positive effects and 6 QTL had negative effects on seed filling rate of oil content during seed development. A total of 29 epistatic pairwise QTL underlying seed filling rate were identified at different filling stages. About 28 pairs of the QTL showed additive × additive epistatic (aa) effects and 14 pairs of the QTL showed aa × environment interaction (aae) effects at different filling stages. QTL with aa and aae (additive × additive × environment) effects appeared to vary at different filling stages. Our results demonstrated that oil filling rate in soybean seed were under genetic, developmental and environmental control.  相似文献   

11.
In this study, we observed variation of rapeseed oil content in SG population across 11 environments. A joint mapping was conducted to detect the quantitative trait loci (QTL) involved in oil content variation. We examined additive main (a), epistatic effects (aa) and their interactions with environments (QE). Apart from a of 12 QTL (collectively to 6.74% of oil content), aa of 18 locus pairs contributed to 5.36% difference, explaining 45.3% of phenotypic variation in the population. Moreover, 28 QE interactions contributed to a change of 1.55% in oil content in each environment, accounting for 13.3% phenotypic variation. Two environmentally sensitive QTL (OilC2 and OilC8‐1) exhibited a small a (0.17) but strong ae (0.41 and 0.32 averagely). These two QTL were also frequently involved in epistatic interactions. However, two major QTL (OilA7 and OilC8‐2) showed few QE and uninvolved in epistasis. In conclusion, a and aa were the dominant contributors to oil content in rapeseed, while QE accounted for 10‐15% of variation. The results suggest OilA7 and OilC8‐2 are potential candidates for breeding utilization and gene cloning.  相似文献   

12.
Heterosis, or hybrid vigour, has been used to improve seed yield in several important crops for decades and it has potential applications in soybean. The discovery of over‐dominant quantitative trait loci (QTL) underlying yield‐related traits, such as seed weight, will facilitate hybrid soybean breeding via marker‐assisted selection. In this study, F2 and F2 : 3 populations derived from the crosses of ‘Jidou 12’ (Glycine max) × ‘ZYD2738’ (Glycine soja) and ‘Jidou 9’ (G. max) × ‘ZYD2738’ were used to identify over‐dominant QTL associated with seed weight. A total of seven QTL were identified. Among them, qSWT_13_1, mapped on chromosome 13 and linked with Satt114, showed an over‐dominant effect in two populations for two successive generations. This over‐dominant effect was further examined by six subpopulations derived from ‘Jidou12’ × ‘ZYD2738’. The seed weight for heterozygous individuals was 1.1‐ to 1.6‐fold higher than that of homozygous individuals among the six validation populations examined in different locations and years. Therefore, qSWT_13_1 may be a useful locus to improve the yield of hybrid soybean and to understand the molecular mechanism of heterosis in soybean.  相似文献   

13.
Average maize yield per hectare has increased significantly because of the improvement in high-density tolerance, but little attention has been paid to the genetic mechanism of grain yield response to high planting density. Here, we used a population of 301 recombinant inbred lines (RILs) derived from the cross YE478 × 08–641 to detect quantitative trait loci (QTLs) for 16 yield-related traits under two planting densities (57,000 and 114,000 plants per ha) across four environments. These yield-related traits responded differently to high-density stress. A total of 110 QTLs were observed for these traits: 33 QTLs only under low planting density, 50 QTLs under high planting density and 27 QTLs across both densities. Only two major QTLs, qCD6 and qWKEL2-2, were identified across low- and high-density treatments. Seven environmentally stable QTLs were also observed containing qED6, qWKEL3, qRN3-3, qRN7-2, qRN9-2 and qRN10 across both densities, as well as qRN9-1 under low density. In addition, 16 and eight pairs of loci with epistasis interaction (EPI) were detected under low and high planting densities, respectively. Additionally, nine and 17 loci showed QTL × environment interaction (QEI) under low- and high-density conditions, respectively. These interactions are of lesser importance than the main QTL effects. We also observed 26 pleiotropic QTL clusters, and the hotspot region 3.08 concentrated nine QTLs, suggesting its great importance for maize yield. These findings suggested that multiple minor QTLs, loci with EPI and QEI, pleiotropy and the complex network of “crosstalk” among them for yield-related traits were greatly influenced by plant density, which increases our understanding of the genetic mechanism of yield-related traits for high-density tolerance.  相似文献   

14.
Quantitative trait loci for yield, yield components and seed protein content were investigated on the basis of experiments performed with two populations of pea (Pisum sativum L.) lines derived from linked crosses between lines Wt11238, Wt3557 and Wt10245 with contrasting characteristics. The yield-related traits were defined as components giving the grain yield in a multiplicative way. The aim was to clarify the genetic architecture of the relation between seed yield, its components and protein content, with a possible inclusion of the role of epistasis in this explanation. To take full advantage of the availability of the two populations, additive QTL effects and both types of epistasis were analysed: the QTL by genetic background interaction and the first-order QTL–QTL interaction. The two hybrid populations differed with respect to the prevailing gene action, which in the Wt11238 × Wt3557 progeny was mainly additive, while in the Wt10245 × Wt11238 progeny mainly epistatic. Some loci with previously reported, large, repeatable, but contradictory effects on yield and protein content were confirmed. New loci with alleles coming from the protein-rich Wt11238 line, positive for yield components, were identified. It was found that the first order QTL–QTL interaction events were more frequent for the loci showing the QTL by genetic background interaction.  相似文献   

15.
Quantitative trait loci (QTL) analysis can contribute to a deeper understanding of crop phenology. The parents of a barley mapping population have similar growth and development profiles, but the progeny show transgressive segregation for phenological traits. These phenotypes were measured in eight field experiments, using different planting dates over 3 years. Five QTL, on four chromosomes, were detected for anthesis date. The four maturity QTL were on the same chromosomes as the anthesis QTL. Five QTL for grain filling were detected on all chromosomes. Three QTL, on chromosomes 1H and 2H, were detected for photoperiod sensitivity. Both parents contributed higher value alleles for all traits, except for photoperiod sensitivity. QTL epistasis was not significant. Two QTL explained most of the phenotypic variation for anthesis and physiological maturity. Non‐parental combinations of alleles at these loci account for the phenotypic transgressive segregation. Candidate genes for these QTL effects are eps2S (2H) and denso (3H). QTL for other traits had smaller effects and were coincident with genes and/or QTL for the same traits reported in other germplasm.  相似文献   

16.
In maize, high grain moisture (GM) at harvest causes problems in harvesting, threshing, artificial drying, storage, transportation and processing. Understanding the genetic basis of GM will be useful for breeding low‐GM varieties. A quantitative genetics approach was used to identify quantitative trait loci (QTL) related to GM at harvest in field‐grown maize. The GM of a double haploid population consisting of 240 lines derived from Xianyu335 was evaluated in three planting seasons and a high‐density genetic linkage map covering 1546.4 cM was constructed. The broad‐sense heritability of GM at harvest was 71.0%. Using composite interval mapping, six QTL for GM at harvest were identified on five chromosomes (Chr). Two QTL located on Chr1, qgm1‐1 and qgm1‐2, explained 5.0% and 10.8% of the phenotypic variation in GM at harvest, respectively. The QTL qgm2, qgm3, qgm4 and qgm5 accounted for 3.3%, 8.3%, 5.4% and 11.0% of the mean phenotypic variation, respectively. Because of their consistent detection over multiple planting seasons, the detected QTL appear to be robust and reliable for the breeding of low‐GM varieties.  相似文献   

17.
Summary The aim of this investigation was to map quantitative trait loci (QTL) associated with grain yield and yield components in maize and to analyze the role of epistasis in controlling these traits. An F2:3 population from an elite hybrid (Zong3 × 87-1) was used to evaluate grain yield and yield components in two locations (Wuhan and Xiangfan, China) using a randomized complete-block design. The mapping population included 266 F2:3 family lines. A genetic linkage map containing 150 simple sequence repeats and 24 restriction fragment length polymorphism markers was constructed, spanning a total of 2531.6 cM with an average interval of 14.5 cM. A logarithm-of-odds threshold of 2.8 was used as the criterion to confirm the presence of one QTL after 1000 permutations. Twenty-nine QTL were detected for four yield traits, with 11 of them detected simultaneously in both locations. Single QTL contribution to phenotypic variations ranged from 3.7% to 16.8%. Additive, partial dominance, dominance, and overdominance effects were all identified for investigated traits. A greater proportion of overdominance effects was always observed for traits that exhibited higher levels of heterosis. At the P ≤ 0.005 level with 1000 random permutations, 175 and 315 significant digenic interactions were detected in two locations for four yield traits using all possible locus pairs of molecular markers. Twenty-four significant digenic interactions were simultaneously detected for four yield traits at both locations. All three possible digenic interaction types were observed for investigated traits. Each of the interactions accounted for only a small proportion of the phenotypic variation, with an average of 4.0% for single interaction. Most interactions (74.9%) occurred among marker loci, in which significant effects were not detected by single-locus analysis. Some QTL (52.2%) detected by single-locus analysis were involved in epistatic interactions. These results demonstrate that digenic interactions at the two-locus level might play an important role in the genetic basis of maize heterosis.  相似文献   

18.
A major quantitative trait locus (QTL) influencing seed fibre and colour in Brassica napus was dissected by marker saturation in a doubled haploid (DH) population from the black‐seeded oilseed rape line ‘Express 617’ crossed with a yellow‐seeded B. napus line, ‘1012–98’. The marker at the peak of a sub‐QTL with a strong effect on both seed colour and acid detergent lignin content lay only 4 kb away from a Brassica (H+)‐ATPase gene orthologous to the transparent testa gene AHA10. Near the peak of a second sub‐QTL, we mapped a copy of the key phenylpropanoid biosynthesis gene cinnamyl alcohol dehydrogenase, while another key phenylpropanoid biosynthesis gene, cinnamoyl co‐a reductase 1, was found nearby. In a cross between ‘Express 617’ and another dark‐seeded parent, ‘V8’, Bna.CCR1 was localized in silico near the peak of a corresponding seed fibre QTL, whereas in this case Bna.CAD2/CAD3 lay nearby. Re‐sequencing of the two phenylpropanoid genes via next‐generation amplicon sequencing revealed intragenic rearrangements and functionally relevant allelic variation in the three parents.  相似文献   

19.
The aim of this work was to map quantitative trait loci (QTLs) associated with flour yellow color (Fb*) and yellow pigment content (YPC) in durum wheat (Triticum turgidum L. var. durum). Additionally, QTLs affecting flour redness (Fa*) and brightness (FL*) color parameters were investigated. A population of 93 RILs (UC1113 × Kofa) was evaluated in three locations of Argentina over 2 years. High heritability values (>94%) were obtained for Fb* and YPC, whereas FL* and Fa* showed intermediate to high values. The main QTLs affecting Fb* and YPC overlapped on chromosome arms 4AL (4AL.2), 6AL (6AL.2), 7AS, 7AL, 7BS (7BS.2) and 7BL (7BL.2). The 7BL.1 QTL included the Psy-B1 locus, but one additional linked QTL was detected. A novel minor QTL located on 7AS affected Fb*, with an epistatic effect on YPC. An epistatic interaction occurred between the 7AL and 7BL.2 QTLs. The 4AL.2 QTL showed a strong effect on Fb* and was involved in two digenic epistatic interactions. The 6AL.2 QTL explained most of the variation for Fb* and YPC. The main QTLs affecting FL* and Fa* were located on 2BS and 7BL, respectively. These results confirm the complex inheritance of flour color traits and open the possibility of developing perfect markers to improve pasta quality in Argentinean breeding programs.  相似文献   

20.
Cooking quality in rice grains is a complex trait which requires improvement. Earlier reports show varying genetic influence on these traits, except for a common agreement on waxy (Wx) and alkali degeneration (Alk) loci on chromosome 6. The present study involved 86 doubled haploid lines derived from an indica × japonica cross involving IR64 and Azucena. Grain parameters viz., raw grain length (RGL), raw grain breadth (RGB), cooked grain length (CGL), cooked grain breadth (CGB), gelatinization temperature (GT), grain shape (RGS), length elongation ratio (LER) and breadth expansion ratio (BER) were subjected to mixed model mapping of quantitative trait loci (QTL). Segregation data of 175 markers covering a distance of 2395.5 cM spanning the entire genome were used. Fifteen main effect QTLs were detected spread over the genome, except on chromosomes 4, 8 and 11. Thirty epistatic interactions significantly influencing the traits were detected. Twelve of the main effect QTLs were involved in epistatic interactions. One main effect QTL associated with LER was detected near Alk locus. QTLs located for grain length on chromosomes 9 and 10 are reported for the first time. Detection of many epistatic loci and involvement of main effect QTLs in interactions demand for judicious selection of QTLs in marker-assisted selection programmes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号