首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Almost half of all clinical cases of mastitis are caused by Gram-negative bacteria. Among these bacteria, intramammary infection by Pseudomonas aeruginosa remains one of the most refractory to antibiotic therapy. The ability to recognize potentially harmful pathogens whether previously encountered or not, as well as the induction of an initial pro-inflammatory response to these pathogens, are critical components of host innate immunity. Although the innate immune response to another Gram-negative mastitis-causing pathogen, Escherichia coli, has been well-characterized, little is known about the response to other Gram-negative bacteria, including P. aeruginosa. The objective of the current study was to characterize the systemic and localized bovine innate immune response to intramammary infection with P. aeruginosa. The contralateral quarters of ten mid-lactating Holstein cows were challenged with either saline or P. aeruginosa. Following the establishment of infection, milk samples were collected and assayed for changes in cytokine and growth factor concentrations, complement activation, and changes in the levels of soluble CD14 (sCD14) and lipopolysaccharide (LPS)-binding protein (LBP), two accessory molecules involved in host recognition of Gram-negative bacteria. Initial increases in milk somatic cell counts were evident within 12h of experimental challenge and remained elevated for >or=3 weeks. Increased permeability of the mammary gland vasculature, as evidenced by elevated milk levels of BSA, was initially observed 20 h post-infection and persisted for 2 weeks. Within 32 h of challenge, increased levels of IL-8, TNF-alpha, IL-10, and IL-12 were detected, however, the elevated levels of these cytokines were not sustained for longer than a 24h period. In contrast, elevations in IL-1beta, IFN-gamma, TGF-alpha, TGF-beta1, TGF-beta2, sCD14, LBP, and activated complement factor 5 (C5a) were sustained for periods of >48 h. Systemic changes were characterized by elevated body temperature, induction of the acute phase protein synthesis of serum amyloid A and LBP, and a transient decrease in circulating neutrophils and lymphocytes. Together, these data demonstrate the capability of the mammary gland to mount a robust innate immune response to P. aeruginosa that is characterized by the induction of pro-inflammatory cytokines, complement activation, and increased levels of accessory molecules involved in Gram-negative bacterial recognition.  相似文献   

2.
In contrast to other mastitis pathogens, the host response evoked during Staphylococcus aureus intramammary infection is marked by the absence of the induction of critical cytokines, including IL-8 and TNF-alpha, which have established roles in mediating host innate immunity. The elucidation of changes in the expression of other mediators with the potential to regulate mammary inflammatory responses to S. aureus remains lacking. Transforming growth factor (TGF)-alpha, TGF-beta1, and TGF-beta2 are cytokines that regulate mammary gland development. Because these cytokines also have a demonstrated role in mediating inflammation, the objective of the current study was to determine whether S. aureus intramammary infection influences their expression. Ten cows were challenged with S. aureus and milk samples collected. Increases in milk levels of TGF-alpha were evident within 32h of infection and persisted for 16h. Increases in TGF-beta1 and TGF-beta2 levels were detected within 40h of S. aureus infection and persisted through the end of the study. Thus, in contrast to IL-8 and TNF-alpha, S. aureus elicits host production of TGF-alpha, TGF-beta1, and TGF-beta2. This finding may suggest a role for these cytokines in mediating mammary gland host innate immune responses to S. aureus.  相似文献   

3.
The response of the bovine mammary gland to lipoteichoic acid (LTA), which is a major pathogen-associated molecular pattern of Gram-positive bacteria, was investigated by infusing purified Staphylococcus aureus LTA in the lumen of the gland. LTA was able to induce clinical mastitis at the dose of 100 microg/quarter, and a subclinical inflammatory response at 10 microg/quarter. The induced inflammation was characterized by a prompt and massive influx of neutrophils in milk. LTA proved to induce strongly the secretion of the chemokines CXCL1, CXCL2, CXCL3 and CXCL8, which target mainly neutrophils. The complement-derived chemoattractant C5a was generated in milk only with the highest dose of LTA (100 microg). The pro-inflammatory cytokine IL-1beta was induced in milk, but there was very little if any TNF-alpha and no IFN-gamma. The re-assessment of CXCL8 concentrations in milk whey of quarters previously challenged with S. aureus, by using an ELISA designed for bovine CXCL8, showed that this chemokine was induced in milk, contradicting previous reports. Overall, S. aureus LTA elicited mammary inflammatory responses that shared several attributes with S. aureus mastitis. Purified LTA looks promising as a convenient tool to investigate the inflammatory and immune responses of the mammary gland to S. aureus.  相似文献   

4.
Streptococcus uberis is the most common environmental mastitis pathogen causing udder inflammations of different severities in dairy cows. The aim of the study was to investigate if the different clinical outcome of mastitis induced by different strains of S. uberis can be reflected in the mammary immune response. Mammary epithelial cells and somatic milk cells were treated with heat inactivated and living S. uberis of strain A and strain B in vitro. Strain A was repeatedly isolated from a chronically infected quarter during 8 months, and persisted in the quarter despite antibiotic treatment. Strain B caused an acute clinical mastitis and was not further isolated after a single antibiotic treatment. Treatment with Strain B induced a more pronounced increase of mRNA-expression of various immune factors (interleukin-8, interleukin-1beta, RANTES, and lactoferrin) in mammary epithelial cells than strain A. In contrast to mammary epithelial cells the response of removed somatic milk cells showed no differences between the stimulation with two S. uberis strains. Tumor necrosis factor-alpha mRNA expression was not differently induced by the two strains. In conclusion, the characteristics of different severities of mastitis that are induced by different S. uberis strains in vivo can also be reflected at the level of the immune response of the mammary gland in vitro.  相似文献   

5.
A chromogenic limulus test ("Toxicolor") was applied to cow's milk and plasma after treatment with perchloric acid to remove interfering factors. The endotoxin levels in normal cow's milk and plasma were all less than 10 pg ml-1. In acute mastitis, the milk endotoxin level averaged (1.1 +/- 0.7) X 10(3) pg ml-1 in the cases where Gram-negative bacteria were isolated, while the plasma endotoxin concentration was normal. The endotoxin levels in the quarters infected with Gram-positive bacteria were all normal, both in milk and plasma. In gangrenous mastitis due to Gram-negative bacteria, the endotoxin concentration was very high in both milk [(9.3 +/- 5.3) X 10(6) pg ml-1] and plasma (85.2 +/- 68.2 pg ml-1). In similar cases due to Gram-positive bacteria, endotoxin levels were all normal, both in milk and plasma, resembling the acute mastitis due to Gram-positive bacteria. The test was considered suitable for the diagnosis of mastitis due to Gram-negative organisms and the levels of endotoxin detected would aid in assessing the prognosis.  相似文献   

6.
Streptococcus uberis causes a significant proportion of clinical and subclinical intramammary infections (IMI) in lactating and non-lactating dairy cows. In spite of this, its pathogenesis is incompletely understood. A study was conducted to determine leukocyte and cytokine dynamics during experimentally induced S. uberis mastitis. Five Jersey and five Holstein cows were challenged via intramammary inoculation of S. uberis into two uninfected mammary glands. Sixteen of 20 challenged mammary glands developed clinical mastitis with peak clinical signs observed at 144 h. The number of S. uberis in milk increased (P<0.05) 48 h after challenge, in spite of an increase in milk somatic cells that began at 18 h (P<0.001) and remained elevated throughout the study. Increased tumor necrosis factor-alpha (TNF-alpha), interleukin-1beta (IL-1beta) and interleukin-8 (IL-8) in milk were detected 66 h after challenge (P<0.05). Peak TNF-alpha and IL-8 concentrations occurred 120 h after challenge and preceded peak clinical signs. Experimental S. uberis IMI induced local production of TNF-alpha, IL-1beta and IL-8, which may play a role in the pathogenesis of S. uberis mastitis. Other mediators may be involved in initial leukocyte recruitment to the mammary gland, since increases in milk somatic cells occurred earlier than cytokine production.  相似文献   

7.
8.
ABSTRACT: Coagulase-negative staphylococci (CNS) are in several countries the most common bacteria isolated in subclinical mastitis. To investigate the innate immune response of cows to infections with two common mastitis-causing CNS species, Staphylococcus epidermidis and Staphylococcus simulans, experimental intramammary infection was induced in eight cows using a crossover design. The milk somatic cell count (SCC), N-acetyl-β-D-glucosaminidase (NAGase) activity, milk amyloid A (MAA), serum amyloid A (SAA) and proinflammatory cytokines interleukin (IL)-1β, IL-8, and tumor necrosis factor α (TNF-α) were determined at several time points before and after challenge. All cows became infected and showed mild to moderate clinical signs of mastitis. The spontaneous elimination rate of the 16 infections was 31.3%, with no difference between species. Infections triggered a local cytokine response in the experimental udder quarters, but cytokines were not detected in the uninfected control quarters or in systemic circulation. The innate local immune response for S. simulans was slightly stronger, with significantly higher concentrations of IL-1β and IL-8. The IL-8 response could be divided into early, delayed, or combined types of response. The CNS species or persistency of infection was not associated with the type of IL-8 response. No significant differences were seen between spontaneously eliminated or persistent infections.  相似文献   

9.
In this study, we examined whether an experimental bovine herpesvirus 4 (BHV4) infection can induce bovine mastitis, or can enhance bovine mastitis induced by Streptococcus uberis (S. uberis). Four lactating cows were inoculated intramammarily and intranasally with BHV4, and four lactating control cows were mock-inoculated. After 14 days, two of four cows from each group were inoculated intramammarily with S. uberis. No clinical signs were recorded in cows inoculated only with BHV4, and their milk samples showed no abnormal morphology, despite the fact that BHV4 replicated in inoculated quarters. Somatic cell count increased significantly in milk from three of six BHV4-inoculated quarters, compared to the non-inoculated quarters of the same cows (within-cow) and the quarters of mock-inoculated cows (control group) on days 8, 9 and 11 post-inoculation (pi). BHV4 was isolated from nasal swabs between days 2 and 9 pi. Clinical mastitis was observed in all four cows intramammarily inoculated with S. uberis. A preceding BHV4 infection did not exacerbate the clinical mastitis induced by S. uberis. S. uberis infections appeared to trigger BHV4 replication. From one quarter of each of two cows inoculated with BHV4 and S. uberis, BHV4 was isolated, and not from quarters inoculated with BHV4 only. In conclusion, BHV4 did not induce bovine clinical mastitis after simultaneous intranasal and intramammary inoculation. However, the BHV4 infection did induce subclinical mastitis in 50% of the cows and the quarters.  相似文献   

10.
Sun N  Liu JH  Yang F  Lin DC  Li GH  Chen ZL  Zeng ZL 《Veterinary microbiology》2012,154(3-4):376-383
Streptococcus uberis is a major environmental mastitis-causing pathogen. The infections are predominantly subclinical and are frequently undetected and untreated for extended periods of time. More information about the pathogenesis of S. uberis mastitis would be useful. To our knowledge, no experimental studies into the mastitis pathogenesis caused by S. uberis have been described in lactating goats. The aim of this study was to reproduce an experimentally induced S. uberis subclinical mastitis in lactating goats aimed to evaluate the inflammatory response, dynamics of infection and the pathological findings within the first hours of intramammary inoculation with S. uberis. Six Saanen goats in mid-lactation were inoculated with 1.7 × 10(8)cfu of S. uberis. Bacterial growth peaked in milk from challenged right mammary halves (RMH) at 4h PI. Shedding of viable bacteria showed a marked decrease at 20 h PI. Mean somatic cell counts in milk from the RMH peaked at 20 h PI. Inoculation with S. uberis was followed by a decrease in the mean total number of leukocytes. Signs and systemic symptoms were not evoked by intramammary inoculation. S. uberis could be isolated in tissue from all RMH. Histological examination of specimens of the RMH and lymph nodes of the goats showed an increased inflammatory response throughout the experiment. The histological findings correlated with the immunohistochemical detection of S. uberis in RMH. In conclusion, the experimental inoculation of S. uberis in lactating goats is capable of eliciting an inflammatory response and causing pathological changes, resulting in a subclinical mastitis. This investigation shows that goat might to represent a valuable model for the study of the mastitis pathogenesis caused by S. uberis.  相似文献   

11.
Standard therapies including administration of potent antibiotics, aggressive fluid resuscitation and metabolic support have not been successful in relieving symptoms and reducing mortality associated with acute coliform mastitis. It is important to understand the pathophysiological response of the mammary gland to coliform infections when designing preventive or therapeutic regimens for controlling coliform mastitis. Our laboratory has previously shown that macrophages and polymorphonuclear neutrophils in milk express CD14 on their cell surface. In this study, we found that soluble CD14 (sCD14) is present in milk whey as a 46kDa protein reacted with anti-ovine CD14 antibody. Additional functional studies found that: (1) under serum-free condition, complexes of LPS-recombinant bovine soluble CD14 (rbosCD14) induced activation of mammary ductal epithelial cells (as measured by changes in interleukin-8 (IL-8) mRNA level by competitive RT-PCR) at low concentrations of LPS after 6 or 24h incubation (1-1000ng/ml), whereas LPS alone did not induce activation of mammary ductal epithelial cells at the same concentrations, and (2) intramammary injection of low concentrations of LPS did not increase concentration of leukocytes in milk. In contrast, LPS-rbosCD14 complex containing the same concentration of LPS increased the concentration of leukocytes in the injected mammary gland at 12 and 24h post-injection. These results indicate that rbosCD14 sensitizes mammary epithelial cells to low concentrations of LPS in vitro and in vivo. Endogenous sCD14 in milk may be important in initiating host responses to Gram-negative bacterial infections.  相似文献   

12.
We wished to determine the expression of trafficking/adhesion molecules on the surface of lymphocytes isolated from infected mammary glands of cows challenged with either Serratia marcescens or Staphylococcus uberis. Healthy Holstein cows in mid lactation were infected by intramammary infusion with S. marcescens or S. uberis. Following infection, milk samples were collected at various time points. Body temperatures of the cows were taken, and milk was analyzed for colony forming units (CFU) of bacteria and somatic cell counts (SCC). Leukocytes were isolated from the milk and analyzed by flow cytometry. Percentages and types of lymphocytes were determined as well as expression of CD62L, CD11a, LPAM-1 and CD44 on these cells. We found that the percentage of lymphocytes expressing either CD62L or CD11a showed a marked increase 12 h post infection (PI) with S. marcescens that was not seen in cows infected with S. uberis. Conversely, the percentage of lymphocytes expressing CD44 increased in cows infected with S. uberis at 12 h PI, but the increase was not seen in cows infected with S. marcescens. Expression of LPAM-1 was low at all time points in both groups of cows. Body temperatures became elevated in both groups of cows, peaking at 24 h PI in S. marcescens-infected cows and dropping thereafter. In contrast, temperatures of S. uberis-infected cows continued to rise and were still elevated 96 h PI. CFU of bacteria isolated from mammary glands of S. marcescens-infected cows dropped precipitously 24 h PI but continued at high levels in S. uberis-infected cows. SCC began falling in S. marcescens-infected cows 48 h PI but continued to increase in S. uberis-infected cows. Thus, a greater percentage of lymphocytes in milk had a phenotype consistent with recruitment from the peripheral pool following infection with S. marcescens than was seen following infection with S. uberis. Concurrent with the increases seen in percentages of this lymphocyte phenotype, clinical signs lessened in the S. marcescens-infected cows.  相似文献   

13.
To characterize further the chemical and biological properties of bovine soluble (bos) CD14, a panel of ten murine monoclonal antibodies (mAb) reactive with recombinant (r) bosCD14 were produced. A sandwich ELISA, using murine mAb and rabbit polyclonal antibodies reactive with rbosCD14 was developed. All the mAb were reactive by ELISA with baculovirus-derived rbosCD14 and they recognized rbosCD14 (40 kDa) by western blot analysis. The mAb also identified by western blot sCD14 (53 and 58 kDa) in milk and blood and sCD14 (47 kDa) in a lysate of macrophages obtained from involuted bovine mammary gland secretions. Analysis by ELISA of whey samples after intramammary injection of lipopolysaccharide (LPS) (10 micro g) revealed increased sCD14 levels between 8 to 48 h after injection. Flow cytometric analysis showed that the mAb bound to macrophages isolated from involuted mammary gland secretions and mouse macrophages but not to swine or horse monocytes. Addition of anti-rbosCD14 mAb to monocytes stimulated with LPS reduced in vitro production of TNF-alpha. The anti-rbosCD14 antibodies generated in this study will be useful in studying CD14, an accessory molecule that contributes to host innate recognition of bacterial cell wall components in mammary secretions produced during mastitis.  相似文献   

14.
奶牛乳腺的防御机制与乳腺炎病理学   总被引:2,自引:0,他引:2  
乳头管的结构和内衬的角质蛋白是乳腺抵御微生物侵入的物理性屏障,角蛋白中的低级脂肪酸、阳离子蛋白质对侵入的病原微生物具有抗性;环境性致病菌是引起机体免疫应答的主要因子,巨噬细胞、单核细胞、中性粒细胞和淋巴细胞之间的相互协调组成了自然的免疫系统,它们通过分泌细胞因子、抗体和吞噬作用等活动来灭杀、清除侵入机体的病原体;乳中的可溶性因子具有免疫调节作用,对细菌的结构具有破坏性;妊娠期及围产期奶牛由于内分泌的变化而导致免疫抑制,结果造成临床型和亚临床型乳腺炎的发病率相对较高;牛奶体细胞计数对亚临床型乳腺炎的监控具有参考性。  相似文献   

15.
This study was undertaken to investigate the time course of surface expression of CD14 on neutrophils and macrophages and to determine their association with resolution of inflammatory responses during Staphylococcus aureus and Streptococcus uberis experimental mastitis. Infections of the mammary gland induce a local immune response characterized by an increase in the total counts of CD14+ neutrophils and CD14+ macrophages particularly. On the other hand, resolution is accompanied by an increase in relative counts of CD14+ neutrophils, CD14+ vacuolized macrophages and apoptotic neutrophils. Following the immune reaction of mammary gland against Gram-negative/positive bacteria is very similar. Between the apoptotic and CD14+ neutrophils a high correlation was measured during the whole experimental period (S. aureus: r=0.64; S. uberis: r=0.61; P<0.05). Using anti-CD14 monoclonal antibodies in vitro suggested the involving of the CD14 surface receptor in recognition of apoptotic neutrophils by macrophages.  相似文献   

16.

Background

Acute phase proteins haptoglobin (Hp), serum amyloid A (SAA) and lipopolysaccharide binding protein (LBP) have suggested to be suitable inflammatory markers for bovine mastitis. The aim of the study was to investigate acute phase markers along with clinical parameters in two consecutive intramammary challenges with Escherichia coli and to evaluate the possible carry-over effect when same animals are used in an experimental model.

Methods

Mastitis was induced with a dose of 1500 cfu of E. coli in one quarter of six cows and inoculation repeated in another quarter after an interval of 14 days. Concentrations of acute phase proteins haptoglobin (Hp), serum amyloid A (SAA) and lipopolysaccharide binding protein (LBP) were determined in serum and milk.

Results

In both challenges all cows became infected and developed clinical mastitis within 12 hours of inoculation. Clinical disease and acute phase response was generally milder in the second challenge. Concentrations of SAA in milk started to increase 12 hours after inoculation and peaked at 60 hours after the first challenge and at 44 hours after the second challenge. Concentrations of SAA in serum increased more slowly and peaked at the same times as in milk; concentrations in serum were about one third of those in milk. Hp started to increase in milk similarly and peaked at 36–44 hours. In serum, the concentration of Hp peaked at 60–68 hours and was twice as high as in milk. LBP concentrations in milk and serum started to increase after 12 hours and peaked at 36 hours, being higher in milk. The concentrations of acute phase proteins in serum and milk in the E. coli infection model were much higher than those recorded in experiments using Gram-positive pathogens, indicating the severe inflammation induced by E. coli.

Conclusion

Acute phase proteins would be useful parameters as mastitis indicators and to assess the severity of mastitis. If repeated experimental intramammary induction of the same animals with E. coli is used in cross-over studies, the interval between challenges should be longer than 2 weeks, due to the carry-over effect from the first infection.  相似文献   

17.
A survey was conducted of the prevalence of environmental pathogens, especially Streptococcus uberis, as causes of clinical mastitis in dairy cows. The response of intramammary infections with S uberis to conventional treatment was monitored by taking milk samples for bacteriology and somatic cell counting seven, 14 and 21 days after the treatment. The results showed that 51 per cent of the infections failed to respond, and the odds of cases failing to respond was significantly increased when the individual quarter somatic cell count seven days after the treatment was greater than 201,000 cells/ml. Ninety-six per cent of the suspected S uberis isolates identified by culture were confirmed as S uberis by using the api 20 Strep system. Restriction endonuclease fingerprinting was used to type the strains of S uberis isolated from 75 milk samples from 32 cows. Analysis showed that 96 per cent of the cases of S uberis that failed to respond to conventional treatment were persistent infections with one strain rather than reinfections with different strains. The persistent cases of S uberis were treated further with an extended course of intramammary preparations containing either procaine penicillin with dihydrostreptomycin or cefquinome. There was no significant difference between the cure rates achieved by the two preparations, and 55 per cent of the cases that had failed to respond to conventional treatment responded to the additional treatment.  相似文献   

18.
Endotoxin, or lipopolysaccharide (LPS), is responsible for pathogenesis of infections induced by Gram-negative bacteria, such as E. coli. The cellular response to LPS is modulated by interactions among LPS, LPS-binding protein (LBP) and CD14. Accumulated evidence shows that the soluble form of CD14 (sCD14) competes with membrane-bound CD14 (mCD14) for LPS and plays a pivotal role in regulating bacterial infection and septic shock caused by Gram-negative bacteria. Recombinant bovine sCD14 (rbosCD14) was produced by transfected insect sf/9 cells and its biological function was evaluated in mice. Eighty-one 8-week old BALB/cj female mice were randomly assigned to two groups, and injected intraperitoneally with either LPS (8 microg/g of body weight, n = 41) or LPS plus rbosCD14 (6.8 microg/g of body weight, n = 40). Survival rate at 24 h after injection for mice injected with either LPS or LPS plus rbosCD14 was 30 and 72%, respectively (P < 0.01). At 48 h survival rate was 7 and 37%, respectively (P < 0.01). To investigate the protective effect of rbosCD14 on experimentally induced mastitis in mice, two abdominal contralateral mammary glands of 7 lactating BALB/cj mice were injected through the teat canal with 10-20 colony-forming units (CFU) of Escherichia coli. One gland simultaneously received rbosCD14 (6 microg) and the other saline. At 24 h after challenge, glands that received rbosCD14 had less swelling and hemorrhaging, significantly lower bacterial counts (P < 0.05) and lower concentrations of TNF-alpha (P < 0.05). Results indicate that rbosCD14 is biologically functional and reduces mortality in mice from endotoxin shock and severity of intramammary infection by E. coli.  相似文献   

19.
The immune response during the onset of coliform mastitis in vaccinated cows was investigated by measuring lactoferrin (LF), interleukin-8 ( IL-8), and interleukin-1β (IL-1β) concentrations and somatic cell counts in 28 milk samples at the onset of acute coliform mastitis (ACM) and 73 milk samples at the onset of peracute coliform mastitis (PCM). Vaccinated ACM, unvaccinated ACM, and vaccinated PCM showed significantly higher values for LF and IL-1β levels than unvaccinated PCM (p < .01). The IL-8 concentration was lower in vaccinated PCM than in unvaccinated PCM (p < .05). There was no significant difference in somatic cell counts for each parameter. There were no significant differences in the parameters between vaccinated and unvaccinated ACM cows, or vaccinated ACM and PCM cows. From the above results, it is suggested that mastitis vaccination improved the early immune response, particularly at the onset of PCM, and played a large role in host defense against the initial infection.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号