首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 546 毫秒
1.
为了明确小麦籽粒性状的遗传控制基础,以γ射线诱变结合花药培养创制的大粒、高蛋白小麦新种质H307及生产上主栽品种郑麦9023创建的含有310个株系的重组自交系为实验材料,利用QTL-ICIMapping V3.3软件构建了包含133对SSR标记的遗传连锁图谱,对千粒重、粒长、粒宽、籽粒面积、周长、粗蛋白和淀粉含量进行QTL分析,结果在两年环境条件下共检测到47个加性QTL和10个QTL富集区,其中6个千粒重QTL,分别位于1D、2B、3D、6D和7A染色体上,单个QTL可解释4.54%~13.14%的表型变异;31个粒形QTL,位于1B、1D、2B、3B、3D、5A、5D、6B、6D、7A和7D染色体上,单个QTL可解释2.90%~15.86%的表型变异;10个粗蛋白和淀粉含量QTL,分别位于1A、1B、4B和6A染色体上,单个QTL可解释3.64%~12.19%的表型变异。2B染色体上检测到1个贡献率较大且能稳定表达的重要染色体区段,该区段包含控制小麦千粒重、粒长、粒宽、籽粒面积和周长的10个QTL。1BL染色体上检测到1个控制籽粒粗蛋白含量的微效QTL,对表型的贡献率为3.64%,与连锁分子标记gwm818的遗传距离为0.22cM,该位点是一个不同于前人研究结果的新位点。  相似文献   

2.
为了发掘影响小麦旗叶相关性状的QTL,以小麦骨干亲本周8425B与优良品种小偃81构建的包含102个家系的重组自交系(Recombinant inbred line,RIL)为材料,采用小麦90KSNP基因芯片技术和SSR标记对其进行分子标记检测,构建含有全基因组SNP和SSR标记的高密度遗传图谱,并在4个环境下对小麦旗叶相关性状QTL进行检测。结果表明,所构建图谱含有6 949对多态性标记,其中,SNP标记6 910对,SSR标记39对,覆盖染色体总长度4 839.9cM,标记间平均距离0.7cM;A、B和D染色体组分别有2 085、4 677和187对标记,分别占总标记数的30.0%、67.5%和2.7%,标记间平均距离分别为1.0、0.6和0.8cM。采用完备复合区间作图法共检测到22个旗叶性状加性效应QTL,10个旗叶长QTL分布于2A、3B、4B、5A、6B和7B染色体上,解释表型变异7.900%~24.098%,除Qfll2A-1能在2个环境中检测到外,其余均为单环境QTL;4个旗叶宽QTL分布于2A、3A和5B染色体上,解释表型变异9.080%~16.540%,其中,Qflw2A-1在3个环境中均能检测到,解释表型变异12.483%~16.540%,为1个稳定的主效QTL;8个旗叶面积QTL分布于2A、3B、4B、5A、6B和7A染色体上,解释表型变异9.310%~30.498%,其中,3个QTL位于5A染色体上。此外,鉴定出3个分布于2A、5A和6B染色体上的QTL富集区段。  相似文献   

3.
为给小麦穗部性状标记辅助选择提供可供选择的分子标记,并进一步对小麦穗部相关性状QTL进行精细定位及相关基因克隆,利用普通小麦Heyne×Lakin杂交F2代单粒传获得的145个F6代重组自交系(recombinant inbred line,RIL)群体,构建了含有2 210个标记(2 068个SNP标记和142个SSR标记)的总长度为2 139.35cM的遗传连锁图谱,并利用该图谱对小麦穗部性状(穗长、小穗数、穗密度)进行了QTL分析。结果表明,共检测出16个加性QTL,其中,与穗长相关的QTL有6个,分布在2A、2D、3B、4D、5A和7D染色体上,可解释表型变异7.58%~15.94%;与小穗数相关的QTL有4个,分布在1A、4A和7D染色体上,可解释表型变异7.28%~14.78%;与穗密度相关的QTL有6个,位于4D、5A和6B染色体上,可解释表型变异5.60%~20.06%。  相似文献   

4.
为了解西藏半野生小麦粒型性状的QTL差异,以西藏半野生小麦Q1028和郑麦9023(ZM9023)杂交后获得的重组自交系群体为试验材料,于2012、2013和2015年分别在四川农业大学温江试验田种植,对其粒型性状(粒长、粒宽、粒厚、长宽比、籽粒大小)进行遗传分析。结果表明,重组自交系群体粒型性状均呈正态分布,对籽粒大小的影响依次为粒宽、粒厚、粒长。在三个年度环境中,总共检测到33个控制小麦粒长、粒宽、粒厚、籽粒大小和长宽比的QTL位点。其中,13个控制粒长的QTL分布在1B、2B、2D(3个)、3A、4A、5B、6A、6B、7A(3个)染色体上,每个位点对表型变异的贡献率为5.37%~11.57%。6个控制粒宽的QTL分布在2B、2D、4A、5B、6A、7A染色体上,可以解释表型变异的6.43%~12.69%。3个控制粒厚的QTL位于2B和2D(2个)上,表型贡献率分别为12.75%、10.00%和8.49%。9个控制籽粒大小的QTL分别位于2B、2D(2个)、4A、5B、6A、7A(3个)染色体上,单个QTL可解释6.26%~14.69%的表型变异。另外,本研究还在2B、2D、4A、5B、6A、7A染色体上共发现7个QTL富集区,这些染色体上的QTL和富集区与籽粒性状密切相关,在育种中值得关注。其中,2B染色体上XwPt-3561~XwPt-6932分子标记区间内有控制粒长、粒宽、粒厚、籽粒大小的遗传位点,6A染色体上标记wpt-730109与wpt-7063之间有控制增加籽粒宽度和籽粒大小的位点。  相似文献   

5.
小麦产量性状的QTL分析   总被引:14,自引:2,他引:14  
为寻找更多与小麦产量性状相关的数量性状位点(QTL),利用江苏地方品种望水白与墨西哥小麦品种Alondra杂交构建的重组自交系群体(104个家系),在3个试验环境下进行了单株有效穗数、主穗粒数、单穗粒数和千粒重4个性状的QTL分析,结果在5A染色体上检测到与单株有效穗数相关、可以解释10.3%~18.8%表型变异的QTL1个;检测到与主穗粒数相关的QTL8个,分别位于染色体1B、1D、3B、4A、5D、6B上和连锁群4上(未知具体染色体归属),单个QTL可以解释9.9%~19.9%的表型变异;检测到与单穗粒数相关的QTL11个,分别位于染色体1B、1D、2A、2B、3B、4A、5D、6B和7A上,单个QTL可解释7.5%~43.4%的表型变异;检测到与千粒重相关的QTL5个,分别位于2A、2B、3B、4D和7A染色体上,单个QTL可解释9.6%~25.7%的表型变异。获得的QTL可以用于分子标记辅助育种。  相似文献   

6.
小麦籽粒特性与籽粒产量和品质密切相关。本研究以波兰小麦(Tiriticum polonicum L.)×普通小麦(Triticum aestivum L.)品系"中13"杂交组合衍生的99个F8重组自交系(Recombinant inbred lines,RIL)群体为材料,利用SSR分子标记构建连锁遗传图谱。根据两年实验数据,利用复合区间作图法对粒重、粒长和粒宽3个籽粒特性相关性状进行了QTL定位分析,共检测到12个与籽粒特性相关的加性QTL位点。其中,3个粒重QTL,1个位于1A染色体上,另外2个都在2A染色体上,单个QTL可解释表型变异的13.35%~20.04%;5个粒长QTL,其中2个位于2A染色体上,其余3个分别位于3A、5A和2B染色体上,单个QTL可解释表型变异的8.53%~21.03%;4个粒宽QTL,分别位于1A、2A、3B和5B染色体上,单个QTL可解释表型变异的9.76%~40.79%。在2A染色体上共检测到5个籽粒特性相关性状的QTL,表明2A染色体与籽粒特性关系密切。  相似文献   

7.
小麦籽粒形态及千粒重性状的QTL初步定位   总被引:2,自引:1,他引:1  
为研究小麦籽粒形态及千粒重性状的QTL,以普通小麦6044和01-35为杂交组合构建的F8重组自交系(RIL)群体作为试验材料,在山东泰安(山东农业大学试验站)和莱阳(青岛农业大学试验站)两个环境下进行两年田间试验,利用Mapmaker/version 3.0和WinQTLCart软件通过复合区间作图法进行QTL初步定位,在两年两个环境下共检测到12个相关QTL位点,其中关于粒长的2个QTL分别位于2A和2B染色体上,可解释表型变异的25%和12%;4个粒厚QTL位于2A和6A染色体上,可解释表型变异的7%~10%;6个千粒重相关QTL位于染色体2A、4A和6A连锁群上,可解释表型变异的6%~25%;而粒宽QTL在两个地点上都没有检测到。其中相关性高的性状间有一些共同的QTL,表现出一因多效或紧密连锁效应。  相似文献   

8.
合理的株型对提高小麦产量、品质、抗性以及光能利用效率具有重要作用。为了实现小麦株型相关QTLs的精细定位和定向改良,本研究以普通小麦品系Shanghai 3/Catbird和Naxos为亲本创制的F10代重组自交系(recombinant inbred lines,RILs)为材料,于2016年和2017年分别在郑州和原阳两地进行表型鉴定,对株高、旗叶长和旗叶宽等株型相关性状进行QTL定位。结合覆盖全基因组的基因型检测结果,利用基于完备区间作图法的QTL IciMapping软件进行遗传连锁图谱构建及QTL分析,共鉴定到3个在多个环境下稳定存在的株型相关性状的新QTLs,分别位于6A和2B染色体上,命名为Qph-6A、Qfll-6A和Qflw-2B,单个QTL在不同环境中可分别解释表型变异的8.33%~13.93%、8.10%~8.18%和9.14%~9.46%。  相似文献   

9.
挖掘小麦产量相关性状的稳定关联位点,为相关基因克隆和分子标记辅助选择提供理论依据。本研究以248个中国北部冬麦区育成品种为材料,利用自主研发的Affymetrix BAAFS Wheat 90K SNP芯片对株高、穗长、小穗数、穗粒数、有效分蘖数、粒长、粒宽和千粒重共8个产量相关性状进行全基因组关联分析。共检测到158个与8个性状显著关联(P≤0.00001)的SNP位点,其中45个位点至少在两个环境中稳定表达,解释平均表型变异的3.60%~10.51%。在这45个位点中,有8个稳定关联位点与以往的研究结果一致;37个为新发现稳定位点,其中3个与株高稳定关联的位点,分布在7D染色体上,解释表型变异的3.60%~4.39%;9个与穗长稳定关联的位点,分别分布在1D、3A、5B和7D染色体上,解释表型变异的5.61%~8.42%;1个与穗粒数稳定关联的位点,分布在7D染色体上,解释表型变异的6.06%~7.22%;8个与有效分蘖数稳定关联的位点,分布在1B染色体上,解释表型变异的6.33%~8.73%;6个与粒长稳定关联的位点,分别分布在2A和5B染色体上,解释表型变异的5.45%~6.62%;7个与粒宽稳定关联的位点,分别分布在4B和5A染色体上,解释表型变异的6.90%~10.51%;3个与千粒重稳定关联的位点,分布在3A染色体上,解释表型变异的7.05%~7.69%;对稳定位点进行候选基因分析,筛选到45个候选基因,其中有功能注释的基因41个,其中4个位于基因内。  相似文献   

10.
为了发掘新的穗部性状和株高QTL,利用扬麦17与扬麦18杂交后代206个单株组成的F2群体,构建了一个由141个SSR标记组成的全长1005.1cM的遗传图谱。该图谱包括26个连锁群,覆盖15条染色体,标记间平均距离为7.03cM。结合F2和F2:3群体的表型数据,对穗部性状和株高进行QTL分析,利用复合区间作图法检测出15个QTL,分布在2B、2D、4B、5A、5B和7A染色体上,其中4个QTL能够同时在两个世代被检测到,表型变异解释率为1.93%~20.78%,穗长QTLQSl-YY-2D、QSl-YY-5A和株高QTLQPh-YY-4B的贡献率超过10%。根据6VS特异性标记鉴定和表型调查结果,推测扬麦18的6VS上携带有增加穗长和穗粒数的基因,且为部分显性。2B染色体上总小穗数和5B染色体上穗粒数、穗基部结实粒数的QTL增效等位基因及2D、4B染色体上降低株高的QTL增效等位基因均来自扬麦18,表明该品种可作为具有高产潜力的小麦育种材料加以利用。  相似文献   

11.
Major efforts in wheat research are being made to improve the yield and quality of wheat. Loaf volume (Lv) is the main quality parameter deciding the bread making potential of wheat. To genetically dissect quantitative trait loci (QTLs) for Lv, a Recombinant Inbred Line (RIL) population (F8) was developed from a cross between two Indian wheat varieties “HI 977” and “HD 2329”. A total of 914 SSR and 100 ISSR primers were used for molecular analysis and the genetic map comprising 19 chromosomes was constructed with 202 SSR markers and 2 HMW glutenin subunit loci: Glu-B1 and Glu-D1. The phenotypic data were collected from six environments including three different agro-climatic zones for 2 consecutive years. Dissection of Lv through AMMI model revealed significant G×E variance for the trait. QTL analysis was performed using composite interval mapping. A total of 30 QTLs for Lv were detected and significant QTLs were identified on 6B and 6D chromosomes; 1B, 1D, 2A, 3A, 5B and 5D also contributed genetically to Lv. Association between 6B and 6D QTLs and variable expression of gliadins on group 6 chromosomes were discussed. QTLs detected in this study were compared with other QTL analysis in wheat.  相似文献   

12.
花药伸出特性直接影响小麦的授粉结实率和穗部真菌病害抗性,为挖掘控制小麦花药伸出特性的QTL,以半闭颖品种周8425B和开颖品种小偃81构建的包含102个株系的F2:12RIL群体为材料,于2019和2020年各分两个播期种植于西北农林科技大学小麦试验站,以小麦花药伸出率和视觉花药伸出等级两个性状表型值对4个环境下的花药伸出特性进行表型鉴定,并利用90K芯片构建的高密度遗传连锁图谱进行QTL定位。结果共检测到8个控制花药伸出特性的QTL,分布在3A、3B、5B、6B、6D和7A染色体上,其中6B和6D染色体上各有2个QTL。 QAe.nwsuaf-3A QAe.nwsuaf-3B QAe.nwsuaf-6B位点在多个环境中均能被检测到,表型变异解释率分别为3.65%~10.48%、8.12%~26.09%和3.49%~8.93%。  相似文献   

13.
BNS是一个新发现的温敏小麦雄性不育系,有良好的不育性和自身转换性,在杂交小麦利用和不育资源研究中有重要价值。为定位BNS的恢复基因,首先以BNS的高恢复系中国春为材料,创建BNS×中国春F2作图群体,建立自交结实率和花粉可育率两个表型BSA池;然后用中国春缺体-四体系检测恢复相关连锁群;最后用这些连锁群上的SSR分子标记筛选BSA池,用检测的连锁标记筛选F2作图群体,进一步定位恢复基因的QTL位点。结果表明,用BNS与中国春缺四体杂交,根据F1不育性检测到4个相关连锁群,分别是1A、1B、2B和7B;利用4个相关连锁群和4个非相关连锁群共8个染色体上的222对SSR分子标记筛选2对共4个BSA池,结果在3个相关连锁群上检测到8对连锁标记;用这8对连锁标记筛选F2群体210个个体植株,检测到5个QTL位点,位于1A、1B和2B染色体上。这些位点中,1个与自交结实率相关,2个与两个表型均相关,是主效QTL位点,另2个与花粉可育率相关,是微效QTL位点。这些结果为BNS恢复基因分子标记选择和精细定位奠定了基础。  相似文献   

14.
株高和穗长是影响小麦高产稳产的重要农艺性状。为进一步发掘控制株高和穗长的主效QTL,以硬粒小麦矮兰麦和野生二粒小麦LM001构建的F8代重组自交系(RIL)群体为材料,基于小麦55K SNP芯片构建的遗传连锁图谱,并结合5年8个生态环境的株高和穗长表型数据,进行QTL定位和遗传解析。结果表明,在RIL群体中,株高和穗长均呈现正态分布,符合数量性状遗传特征。共检测到24个QTL,其中7个与株高相关,分布在2A、2B、4B、5A、6A和7A染色体上,可解释7.46%~20.03%的表型变异;17个与穗长相关,分布在2A、2B、3A、4A、4B、5A和6B染色体上,可解释6.52%~17.10%的表型变异。控制株高的 QPh.sicau-AM-4B QPh.sicau-AM-7A以及控制穗长的 QSl.sicau-AM-2B.2 QSl.sicau-AM-4B.4能够同时在单环境和多环境分析中检测到,为稳定的主效QTL,分别解释了9.17%~20.03%、10.44%~ 14.48%、10.41%~16.29%和7.54%~11.70%的表型变异。此外,在RIL群体子代中存在超亲分离现象,进一步的QTL聚合效应分析表明,株高位点 QPh.sicau-AM-4B QPh.sicau-AM-7A的聚合或者穗长位点 QSl.sicau-AM-2B.2 QSl.sicau-AM-4B.4的聚合均能极显著地提高株高和穗长表型,表明鉴定到的控制株高和穗长的QTL位点具有累加效应。  相似文献   

15.
为发掘与小麦穗部性状相关的QTL,利用普通小麦BS366与白玉149杂交组合培育的73个DH群体为材料,构建了一套包含232个杂交组合的小麦永久F_2群体,基于90K SNP芯片标记构建了高密度遗传图谱,并利用该图谱对2个环境下的穗长、小穗数、穗粒数和千粒重进行QTL定位。结果发现,所构建的图谱总长19 533 cM,含有8 726个SNP标记,平均标记距离为2.24cM。结合群体基因分型结果,8 726个SNP标记合并为3 078个BIN标记,其中A基因组有1 283个(41.7%),B基因组有1 188个(38.6%),D基因组仅有607个(19.7%);共检测到96个QTL,分布在除3B和6B以外的19条染色体上,其中,控制穗长、小穗数、穗粒数和千粒重的QTL分别有20、59、6和11个,单一QTL可解释0.15%~12.34%的表型变异。51个QTL加性效应为正值,表明其加性效应来自于母本BS366;45个QTL加性效应为负值,表明其加性效应来自于父本白玉149。23个QTL的表型变异解释率大于5%,为主效QTL。  相似文献   

16.
Quantitative trait loci (QTLs) responsible for gluten strength measured by SDS-sedimentation volume (SV), mixograph and grain protein content (GPC) were located on the molecular linkage map of a durum wheat recombinant inbred line population. QSv.macs-1B.1 flanked by Xgwm550–Glu-B3 was the most consistent QTL for SV identified in all the environments. The same QTL was also associated with mixograph peak energy, peak time and total energy. The Glu-B1 locus was at the center of another QTL responsible for SV, while, Glu-B2 influenced SV as well as mixograph peak energy and peak time. Apart from glutenin coding loci, QTLs influencing mixing parameters and GPC were located in three other marker intervals Xwmc48.2–Xpsp3030 (4B), Xgwm573–Xbarc231.1 (7A) and Xgwm46–Xgwm540.1 (7B). A total of 26 main effect QTLs and 10 digenic epistatic interactions (QQ) for quality traits were distributed over 11 chromosomes. Out of these, seven main effect QTLs and three QQ interactions were involved in interactions with environments (QE, QQE). The results indicated that along with chromosome 1B, chromosomes 4B, 7A and 7B are also important for improvement of gluten strength and GPC in durum wheat.  相似文献   

17.
为初步定位小麦温敏雄性不育系BNS中与不育相关的QTL及其所属连锁群,用BNS及其完全保持系郑麦366的F2为作图群体,建立自交结实率和花粉可育率两个表型BSA池,选用均匀分布在小麦染色体上的710个SSR分子标记,在BSA池中筛选连锁标记,并进行QTL定位,同时用连锁标记引物在BNS DNA中重扩增,扩增产物序列在小麦基因组中进行比对,验证标记所属染色体并分子定位。结果表明,在2对BSA池中共筛选到12个连锁标记,涉及8个连锁群。单标记分析发现,5个连锁标记(Xwmc396、Xwmc517、Xbarc55、Xwmc332和Xwmc752)与不育QTL紧密连锁。用区间分析法分析发现,有2个主效不育QTL,分别为2B染色体上的 qBS1 (紧密连锁Xwmc332和Xbarc55)和7B染色体上的 qBS2 (紧密连锁Xwmc396和Xwmc517)。两个主效QTL的LOD值均大于5,贡献率均大于13%,且显性效应均大于加性效应。  相似文献   

18.
小麦穗部性状特别是穗顶部、基部结实性对穗粒数的建成及产量具有重要影响。为给QTL精细定位、基因克隆及穗部性状分子标记的开发和辅助选择奠定基础,本研究以扬麦17与宁麦18杂交获得的310个F2群体及其衍生的F2:3家系为材料,构建了一个由215个SSR标记组成的全长为1 717 cM的遗传连锁图谱,共覆盖19条染色体(1D和6A未涉及),标记间平均距离为7.99 cM,并对6个穗部性状进行QTL定位。利用复合区间作图法共检测出22个QTL,分布在1A、1B、2B、2D、3B、3D、4B、5A、5B和7A染色体上。其中,穗顶部结实粒数QTL有7个,穗基部结实粒数QTL有2个,穗长QTL有5个,总小穗数QTL有3个,不育小穗数QTL有2个,穗粒数QTL有3个,表型贡献率为2.56%~13.66%。控制穗顶部和基部结实粒数QTL的增效基因来源于宁麦18,表明该品种可作为具有高产潜力的小麦育种材料加以利用。  相似文献   

19.
Kernel texture (hard vs soft grain) and more subtle within-class variations are known to have a large influence on end-use properties, mostly through the proportion of damaged starch and subsequent water requirement. In this study, quantitative trait loci (QTL) affecting kernel texture and dough rheology in a progeny from a cross between two ‘medium-hard’ wheat cultivars were identified and compared to the QTL locations for both traits. One hundred and sixty-five F7 recombinant inbred lines were studied in three environments in 1999. Kernel texture was estimated by both near infrared reflectance (NIR: HardNIR) and the single-kernel characterisation system (SKCS: HardSKCS). Dough rheology, taken as a predictor of end-use quality, was estimated by the empirical parameters measured by Chopin alveograph. The genetic map for this population consisted of 254 loci quite evenly distributed over the wheat genome. Considering only the QTL which were stable (detected in the three locations) and robust (through bootstrap resampling), five genomic regions were found to influence HardNIR, but only two of them are significant for HardSKCS, which was probably due to a less representative measure of the phenomenon. Eight QTLs were found for rheological traits. Some QTLs for dough rheology co-located with those for hardness or grain protein content, particularly on chromosomes 3A and 5B and close to the unlinked marker Xgwm130. According to trait, individual QTLs explained from 5.4 to 26.6% of the phenotypic variation and when taken together up to 46.0% of the variation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号