首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
The soil microbial biomass and nutrient status under the native broadleaved forest and Cunninghamia lanceolata plantations at the Huitong National Research Station of Forest Ecosystem (in Hunan Province, midland of China) were examined in this study. The results showed that after the native broadleaved forest was replaced by mono-cultured C. lanceolata or C. lanceolata, soil microbial biomass and nutrient pool decreased significantly. In the 0–10 cm soil layer, the concentrations of soil microbial carbon and nitrogen in the broadleaved forest were 800.5 and 84.5 mg/kg, respectively. These were 1.90 and 1.03 times as much as those in the first rotation of the C. lanceolata plantation, and 2.16 and 1.27 times as much as those in the second rotation of the plantation, respectively. While in the 10–20 cm soil layer, the microbial carbon and nitrogen in the broadleaved forest were 475.4 and 63.3 mg/kg, respectively. These were 1.86 and 1.60 times as much as those in the first rotation, and 2.11 and 1.76 times as much as those in the second rotation, respectively. Soil nutrient pools, such as total nitrogen, total potassium, NH4 +-N, and available potassium, also declined after the C. lanceolata plantation replaced the native broadleaved forest, or Chinese fir was planted continuously. Less litter and slower decay rate in pure Chinese fir plantation were the crucial factors leading to the decrease of soil microbial biomass and nutrient pool in this area. Human disturbance, especially slash-burning and site preparation, was another factor leading to the decrease. There were significant positive correlations between soil microbial carbon and nitrogen and soil nutrients. To improve soil quality and maintain sustainable productivity, some measures, including planting mixed conifer with hardwood, preserving residues after harvest, and adopting scientific site preparation, should be taken. Translated from Chinese Journal of Applied Ecology, 2006, 17(12): 2,292–2,296 [译自: 应用生态学报]  相似文献   

2.
Vegetation recovery is a key measure to improve ecosystems in the Loess Plateau in China. To understand the evolution of soil microorganisms in forest plantations in the hilly areas of the Loess Plateau, the soil microbial biomass, microbial respiration and physical and chemical properties of the soil of Robinia pseudoacacia plantations were studied. In this study, eight forest soils of different age classes were used to study the evolution of soil microbial biomass, while a farmland and a native forest community of Platycladus orientalis L. were chosen as controls. By measuring soil microbial biomass, metabolic quotient, and physical and chemical properties, it can be concluded that soil quality was improved steadily after planting. Soil microbial biomass of C, N and P (SMBC, SMBN and SMBP) increased significantly after 10 to 15 years of afforestation and vegetation recovery. A relatively stable state of soil microbial biomass was maintained in near-mature or mature plantations. There was an increase of soil microbial biomass appearing at the end of the mature stage. After 50 years of afforestation and vegetation recovery, compared with those in farmland, the soil microbial biomass of C, N and P increased by 213%, 201% and 83% respectively, but only accounting for 51%, 55% and 61% of the increase in P. orientalis forest. Microbial soil respiration was enhanced in the early stages, and then weakened in the later stage after restoration, which was different from the change of soil organic carbon. The metabolic quotient (qCO2) was significantly higher in the soils of the P. orientalis forest than that in farmland at the early restoration stage and then decreased rapidly. After 25 years of afforestation and vegetation recovery, qCO2 in soils of the R. pseudoacacia forest was lower than that in the farmland soil, and reached a minimum after 50 years, which was close to that of the P. orientalis forest. A significant relationship was found among soil microbial biomass, qCO2 and physical and chemical properties and restoration duration. Therefore, we conclude that it is possible to artificially improve the ecological environment and soil quality in the hilly area of the Loess Plateau; a long time, even more than 100 years, is needed to reach the climax of the present natural forest. __________ Translated from Acta Ecologica Sinica, 2007, 27(3): 909–917 [译自: 生态学报]  相似文献   

3.
The effect of inoculation with Frankia, a N-fixing actinomycete, on the growth of Alnus sieboldiana seedlings was studied on unsterilized soil from a nursery and an alder stand (forest of Alnus firma). The seedlings of A. sieboldiana were inoculated with Frankia before or after a 2-month culture on sterilized vermiculite, during which they nodulated, and transplanted to unsterilized soil from the nursery and the alder stand. The control seedlings were also cultured on sterilized vermiculite for about 2 months and transplanted to unsterilized soil without Frankia inoculation. The seedling growth, nodulation and N-fixing activity were measured 3, 10 and 16 weeks after the transplantation. Growth and nodule biomass of the seedlings inoculated with Frankia and those grown on the alder soil were better than those without inoculation with Frankia and grown on the nursery soil, respectively. The seedlings inoculated before spontaneous nodulation grew better than those inoculated at the transplantation. Nitrogen-fixing activity measured by acetylene reduction assay at 16 weeks after the transplantation was higher in the seedlings grown on the soil from the nursery than on the soil from the alder stand.  相似文献   

4.
In order to understand nutrient dynamics in tropical farming systems with fallows, it is necessary to assess changes in nutrient stocks in plants, litter and soils. Nutrient stocks (soil, above ground biomass, litter) were assessed of one-year old fallows with Piper aduncum, Gliricidia sepium and Imperata cylindrica in the humid lowlands of Papua New Guinea. The experiment was conducted on a high base status soil (Typic Eutropepts), and in Papua New Guinea such soils are intensively used for agriculture. Soil samples were taken prior to fallow establisment and after one year when the fallows were slashed and above ground biomass and nutrients measured. The above ground and litter biomass of piper was 13.7 Mg dry matter ha-1, compared to 23.3 Mg ha-1 of gliricidia and 14.9 Mg ha-1 of imperata. Gliricidia produced almost 7 Mg ha-1 wood. Total above ground biomass returned to the soil when the fallows were slashed was the same for piper and gliricidia (8 Mg ha-1). Gliricidia accumulated the largest amounts of all major nutrients except for K, which was highest in the above ground piper biomass. Imperata biomass contained the lowest amount of nutrients. The largest stocks of C, N, Ca and Mg were found in the soil, whereas the majority of P was found in the above ground biomass and litter. Almost half of the total K stock of piper and gliricidia was in the biomass. During the fallow period, soil organic C significantly increased under gliricidia fallow whereas no net changes occurred in piper and imperata fallows. The study has shown large differences in biomass and nutrient stocks between the two woody fallows (piper, gliricidia) and between the woody fallows and the non-woody fallow (imperata). Short-term woody fallows are to be preferred above grass (imperata) fallows in the humid lowlands of Papua New Guinea because of higher nutrient stocks.  相似文献   

5.
Field experiments were conducted on a tropical Inceptisol at Apia, Western Samoa to evaluate the effects of alley cropping on soil characteristics, weed populations, and taro yield. Taro yields were compared from Calliandra calothyrsus and Gliricidia sipium alleys, spaced at 4 m, 5 m, and 6 m, and a no tree control. Measurements were made for soil moisture and temperature, weed growth, hedge biomass production, and taro growth and yield. Data was analyzed over 4 consecutive years from 1988 to 1991.Hedge biomass yields ranged from 5.1 to 16.1 t/ha/yr dry weight over the 4 years of the trial, with Calliandra and Gliricidia performing equally well. Biomass yields decreased by about 2 mt/ha with increasing alley width from 4 to 6 m alleys. Weed populations were significantly lower in the 4 m alleys compared to the 5 m, 6 m, and control plots. The 6 m alleys supported the significantly highest weed populations. Soil from alley plots held significantly more water in the 0.3 to 1 bar range than soils from the controls. Four years of mulch application measurably improved soil water holding capacity and bulk density. However, no improvement was seen in nitrogen, phosphorus, potassium, calcium, magnesium and organic carbon content in the alley plots compared to the controls. There was no positive yield effect of alley cropping on taro yield. Yields in the 5 m and 6 m alleys were not significantly different from the control, while the 4 m alleys produce significantly lower yields than the control. Thus, alley cropping did not prove a viable alternative to traditional shifting cultivation after 4 years of continuous cropping, in this trial.  相似文献   

6.
Organic amendments were added to a southwestern United States forest nursery sandy loam soil to determine the effects on soil nutrient reserves and subsequent growth of 1.5+0 ponderosa pine (Pinus ponderosa Laws.) seedlings. Treatments included irradiated sewage sludge, peat moss and pine bark each at 67 t/ha, sawdust at 43 t/ha, and a control that received no organic matter. Sludge caused immediate increases in soil nutrients, especially N and P. Sawdust resulted in near complete N immobilization 45 d after application. Peat moss and bark did not significantly alter soil nutrients. All treatment effects disappeared within 6 months of application.Amendments did not significantly alter seedling survival, biomass or yield (caliper 3 mm). Seedling biomass was positively correlated with early soil nutrient status, but growth was not significantly improved. The modest, short-term nutritional benefits indicate single applications of organic amendments are ineffective in improving the nutrient status of sandy nursery soils of the Southwest.  相似文献   

7.
Effects of different forest floor vegetation types in secondary forest and of conversion to plantation on the quality and quantity of ectomycorrhizas are mostly unknown.Betula platyphylla var.japonica seedlings were used for bioassays of ectomycorrhizal fungal inoculum using soils from four 50-year-oldB. platyphylla var.japonica forests that had different types of forest floor vegetation: two with shrub types, one with aSasa type, and one with a grass type. Seedlings were also grown in soil from a nearby monospecific plantation ofChamaecyparis obtusa. Ectomycorrhizas formed 13 to 26% of root length of seedlings grown in soil from the five different sites. The maximum percentage of ectomycorrhizal formation was obtained from the grass-type forest. The dominant type of ectomycorrhiza in the two shrub-type forest soils was the same as that in theSasa-type forest soil. The dominant types of ectomycorrhizas in the grass-type forest soil and in theC. obtusa plantation soil were different from that in the two shrub-type forest soils and in theSasa-type forest soil. The results of this investigation suggest that the type of forest floor vegetation, accompanied with changes in thickness of the A0 horizon, might affect the ectomycorrhizal fungi in the soils ofB. platyphylla var.japonica forests. Establishment of artificial plantations ofC. obtusa might change the ectomycorrhizal fungi that could associate withB. platyphylla var.japonica seedlings in soil.  相似文献   

8.
[目的]探讨西南桦人工林对土壤的适应性及土壤养分特征,揭示土壤养分状况与立地生产力的关系,为其造林地选择及人工林养分管理提供参考。[方法]在广西大青山林区西南桦人工林内设置47块600 m2的典型样地,调查常规测树因子,采集土壤样品,测定10项常规土壤化学性质指标;按照土壤养分分级标准评价土壤养分状况,基于立地指数将样地分为高产和低产组,进一步比较分析两组立地间各养分指标的差异性,探讨土壤养分对立地生产力的影响。[结果]表明:广西大青山西南桦人工林地土壤绝大部分为强酸性,有机质、有效N、全N含量中等偏上,有效P甚缺,其它养分含量中等偏下。高产和低产立地间土壤有机质和全K含量均呈极显著差异(P0.01),有效N含量差异显著(P0.05)。[结论]西南桦对于低pH值、低P含量的土壤具有较强的适应性;有机质、全K和有效N含量是影响广西大青山西南桦人工林立地指数的关键土壤养分因子。  相似文献   

9.
To better understand the distribution of soil microorganisms in Populus euphratica forests in Xinjiang, northwestern China, we studied and compared the populations and numbers of bacteria, fungi and actinomycetes in the soil at four different age stages of natural P. euphratica forests, i.e., juvenile forests, middle-aged forests, over-mature forests and degraded forests. Results showed that there were clear differences in the amount of microorganism biomass and composition rates across the four forest stages. Dominant and special microorganisms were present in each of the four different soil layers. The vertical distribution showed that the microorganism biomass decreased with increasing soil depth. The population of microorganisms was the lowest at 31–40 cm of soil depth. The microorganisms consisted of bacteria, actinomycetes, as well as fungi. Bacteria were the chief component of microorganisms and were widely distributed, but fungi were scarce in some soil layers. Aspergillus was the dominant genus among the 11 genera of fungi isolated from the soil in different age stages of P. euphratica forests. __________ Translated from Journal of Beijing Forestry University, 2007, 29(5): 127–131 [译自: 北京林业大学学报]  相似文献   

10.
Soil fertility restoration depends on natural fallows in the slash-and-burn system of eastern Madagascar. In the Beforona-Vohidrazana study zone, none of the fallow species are able to withstand the slashing, burning and cropping frequencies of 3–5 years. Eventually soils are abandoned for agriculture. Along the degradation sequence, this study quantifies fallow biomass, nutrient stocks and soil nutrient availability of four dominant fallow species Trema orientalis, Psiadia altissima, Rubus moluccanus, and Imperata cylindrica. At 3 years, the shrubs Psiadia and Rubus were more productive (11–14.4 t/ha aboveground biomass or AGB) than the tree species Trema (8.5 t/ha). Only after 5 years did tree productivity (24.7 t/ha) exceed that of shrubs (17–20 t/ha). Imperata’s biomass stagnated at 5.5 t/ha after 3 years. A sharp decline in fallow productivity was observed with advancing fallow cycles after deforestation. While Psiadia produced highest AGB in the second fallow cycle (C2) being 100%, C1 achieved 89% of that, C3 74%, and C4 only 29%. With the ability to propagate vegetatively and to accumulate important amounts of nutrients in roots, Rubus and Imperata, both exotic and invasive species, showed improved adaptation mechanisms towards frequent disturbances compared to the two indigenous species Trema and Psiadia. Available soil nutrients P, K, Mg were highest under forest and declined rapidly with increasing fallow cycles. Ca and pH rose momentarily in the first fallow cycle before declining with advanced soil use. Al concentrations increased steadily with time. As lengthened fallow periods are not practical, there is a need to intensify upland systems based on improved nutrient cycling, targeted inputs, fire-less land management, and land use diversification. Allowing regrading tree and bush fallows to accumulate biomass (above- and belowground carbon) will significantly improve Madagascar's greenhouse gas mitigation contribution.  相似文献   

11.
The response of corn (Zea mays) to incorporated leaf and twig mulches ofLeucaena leucophala, Gliricidia sepium andCassia siamea, andGrevillea robusta as a non-legume comparison was investigated in a 10-week pot trial and a concurrent soil incubation study to evaluate the suitability of various agroforestry trees as mulch sources.Leucaena contributed to the highest N uptake and biomass production of these corn plants, reflecting the benefits of organic mulching.Cassia-treated plants also performed better than the unmulched controls, butGrevillea incorporation suppressed corn growth probably because of the relatively high Mn status of this mulch. Manganese toxicity was confirmed by comparative vector diagnosis of plant nutrient status.Cliricidia mulching resulted in seedling mortality after germination possibly from high soil pH and ammonium toxicity. Mineral N production in mulched soils during the laboratory incubation was well correlated with N uptake in corn shoots. The results suggest that the nutritional effects of agroforestry tree mulches on growth of companion crops may be effectively screened by a combined soil test, pot trial, and plant analysis approach.  相似文献   

12.
This study was performed to investigate a short time change (one week after fire) on soil properties due to the fire inPinus densiflora Sieb. et Zucc stands of the Kosung area in Kangwon Province in Korea. Twenty seven sampling plots [16 burned (8 low intensity fire, 8 high intensity fire) and 11 unburned plots] were chosen. Mineral soil samples from three depths (0–5, 5–15, and 15–25 cm) under the forest floor were collected. Forest fire in the area affected soil chemical properties. Soil pH, total nitrogen, available phosphorus, potassium, calcium, and magnesium in the surface soil (0–5 cm) of the burned area compared with the unburned area increased, but there was no marked change in the subsurface soil (5–25 cm). Organic matter, total nitrogen, available phosphorus, and exchangeable cations in the surface soil were generally lower in the high than in the low intensity fire areas. This indicates that these nutrients on the high intensity fire may be volatilized. The results suggest that change in soil chemical properties in the area was restricted mainly to the surface soil and was different between the high and the low intensity fire types.  相似文献   

13.
[目的]通过分析土壤微生物生物量及群落结构的演变趋势,筛选影响土壤微生物群落的关键环境因子,揭示土壤微生物群落对毛竹林长期粗放经营的响应机理。[方法]选取不同粗放经营年限(5 a、9 a、15 a、18 a)毛竹林,以天然马尾松林(Masson pine,MP)作为对照,采用磷脂脂肪酸(Phospholipid fatty acids,PLFA)分析方法表征土壤微生物量及群落结构。[结果]结果表明,毛竹林土壤微生物总PLFA含量以及细菌、真菌、放线菌等PLFA含量均显著低于马尾松林(P0.05),但不同经营年限毛竹林之间没有显著差异。土壤碱解氮及有效磷含量对土壤微生物总PLFA含量以及细菌、真菌、原生动物等PLFA含量影响显著(P0.05),而土壤碱解氮、p H值以及有机质含量对放线菌PLFA含量影响显著(P0.05)。长期粗放经营过程中毛竹林土壤微生物丰富度及多样性均呈逐渐下降趋势。非度量多维尺度转换排序(Non-metric multidimensional scaling,NMDS)分析结果表明,毛竹林土壤微生物群落结构与马尾松林有明显区分(R=0.388 1,P=0.009)。土壤含水量、碱解氮、有效磷以及p H值合计解释了90.28%的微生物群落结构变异量,其中土壤含水量、碱解氮、有效磷贡献显著(P0.05)。[结论]长期粗放经营降低了毛竹林土壤微生物量,改变了群落结构,其生态风险还有待于进一步评估。  相似文献   

14.
[目的]分析凉水国家级自然保护区不同林型天然红松混交林林隙大小、凋落物放置位置和采样时间对土壤微生物碳(SMBC)的影响,揭示影响本地区SMBC变化的因素,为天然红松混交林生态系统碳循环的研究提供基础数据。[方法]在天然红松混交林3种林型的大、中、小林隙内不同位置的土壤表层放置装有红松、椴树、枫桦枯叶的分解袋,并以各自的郁闭林分为对照,在2012年植物生长季的6—9月,每月采集枯叶分解袋下0 10 cm土层土样,采用氯仿熏蒸-K2SO4浸提法测定SMBC。[结果]在椴树红松混交林(TP)内,林隙大小对SMBC的影响依次为小林隙大林隙中林隙;在云冷杉红松混交林(PAP)内,依次为中林隙大林隙小林隙;在枫桦红松混交林(BP)内,依次为大林隙中林隙小林隙。3种林型下,采样时间(月份)对SMBC均有显著的影响(P0.05);林隙大小对其影响均不显著(P0.05);枯叶分解袋放置位置对大、中、小林隙内SMBC的影响均不显著(P0.05)。[结论]不同林型下林隙大小对SMBC的影响排列顺序不同;枯叶分解袋放置位置对天然红松混交林3种林型大、中和小林隙内SMBC的影响均未达到显著水平。  相似文献   

15.
Trunk circumferences and canopy diameters of Prosopis glandulosa, P. chilensis and P. alba, and soil nitrogen under and between the trees were measured in a seven-year-old plantation at the University of California, Riverside. P. glandulosa had the smallest biomass of the three species. However, the nitrogen concentration of the soil under P. glandulosa was higher than under the other two species. Presumably more nitrogen is cycled through the leaves of this species rather than invested in wood production, where it would be sequestered. The soil nitrogen accumulation under P. glandulosa was significantly higher (total and subsurface) than that measured in soil taken between trees. The soil nitrogen content under P. chilensis and P. alba was not significantly different than that between the trees. These results indicate that the choice of woody legume in an agroforestry system will depend on its intended use. The most efficient nutrient cycling is not necessarily associated with the best biomass production.  相似文献   

16.
Because soil CO2 efflux or soil respiration (RS) is the major component of forest carbon fluxes, the effects of forest management on RS and microbial biomass carbon (C), microbial respiration (RH), microbial activity and fine root biomass were studied over two years in a loblolly pine (Pinus taeda L.) plantation located near Aiken, SC. Stands were six-years-old at the beginning of the study and were subjected to irrigation (no irrigation versus irrigation) and fertilization (no fertilization versus fertilization) treatments since planting. Soil respiration ranged from 2 to 6 μmol m−2 s−1 and was strongly and linearly related to soil temperature. Soil moisture and C inputs to the soil (coarse woody debris and litter mass) which may influence RH were significantly but only weakly related to RS. No interaction effects between irrigation and fertilization were observed for RS and microbial variables. Irrigation increased RS, fine root mass and microbial biomass C. In contrast, fertilization increased RH, microbial biomass C and microbial activity but reduced fine root biomass and had no influence on RS. Predicted annual soil C efflux ranged from 8.8 to 10.7 Mg C ha−1 year−1 and was lower than net primary productivity (NPP) in all stands except the non-fertilized treatment. The influence of forest management on RS was small or insignificant relative to biomass accumulation suggesting that NPP controls the transition between a carbon source and sink in rapidly growing pine systems.  相似文献   

17.
Mattsson  Stefan  Bergsten  Urban 《New Forests》2003,26(3):217-231
The aim of this study was to quantify the effects of different soil scarification methods on tree growth. Soil scarification influenced stem volume and stem biomass yield of lodgepole pine (Pinus contorta Dougl. var. latifolia Engelm.) in a 17-year-old field trial in boreal Sweden. Soil scarification (disc trenching, mounding and ploughing) resulted in an average stem volume yield of 3.1 and 34.2 m3 ha–1 on the poor and intermediate sites, respectively, while corresponding values for no soil scarification were 0.9 and 16.7 m3 ha–1. In comparison to no scarification, ploughing increased volume yields by 500% on the poor site and by 200% on the intermediate sites. The ranking according to stem volume yield was ploughing > disc trenching = mounding no soil scarification. Averaged over the two sites, the mean annual increment of stem biomass was 219% and 145% higher (in d.w., 0.26 kg and 0.34 kg per sample tree) after ploughing compared with no soil scarification, for the average and dominant sample trees, respectively. Although not significant, the increased growth rate after soil scarification decreased the average stem basic wood density of the sample trees with 1.6% and 5.3%, at the poor and intermediate sites, respectively. In conclusion, soil scarification significantly increased the 17-year stem volume yield compared with no scarification. The results also indicate that the difference in stem biomass yield between ploughing and the other methods, especially no soil scarification, will increase even more in the near future.  相似文献   

18.
[目的]探究云南松林结构调整对林木生长和土壤性状的影响,为云南松林保护和利用提供科学依据。[方法]按照森林抚育规程对林分进行结构调整,采用典型取样法对比分析林分结构调整前后土壤性质和林木生长状况的差异。[结果]云南松林结构调整后,(1)结构调整样地单株蓄积量比对照样地提高了近60%,树高和胸径提高幅度均在15%以上,林下天然更新植株数量是对照样地的3.1倍;(2)结构调整后林内植物种类增加,林下灌木层和草本层盖度分别提高了63.3%和22.7%,灌木层和草本层平均高度分别提高了24.7%和17.9%;(3)结构调整样地现存凋落物量显著下降,与对照相比下降了20.4%,土壤表层温度、有机质含量、基础呼吸和土壤微生物生物量显著提高,土壤其他性质参数变幅相对较小。[结论]林分结构调整可显著提高云南松生长量,有利于云南松较大径级林木的培育;促进了云南松林下更新和林下植被发育,有利于林分群落结构的形成;提高了土壤微生物数量和活性,加速了土壤有机质转化,研究揭示林分结构调整促进了云南松林土壤—植物系统正反馈作用。  相似文献   

19.
毛竹扩张对常绿阔叶林土壤性质的影响及相关分析   总被引:2,自引:0,他引:2       下载免费PDF全文
[目的]为探讨毛竹向邻近常绿阔叶林扩张对土壤性质的影响。[方法]本研究选取江西大岗山森林生态定位站常绿阔叶林、2∶8竹阔混交林、8∶2竹阔混交林和毛竹纯林为研究对象,对土壤有机碳、密度、孔隙度、持水量和贮水量等土壤性质和水分特征进行研究。[结果]常绿阔叶林在毛竹扩张过程中,土壤碳元素含量呈先增后降的趋势。相关分析表明:土壤有机碳与非毛管持水量和现有贮水量呈极显著相关,与土壤密度和总孔隙度呈显著相关,各指标相互作用共同影响了土壤有机碳含量在扩张过程中的变化特征。[结论]常绿阔叶林表层土壤密度、孔隙度和持水量等特征综合优于混交林和毛竹纯林,这为竹鞭扩张后竹笋萌发创造了条件;当常绿阔叶林演替到毛竹纯林时,10 60 cm土壤物理性质和持水能力都有所改善,但有机碳含量降为4个林分最低值,大量竹鞭虽然优化了土壤物理性质,但无性繁殖导致土壤碳元素大量消耗,加之择伐和挖笋等人工干扰,毛竹纯林土壤有机碳含量较低。调节土壤碳含量以及土壤结构和水分特征可能是今后控制毛竹林扩张,维持群落生态系统稳定性的重要生态策略。  相似文献   

20.
Shortened fallows have resulted in declining upland rice yields in slash-and-burn upland rice systems in northern Laos. We studied the benefit of planted legume fallows for rice productivity, weeds, and soil nitrogen and phosphorus availability. Four systems were evaluated over a 5-year period: 1-year fallow with native species, 1-year Cajanus cajan fallow, 1-year Leucaena leucocephala fallow, and continuous annual rice cropping. Rice was grown either once each year as continuous annual cropping or in alternate years of 2001, 2003, and 2005. C. cajan and L. leucocephala were sown with rice during the 2001 growing season. In subsequent years, L. leucocephala regenerated from root stock and did not have to be resown, whereas C. cajan was resown in 2003. Establishment of either C. cajan or L. leucocephala had no significant effect on rice yield in 2001, and rice yields ranged from 2.0 to 2.3 t/ha. Rice yields declined rapidly in succeeding years, and rice yields in the four systems ranged from 0.7 to 1.1 t/ha in 2003 and from 0.3 to 0.5 t/ha in 2005. Although two planted fallow systems increased nitrogen input because of greater biomass accumulation in 2003 and 2005 and soil phosphorus availability was higher following L. leucocephala fallow in 2005, there were no significant differences in rice yields among the four systems in either year. Weed biomass during the rice growing season increased each year in all systems and increased more rapidly for continuous annual rice cropping, in which the dominant weed species was Ageratum conyzoides L. Among the other three systems, there were no significant differences in the weed biomass in 2003 and 2005. We conclude that C. cajan and L. leucocephala as 1-year fallows do not offset the negative effects of increased cropping intensity on rice yield in this region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号