首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 171 毫秒
1.
为提高冬小麦冠层光谱对叶绿素含量的估算精度,以陕西省乾县冬小麦为研究对象,利用SVC-1024i光谱仪和SPAD-502型叶绿素仪实测了冬小麦冠层反射率和叶绿素含量,分析了一阶导数光谱、10种特征参数和9种植被指数与叶绿素含量的相关性,并利用主成分分析(PCA)对叶绿素敏感的可见光波段(390~780 nm)一阶导数光谱进行降维,将特征值大于1的主分量结合特征参数和植被指数形成不同的输入变量,用偏最小二乘回归和随机森林回归构建冬小麦冠层叶绿素估算模型,并利用独立样本对模型进行验证。结果表明,小麦冠层叶绿素含量与一阶导数光谱在751 nm处的相关性最高(r=0.71),特征参数中红边蓝边归一化(SDr-SDb)/(SDr+SDb)与叶绿素含量的相关性最高(r=0.66),植被指数(VI)中修正归一化差异指数(mND705)相关性最高(r=0.74)。在输入变量相同的情况下,基于随机森林(RF)回归的预测模型均优于偏最小二乘回归(PLSR)模型,其中PCA-VI-RF模型的各精度指标均达到最优(r2=0.94,RMSE=1.05,RPD=3.70),是冬小麦冠层叶绿素...  相似文献   

2.
模拟多光谱卫星传感器数据的冬小麦白粉病遥感监测   总被引:1,自引:0,他引:1  
为了解利用遥感技术快速大范围监测小麦白粉病病害情况的可行性,以Landsat5TM波段响应函数为基础,将地面实测冠层高光谱数据模拟为TM多光谱数据,从而分析卫星传感器多光谱波段对病害的响应情况,并构建多光谱指数(PMSI)估测白粉病严重度。在此基础上,采用2010年星-地配套数据对PMSI估测精度进行验证。结果表明,PMSI能够较准确地反映冬小麦白粉病发生的程度,获得较理想的病情严重度反演精度(r2=0.475,RMSE=0.129)。因此采用多光谱卫星遥感影像在小麦大面积种植区域进行病害监测具有应用潜力。  相似文献   

3.
为提高冬小麦覆盖度估测精度,从增强近红外与红光差别的数学变换原理出发,构建了一种新型植被指数(NDVIn),再基于2013、2014年冬小麦冠层高光谱和模拟的资源三号卫星宽波段多光谱数据,分别构建基于常规植被指数(NDVI)与NDVIn的冬小麦覆盖度估算模型,然后利用留一交叉验证法对模型精度进行评价。结果表明,当n=6时,新生成的植被指数NDVI6对冬小麦农田覆盖度具有最好的估算性能,利用其基于小麦冠层高光谱及卫星多光谱数据建立的冬小麦覆盖度估算模型的决定系数r2分别为0.84、0.85,RMSE分别为0.092、0.091,模型精度均好于常规指数NDVI的估算结果。说明NDVI6用于估测冬小麦覆盖度具有可行性。  相似文献   

4.
基于无人机多光谱遥感的冬小麦冠层叶绿素含量估测研究   总被引:6,自引:0,他引:6  
为探讨利用无人机多光谱影像监测冬小麦叶绿素含量的可行性,基于北京市大兴区中国水科院试验基地的2019年冬小麦无人机多光谱影像和田间实测冠层叶绿素含量数据,选取16种光谱植被指数,确定对冬小麦冠层叶绿素含量显著相关的植被指数,采用一元二次线性回归和逐步回归分析方法建立各生育时期及全生育期的SPAD值估测模型,通过精度检验确定对冬小麦冠层叶绿素含量监测的最优模型。结果表明,两种分析方法中逐步回归建模效果最佳。拔节期选取4个植被指数(MSR、CARI、NGBDI、TVI)建模效果最好,模型率定的决定系数(r~2)为0.73,模型验证的r~2、相对误差(RE)和均方根误差(RMSE)分别为0.63、2.83%、1.68;抽穗期选取3个植被指数(GNDVI、GOSAVI、CARI)建模效果最好,模型率定的r~2为0.81,模型验证的r~2、RE、RMSE分别为0.63、2.83%、1.68;灌浆期选取2个植被指数(MSR、NGBDI)建模效果最好,模型率定的r~2为0.67,模型验证的r~2、RE、RMSE分别为0.65、2.83%、1.88。因此,无人机多光谱影像结合逐步回归模型可以很好地监测冬小麦SPAD值动态变化。  相似文献   

5.
为了快速监测小麦叶片水分含量,以敏感波段组和植被指数组2种变量分别作为输入变量,以地面同步观测的冬小麦叶片含水量作为输出变量,分别采用偏最小二乘(partial least squares, PLS)、极限学习机(extreme learning machine, ELM)和粒子群算法(particle swarm optimization, PSO)优化极限学习机,建立冬小麦叶片含水量预测模型,并对其反演效果进行比较。结果表明,光谱反射率和植被指数与叶片含水量之间存在较为密切的相关性,依此确定的敏感光谱波段为红光、蓝光和近红外波段,敏感植被指数为绿度指数、过红指数、归一化绿红差值指数、三角形植被指数和过绿指数。从2种变量的建模效果看,基于植被指数组构建的模型的精度和稳定性均优于敏感波段组,其中基于植被指数组的PSO-ELM模型在6个叶片水分含量反演模型中表现最佳,其r2和RMSE分别为0.98和0.26%。利用最优模型反演得到研究区冬小麦叶片含水量的分布范围为45%~75%,平均为64.57%,反演结果与地面实测较相符,说明基于无人机光谱数据通过建立以植被指数为...  相似文献   

6.
基于成像高光谱仪的大豆叶面积指数反演研究   总被引:1,自引:0,他引:1  
高光谱遥感能连续获取地物光谱图像,这一技术能大大提高估算叶面积指数的水平。利用无人机搭载成像高光谱仪获取作物光谱信息反演叶面积指数对精准农业生产与管理意义重大。通过灰色关联度排序、赤池信息量准则和偏最小二乘法(GRA-PLS-AIC)选择了三角植被指数(TVI)、比值植被指数(RVI)、红边植被指数(NDVI705)、归一化植被指数(NDVI)和重归一化植被指数(RDVI)5种植被指数,结合田间实测的叶面积指数数据,采用经验模型构建多指数反演模型。通过无人机为平台同步搭载数码相机和成像高光谱仪,在山东省嘉祥县一带获取了大豆生殖生长期内的遥感影像,同时利用LAI-2200C植物冠层分析仪进行叶面积指数测定,将获取到的遥感影像和地面实测数据进行叶面积指数的反演。结果表明:在大豆生殖生长期内建多指数模型,建模结果的预测值和实测值的R~2和RMSE分别为0.701和0.672,验证结果的R~2和RMSE分别为0.695和0.534,预测模型有比较高的精度和可靠性,利用该模型来反演LAI是准确的,生成的大豆LAI分布图能反映当地当时大豆的真实长势情况。因此,以多旋翼无人机为平台同步搭载高清数码相机和成像高光谱仪组成的无人机农情监测系统对研究大豆叶面积指数反演是可行性,构建的多指数模型适用于大豆生殖生长期。  相似文献   

7.
为了探讨多角度遥感在白粉病胁迫下监测小麦叶绿素含量的适宜角度,以易感白粉病品种偃展4110和中感白粉病品种国麦301为试验材料,获取三种不同生长环境(病圃田、接种田和自然感病田)下抽穗至灌浆期小麦冠层多角度反射光谱及叶绿素含量,分析不同时期叶绿素含量变化及其与多角度反射率的关系,建立白粉病胁迫下小麦叶绿素含量监测模型。结果表明,由红边波段构建的光谱参数对白粉病胁迫下叶绿素含量变化反应敏感。优化筛选出的植被指数与叶绿素含量之间的相关性在前向角度观测时优于垂直角度观测,而垂直观测角度好于后向角度观测,整体上以前向20°最佳。植被指数中,光谱参数RES(红边对称度)表现较好,在前向20°下的监测精度达0.725。因此,在前向20℃观察条件下可用RES对白粉病危害后小麦冠层叶绿素含量变化进行有效监测。  相似文献   

8.
为实现基于可见光透射微分光谱的小麦植株含水量监测,通过三年田间试验,测定自拔节期以后小麦关键生育时期冠层透射光谱和植株含水量,确立了透射光谱微分参数与植株含水量间定量关系。结果表明,与小麦冠层原始透光率相比,一阶微分光谱能够很好地减轻生育时期的影响。将不同生育时期数据综合,不同波段的透射率与植株含水量相关性均较差,而微分光谱在439、735、823及950 nm处与植株含水量相关性较好(|r| 0.57),以735 nm处相关性最高。基于蓝光、黄光和红光波段筛选了21个光谱特征参数,其中红边振幅(Dr)、红蓝振幅归一化指数(Dr-Db)/(Dr+Db)、红边面积(SDr)、右峰面积(RSDR)、双峰面积比(RIDA)及双峰面积归一化指数(NDDA)6个光谱特征参数与植株含水量间相关性较好(r0.70)。在以上优选的光谱参数中,红边双峰面积比值(RIDA)及归一化指数(NDDA)与植株含水量的回归关系表现最好,拟合精度r~2大于0.69,均方根误差RMSE低于4.87,模型具有很好的稳定性,可以实时精确估测小麦植株含水量。这表明利用冠层透射微分光谱可对小麦植株含水量进行精确监测,对指导作物精确灌溉管理具有较大的应用潜力。  相似文献   

9.
为了解连续小波转换对利用冬小麦冠层高光谱数据反演叶片含水量精度的提高效果,以河北省衡水市安平县为研究区,基于野外高光谱数据,提取、筛选其光谱特征敏感波段,应用光谱指数、连续小波变换进行光谱处理,并采用偏最小二乘法构建冬小麦叶片含水量的定量反演模型。结果表明,连续小波变换可明显凸显冬小麦冠层光谱特征,提升其对叶片含水量的敏感性。在连续小波变换下,基于1尺度构建的冬小麦叶片含水量的反演模型为最优模型,模型的决定系数(r~2)和RMSE分别为0.756和0.994%,独立样本验证时r~2和RMSE分别为0.766和1.713%,说明反演模型的拟合效果和预测精度均较高。因此,利用连续小波变换可将冠层光谱信息进行二次分配,能有效将有益信息与噪声信息进行分离,提升光谱信息对冬小麦叶片水含量的敏感性,增强冬小麦叶片水含量的预测能力与稳定性。  相似文献   

10.
大豆叶面积指数的高光谱估算模型研究   总被引:1,自引:0,他引:1  
通过测试大豆4个生育阶段350~2500nm波段的冠层高光谱数据,用近红外波段760nm-850nm及红光波段650nm-670nm的2个范围内的波段反射率,组成了高光谱比值植被指数(RVI)和800nm和670nm2个波段反射率组成修改型二次土壤调节植被指数(MSAVI2);基于RVI和MSAVI2植被指数,建立了大豆叶面积指数(LAI)的6种单变量线性与非线性函数模型,经检验均达到1%极显著水平。其中,以RVI所构建洲的幂函数、MSAVI2所构建LAI的指数函数、对数函数估测模型的相关系数相对较高;用MSAVI2所构建的LAI精度较高的对数函数模型反演大豆叶面积指数,实测LAI与估测LAI呈极显著线性相关(R=0.9098^**,n=46),模型方程的估算精度达84.9%,实测值与估算值的RMSE=0.2420,平均相对误差为0.1510。表明采用高光谱植被指数,能够实时、无损、动态、定量提取大豆叶面积指数,为设计理想的大豆群体和大豆遥感估产提供了科学的依据。  相似文献   

11.
To determine the most sensitive spectral parameters for powdery mildew detection, hyperspectral canopy reflectance spectra of two winter wheat cultivars with different susceptibilities to powdery mildew were measured at Feekes growth stage (GS) 10, 10.5, 10.5.3, 10.5.4 and 11.1 in 2007–2008 and 2008–2009 seasons. As disease indexes increased, reflectance decreased significantly in near infrared (NIR) regions and it was significantly correlated with disease index at GS 10.5.3, 10.5.4 and 11.1 for both cultivars in both seasons. For the two cultivars, red edge slope (drred), the area of the red edge peak (Σdr680−760 nm), difference vegetation index (DVI) and soil adjusted vegetation index (SAVI) were significantly negatively correlated with disease index at GS 10.5.3, 10.5.4 and 11.1 in both seasons. Compared with other parameters, Σdr680−760 nm was the most sensitive parameter for powdery mildew detection. The regression models based on Σdr680−760 nm were constructed at GS 10.5.3, 10.5.4 and 11.1 in both seasons. These results indicated that canopy hyperspectral reflectance can be used in wheat powdery mildew detection in the absence of other stresses resulting in unhealthy symptoms. Therefore, disease management strategies can be applied when it is necessary based on canopy hyperspectral reflectance data.  相似文献   

12.
为解决大田冬小麦叶片叶绿素含量估测模型精度低、通用性弱的问题,在获取冬小麦拔节期和抽穗期冠层红光波段反射率(BRred)和近红外波段反射率(BRnir)的基础上,计算归一化差值植被指数(NDVI)、差值植被指数(DVI)、比值植被指数(RVI)、土壤调节植被指数(SAVI)、改进型比值植被指数(MSR)、重归一化植被指数(RDVI)、II型增强植被指数(EVI2)和非线性植被指数(NLI)等8个植被指数。经统计分析,选择与叶片叶绿素含量(SPAD值)相关性较好的5个遥感光谱指标(NDVI、MSR、NLI、BRred和RVI)作为输入变量,建立了冬小麦叶片叶绿素含量的BP神经网络估测模型(WWLCCBP),并对估测模型进行精度验证。结果表明,WWLCCBP估测模型在拔节期估测的决定系数(r2)为0.84,均方根误差(RMSE)为5.39,平均相对误差(ARE)为9.87%。抽穗期的估测效果与拔节期较为一致。将WWLCCBP和高分六号影像...  相似文献   

13.
基于叶片高光谱特征的小麦白粉病严重度估算模式   总被引:3,自引:0,他引:3  
为了解白粉病胁迫下小麦叶片特征并预测其危害程度,基于大田小区和温室盆栽小麦白粉病接种试验,采用高光谱仪测定受白粉病不同程度危害的冬小麦叶片光谱反射率,并分析光谱特征参数与白粉病严重度间的关系。结果表明,随着小麦白粉病病情的加重,在可见光350~700nm波段内,叶片光谱反射率增加;而在700~1050nm近红外波段内,叶片光谱反射率明显降低。400~500nm和610~690nm为光谱敏感波段,在650~680nm波段相关系数最高(r0.75)。光谱参数MCARI、PSRI、VARIgreen和AI对叶片病害严重度拟合效果较好,决定系数(R2)变化范围为0.77~0.82,标准误差为9.34~10.14。模型检验表明,小麦单叶片病害严重度超过10%时,检验结果较为理想,单叶片病害严重度低于10%时,则定量估算误差偏大,10%严重度可作为光谱法识别小麦白粉病的临界值。光谱参数MCARI和VARIgreen对小麦白粉病反应敏感,估算误差较小,可作为小麦白粉病严重度的最佳估算模型。  相似文献   

14.
利用单一植被指数估测叶面积指数存在高光谱遥感丰富的波段信息易丢失和外界因素干扰大的缺点,但若将波段信息全部引入模型又会增加建模难度。为解决利用多波段信息估测叶面积指数的问题,利用主成分分析法(PCA)对光谱数据进行降维,之后将提取的主成分与最小二乘支持向量机(LS-SVM)模型相结合,构建冬小麦叶面积指数的高光谱估测模型,并与以4类植被指数作为LS-SVM输入参数建立的模型进行比较。结果表明,以主成分作为LS-SVM模型的输入参数建立的模型精度最高,模型检验集R2为0.71,检验集RMSE为0.56,估测结果较使用植被指数作为输入参数建立的模型精度高,稳定性好。该方法可为利用多波段信息进行大范围冬小麦叶面积指数的无损测定提供参考。  相似文献   

15.
基于无人机多时相遥感影像的冬小麦产量估算   总被引:1,自引:0,他引:1  
为高效准确地预测小麦产量,以浙江省冬小麦为研究对象,利用四旋翼无人机精灵4多光谱相机获取冬小麦5个关键生育时期(拔节期、孕穗期、抽穗期、灌浆期、成熟期)的冠层多光谱数据,选取多光谱相机的五个特征波段计算各生育时期的72个植被指数,分别通过逐步多元线性回归(SMLR)、偏最小二乘回归(PLSR)、BP神经网络(BPNN)、支持向量机(SVM)、随机森林(RF)构建不同生育时期的产量估算模型,最后采用决定系数(R)、均方根误差(RMSE)和相对误差(RE)对估算模型进行评价,筛选出最优估算模型。结果表明,基于随机森林建立的模型估算效果最优,SMLR、PLSR和SVM三种方法建立的模型估算效果接近。利用随机森林算法所建拔节期、孕穗期、抽穗期、灌浆期、成熟期模型的R、RMSE和RE分别为0.92、0.35、11%;0.93、0.33、10%;0.94、0.32、9%;0.92、0.36、9%;0.77、0.67、33%。模型验证时,抽穗期估算效果最好(R、RMSE和RE分别为0.91、0.35和15%),拔节期、孕穗期、灌浆期估算效果接近且有很好的估算能力,成熟期估算精度最差(R、RMSE和RE分别为0.71、0.47和13%)。由此说明,结合机器学习算法和无人机多光谱提取的植被指数可以提高小麦产量估算效果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号