首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
Trichoderma species are currently used as biocontrol agents for crop diseases caused by a number of fungal plant pathogens. However, their biocontrol performance in the field can be unreliable and it is likely that more consistent performance could be achieved through knowledge and manipulation of the genes involved. For example, induction of the genes could be optimised for variable environmental and physiological conditions, superior strains could be selected more effectively and novel st…  相似文献   

2.
Mycoparasitic species of Trichoderma are commercially applied as biological control agents against various fungal pathogens. The mycoparasitic interaction is host specific and includes recognition, attack and subsequent penetration and killing of the host. Investigations on the underlying events revealed that Trichoderma responds to multiple signals from the host (e.g. lectins or other ligands such as low molecular weight components released from the host's cell wall) and host attack is ac…  相似文献   

3.
Trichoderma atroviride strain P1 has been used extensively to study the mycoparasitic mechanisms in the interaction between plant pathogenic host and beneficial antagonistic fungi. Mutants of P1 containing the green fluorescent protein (gfp) or glucose oxidase (gox) reporter systems and different inducible promoters (from the exochitinase nag1 gene, or the endochitinase ech42 gene of P1) were used to determine the factors that activate the biocontrol gene expression cascade in the antagonis…  相似文献   

4.
The beneficial applications of Trichoderma spp. in agriculture include not only the control of plant pathogens, but also the improvement of plant growth, micronutrient availability, and plant tolerance to abiotic stress. In addition, it has been suggested that these fungi are able to increase plant disease resistance by activating induced systemic resistance (ISR) . The mode of action of these beneficial fungi in the Trichoderma -plant-pathogen interaction are many, complex and not comple…  相似文献   

5.
木霉菌对五种植物病原真菌的重寄生作用   总被引:26,自引:0,他引:26  
研究了哈茨木霉(Trichoderma harzianum)T88菌株和深绿木霉(T.atroviride)T95菌株对立枯丝核菌(Rhizoctonia solani)、杨树料皮病菌(Valsa sordida)、杨树水泡溃疡病菌(Botryosphaeria ribis)、苹果树腐烂病菌(V.ceratosperma)、贝伦格葡萄座腔菌梨生专化型(B.berengeriana f.sp.piricola)的重寄生作用。对峙培养的结果可观察到,多数情况下,接种后2d内木霉与病原菌接触,随后覆盖或侵入病菌菌落,抑制其生长。光学显微镜和扫描电镜观察结果表明,木霉对不同的植物病原真菌重寄生作用方法不同。可观察到木霉菌缠绕病原菌的菌丝,或沿着病原菌的菌丝平行或波浪式生长,或产生铯状分枝、吸器或附着胞吸附于病原菌的菌丝上,或穿透病原菌的菌丝,最终使病原菌的菌丝细胞原生质浓缩,菌丝断裂等现象。  相似文献   

6.
Novel understanding of Trichoderma interaction mechanisms   总被引:1,自引:0,他引:1       下载免费PDF全文
Trichoderma- based biofungicides are a reality in commercial agriculture, with more than 50 formulations registered worldwide as biopesticides or biofertilizers. Several research strategies have been applied to identify the main genes and compounds involved in the complex, three-way interactions between fungal antagonists, plants and microbial pathogens. Proteome and genome analyses have greatly enhanced our ability to conduct targeted and genome-based functional studies. We have obtained repr…  相似文献   

7.
The molecular factors involved in the three-way interaction between plant, pathogenic fungi and antagonistic/biocontrol fungi, such as Trichoderma, are still poorly understood, even if they represent a matter of interest for improving crop management and developing new strategies for plant diseases control. The aim of this work is to investigate the components involved in this interaction and, for this purpose, a proteomic approach was used. 2-D maps of the protein extracts from the single co…  相似文献   

8.
The relationship between taxonomic status of Trichoderma spp., chitinase production in solid substrate fermentation (SSF) on four media and mycoparasitism in dual culture (confrontation assay)against four plant pathogenic fungi was studied. Seventy five Trichoderma isolates belonging to 35species have been screened. The plant pathogenic fungi used in confrontation assay were Botrytis cinerea , Fusarium oxysporum f. sp. dianthi , Rhizoctonia solani and Sclerotinia sclerotiorum . The SSF media contained wheat bran, crude chitin (from crab shells, SIGMA) and salt solutions. The best performing isolates in mycoparasitism tests were Trichoderma flavofuscum, T. harzianum, T.inhamatum, T. koningii and T. strigosum. Some isolates exhibiting good mycoparasitism produced chitinase in SSF only at low or medium level. In contrary there were isolates with excellent extracellular chitinase production but their biocontrol potential did not belong to the leading group.Statistical methods have been used to evaluate the data.……  相似文献   

9.
Achieving a balance between vegetative growth and spore production is essential for successful biocontrol by fungi. Low sporulation rates in the field can result in poor establishment and survival,whereas failure of conidia to recognise hosts can lead to persistence without efficacy. Commercial biocontrol products involve bulk preparations of conidia, however considerable variability in conidiation rates exists between biocontrol agents, which can restrict choice of strain for production. The majority of studies on Trichoderma conidiation have focused on the species T. viride and T. atroviride.These species form conidia in response to blue and near-UV light and/or nutrient deprivation and conidiation proceeds in a highly co-ordinated fashion, however relatively little is known on the genetic basis of Trichoderrma conidiation. In addition, whilst photoconidiation appears to be a general response detailed studies in other Trichoderma species are absent. In this study, conidiation in the lesser known biocontrol species T. hamatum is being investigated using a combined morphological and molecular approach. In contrast to T. atroviride, conidiation in response to blue-light was weaker and variable and suggested that additional triggers may be required for the T. hamatum photoresponse. A series of comparative photoconidiation assays are currently being undertaken investigating the effect of inoculum type and abiotic factors on timing and intensity of the response.Results will be discussed in relation to the current knowledge on conidial morphogenesis in Trichoderma. In addition to these morphological assays, a selection of genes implicated in sporulation and the blue-light responses are currently being isolated and characterised from T. hamatum. Two genes, phr1 and cmp1 , which were isolated previously from T. atroviride will be used as early and late markers of gene expression during the photoresponse in T. hamatum in order to define time points for harvesting comparable stage-specific RNA from T. hamatum and T. atroviride. Using degenerate PCR putative sporulation gene orthologues have also been identified in T. hamatum.Work is currently underway to isolate genomic clones of these genes from T. hamatum and T.atroviride. Sequence and expression analysis of orthologues, including expression in response to abiotic factors will be presented and discussed in relation to the current knowledge of the molecular basis of conidiation in Trichoderma and other filamentous fungi.……  相似文献   

10.
生防木霉拮抗黄瓜枯萎病菌的初步研究   总被引:1,自引:0,他引:1  
木霉是一种重要的生防菌,对黄瓜枯萎病菌有很强的拮抗作用,主要作用方式有:竞争、重寄生、抗生、溶菌作用。温室盆栽试验显示,木霉可显著防治黄瓜枯萎病菌。  相似文献   

11.
Trichoderma in its natural environment competes for nutrient uptake and is required to protect itself from adverse natural toxic compounds, such as those produced by plants and other microbes in the soil community, or synthetic toxic compounds released human activity. One of the most important metabolic pathways for drug resistance and substrate uptake, both in prokaryotes and eukaryotes, is ATP dependent. The role of ABC transporter proteins in the biology of Trichoderma is still not kno…  相似文献   

12.
Fusarium spp. are pathogens of many important agricultural crops, and are often strong mycotoxin producers. Fusarium proliferatum, in particular, causes disease in cereals and secretes the toxin Beauvaricin that contaminates livestock feed and cereals, producing a variety of toxicity symptoms ranging from poor weight gain to mortality. Beauvaricin is a cyclodepsipeptide and acts as a potent mycotoxin known to have insecticidal properties. This compound is highly toxic to human cell lines, wh…  相似文献   

13.
The highly diverse genus Trichoderma has provided many formulations that are alternatives to the chemical pesticides in agriculture. The present study was undertaken to investigate the biocontrol potential of eight Trichoderma species, T. atrobrunneum, T. guizhouense, T. paratroviride, T. pyramidale, T. rufobrunneum, T. simmonsii, T. thermophilum and T. viridulum, against the phytopathogenic fungus Rhizoctonia solani. Trichoderma isolates were first evaluated in vitro by dual culture tests for their antagonism, mycoparasitic ability and antifungal activity against R. solani. Their growth promoting potential was further assessed in relation to phosphate solubilization, indole acetic acid and siderophore production. Five of the isolates were selected and evaluated for their abilities to prompt plant growth and to control R. solani infecting Vigna unguiculata(cowpea) seedlings in vivo. Two most effective isolates, T. guizhouense 9185 and T. simmonsii 8702, significantly(P0.05) reduced the disease severity incidences(36.6 and 45.0%, respectively) and promoted plant growth, which have good prospects for application.  相似文献   

14.
Biocontrol by Trichoderma has been studied mainly with selected isolates of T. harzianum, T. atroviride and T. asperellum, which are members of sections Pachybasium and Trichoderma. In contrast, species from section Longibrachiatum have only rarely been studied. On the other hand, one taxon from this section-Hypocrea jecorina (anamorph: Trichoderma reesei)-has been widely used for the production of cellulolytic and hemicellulolytic enzymes and recombinant proteins. As far as T…  相似文献   

15.
Growing awareness of the environmental damage caused by the use of chemical substances for plant disease control in agriculture has raised the need to study biological alternatives, such as activating the defense response of plant crops by inducers not toxic to the environment. Trichoderma spp. are effective biocontrol agents for a number of soilborne pathogens, and are also known for their ability to enhance plant growth and to induce systemic resistance (ISR) in plants. In our laborator…  相似文献   

16.
研究从木霉菌REMI突变株中筛选到16株对氰化物具有明显降解活性,将其与5种常见病原菌对峙培养,得到7株拮抗性较高的突变株。对这7株转化子进行盆栽试验表明:多数供试转化子对黄瓜幼苗枯萎病具有明显的防效,其中转化子TkA8的防治效果最好,达到了73.5%。同时研究发现TkA8处理黄瓜幼苗可诱导防御反应相关酶系PAL、POD活性明显增加,分别为对照的3.21和4.25倍。因此TkA8是一种具有防病和生物修复氰化物污染的较理想的多功能木霉菌株。  相似文献   

17.
A transgenic strain of Trichoderma atroviride that expresses the Aspergillus niger glucose oxidase gene goxA under a homologous pathogen-inducible promoter (nag1) has been constructed, with the aim of increasing the ability of this biocontrol agent (BCA) to attack phytopathogenic fungi and enhance plant systemic disease resistance. The sporulation and growth rate of the transgenic progenies were similar to the wild-type strain P1. goxA expression occurred immediately after contact with the p…  相似文献   

18.
Filamentous fungi employ conserved eukaryotic signaling pathway to detect and respond to environmental signals, including the presence of the host. Genetic experiment in which a particular signaling protein is lost, or its activity enhanced, have defined some of the function of heterotrimeric G proteins and MAP kinases in development and virulence. A hallmark of these studies is that orthologs in different species may have different functions. Antagonistic fungal-fungal interactions form …  相似文献   

19.
木霉生防菌对植物生长的影响   总被引:15,自引:0,他引:15  
 自木霉(Trichoderma)被发现具有生防价值以后,对其重寄生作用和拮抗成分的分析投入了大量的研究。而对植物生长的影响却被忽略了。象根瘤菌(rhizobia)和菌根真菌(mycorrhizae)一样,木霉能够对植物的生长产生明显的影响。它能产生植物毒性成分而抑制植物生长,也能通过产生激素和根际竞争能力促进植物生长,特别是它能诱导植物产生抗性。因此,仅对其抑制病原菌的能力进行讨论是不足够的。木霉在促进植物生长和诱导植物产生抗性具有真正的潜能。  相似文献   

20.
Trichoderma spp.is a filamentous soil fungus known as an effective biocontrol agent of a range of important airborne and soilborne pathogens,it has universal distribution and economic importance.This article reviewed the researches on biocontrol mech- anism for plant diseases and application of Trichoderma spp.,especially Trichoderma harzianum in recent years.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号