首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Empirical field evidence for changing chemical processes in soils caused by atmospheric deposition of pollutants consists of: (1) Long-term water quality data including total dissolved solids, concentrations of specific metals (e.g. Ca), and conductivity; (2) Cation exchange capacity and base saturation values for soils located on precipitation pH gradients; (3) Lysimeter studies; and (4) Chemical analysis of organic soils on precipitation pH and metal gradients. For well-drained organic soils, as precipitation pH decreases, metals are differentially leached at an accelerated rate (Mn>Ca>Mg≥Zn>Cd and Na>Al). Experimental field and laboratory lysimeter studies on soil columns yield similar results, with increases in leaching rates for soil solutions with pH=3 up to 100 × values for soil solutions with pH=5. Nearly 100% of the Pb from precipitation is accumulating in the organic soil layer or sediments. Zn is accumulating in soils and sediments where the pH's of precipitation, soil solutions, and surface waters are generally above 5 to 5.5. At lower pH values Zn and other chemically similar elements are desorbed/leached (net) at an accelerated rate. Chemical analyses of dated sediment cores from high and low altitude lakes, with drainage basins relatively undisturbed for the last 200+ yr, reveal that increased deposition of metals on a regional scale started in the northeastern United States as early as 1880, consistent with increased fossil fuel consumption. This suggests acidified precipitation as early as 1880. Cores from historically acidified lakes (pH<≈5.3 to 5.5) indicate that, as acidification of surface waters occurs (caused by acidic deposition), concentrations of Zn, Mn, and Ca decrease in the sediment. Apparently the metals are leached from the detritus prior to sedimentation. This conclusion results from data from experimental acidification of sediment cores and the general observation that precipitation pH is generally ≥0.5 pH units lower than lake water pH. Accelerated leaching of soil in New England dates to earlier than 1900.  相似文献   

2.
A statistical evaluation of 5 338 analysis of freshwaters from little polluted stream basins in the Czech Republic indicated a relationship between the Pb, Cu, Zn, Cd, Be, As, Mn, Sr, F? and Fe concentrations and the pH, over a range of pH 3.6 to 9.6. Except for Sr, the median concentrations of all the trace metals increase with decreasing pH, but the increase never extends over the whole studied acidic range (pH 3.6 to 7.0). Acid deposition related mobilization of Mn and Be into freshwaters explains the sharp increase in their concentrations with decreasing pH. Cadmium and Zn are also mobilized n strongly acidic environment. The concentrations of Be, As, F? and Mn in strongly acidic waters and those of Zn and Cd in weakly acidic ones are considerably higher in areas receiving a higher atmospheric loading. For Be and Mn, the higher concentrations are caused by higher acid deposition rates, while for As and F?, the concentrations are probably greater due to higher atmospheric deposition of these elements over more intensely acontaminated areas of the Czech Republic. In extremely acidic waters (pH < 4.2), the concentrations of Mn, Be, Cd, Zn and Al no longer increase with decreasing pH; on the contrary, those of Mn and Be actually decrease. This seems to be primarily caused by a decrease in their concentrations within the surface horizons of soils and vegetation induced by prolonged leaching. The Cd and Zn concentrations are independent of pH over an interval of pH 5.4 to 6.0 and thus the increase in the mean concentrations of Cd and Zn with decreasing pH involves two separate stages, at pH > 6.0 and at pH < 5.4. The concentrations of Cu in acid freshwaters are controlled by both the presence of high molecular weight organics plus biota uptake and by their atmospheric deposition levels; the concentrations of As and Pb are in addition controlled by sorption on Fe - oxyhydroxides. These elements accumulate in the topsoil, even under conditions of severe acidification. The surprisingly lower concentrations of Pb and Cu were found in acidic waters of more contaminated areas.  相似文献   

3.
This study was conducted to determine the chemical distribution and plant availability of Cd, Zn and Ni in eight metal-polluted soils in southern Ontario, Canada. There were altogether 30 different soil samples because two of the soils had received various sewage sludge treatments. The soils were sequentially extracted with 1 m ammonium acetate to remove soluble plus exchangeable metals, with 0.125 m Cu(II) acetate to remove complexed metals, and with 1 m HNO3 to dissolve chemisorbed or occluded metals and precipitates such as oxides and carbonates. Expressed as a percentage of the metal so extracted, exchangeable Cd and Zn and Ni; complexed Cd and Zn>Ni and Ni>Zn>Cd in the acid-soluble pool. With a few exceptions (soils with high organic matter content or low pH) at least 50 per cent of the extracted metal was in the acid-soluble pool. The percentage of metal complexed was significantly correlated with organic matter content. The percentage of metal in the acid-soluble fraction was significantly correlated with soil pH. Preliminary findings based on the results with two soils suggested that for Cd and Zn plant availability was correlated with the concentrations of exchangeable, complexed or acid-soluble pools of Cd and Zn.  相似文献   

4.
Acid precipitation may lead to loss of essential elements and increase the concentrations of potentially toxic elements in drinking water. In this study 46 private wells from acid regions(pH < 6.5) were compared with 43 private wells from alkaline areas in southern Sweden. The concentrations of about 30 elementswere analysed especially by inductively coupled plasma opticalemission spectroscopy (ICP-OES). The concentrations of essentialelements such as calcium, chromium, selenium and potassium weresignificantly lower in acid than in alkaline well water. On theother hand, the levels of potentially toxic metals such as cadmium and lead were significantly higher in acid well water. High copper concentrations, observed at pH around 6 in contrast to earlier findings, is to be considered as an acidification problem, as should the high fluoride values. The highest concentrations of a number of metals and ions, for example calcium, chromium, titanium and sulphate, appeared at pH 7.0–8.0, where the peak in concentrations occur due to leachingof metals from soil particles in acid soils and precipitation ofcarbonates and sulphates in more alkaline soils. The low levelsof especially calcium and magnesium ions, and some micronutrientsin the acid water, in combination with high concentrations of acid ions and toxic microelements, may cause nutritional imbalances. This should be regarded as risk factors with relationto effects on human health.  相似文献   

5.
The relationships between heavy metal concentrations and physico-chemical properties of natural lake waters and also with chemical fractions of these metals in lake sediments were investigated in seven natural lakes of Kumaun region of Uttarakhand Province of India during 2003–2004 and 2004–2005. The concentrations of Cr, Mn, Fe, Ni, Cu, Zn, Cd and Pb in waters of different lakes ranged from 0.29–2.39, 10.3–38.3, 431–1407, 1.0–6.6, 5.3–12.1, 12.6–166.3, 0.7–2.7 and 3.9–27.1 μg l?1 and in sediments 14.3–21.5, 90.1–197.5, 5,265–6,428, 17.7–45.9, 13.4–32.0, 40.0–149.2, 11.1–14.6 and 88.9–167.4 μg g?1, respectively. The concentrations of all metals except Fe in waters were found well below the notified toxic limits. The concentrations of Cr, Mn, Ni, Cu, Zn, Cd and Pb were positively correlated with pH, electrical conductivity, biological oxygen demand, chemical oxygen demand and alkalinity of waters, but negatively correlated with dissolved oxygen. The concentrations of Cr, Ni, Zn, Cd and Pb in waters were positively correlated with water soluble + exchangeable fraction of these metals in lake sediments. The concentrations of Zn, Cd and Pb in waters were positively correlated with carbonate bound fraction of these metals in lake sediments. Except for Ni, Zn and Cd, the concentrations of rest of the heavy metals in waters were positively correlated with organically bound fraction of these metals in lake sediments. The concentrations of Cr, Mn, Ni, Cu and Zn in waters were positively correlated with reducible fraction of these metals in lake sediments. Except for Cd, the concentrations of rest of the metals in waters were positively correlated with residual fraction and total content of these heavy metals in lake sediments.  相似文献   

6.
Slow immobilization of trace metals in soil, termed ‘fixation’, affects their natural attenuation but it is still unclear which reactions occur. Twenty‐eight soils were selected to assess the role of Fe oxides and carbonates on fixation of Cu, Cd, Zn and Ni. Soils included samples from 2 toposequences (Vietnam, Spain) and 13 European topsoils with different soil characteristics (pH 3.4–7.7). Samples were amended with 250 mg Zn kg−1, 100 mg Cu kg−1, 80 mg Ni kg−1 and 2.5 mg Cd kg−1 as metal salts and incubated for 850 days. Fixation was measured as the increase of the fraction of added metals that were not isotopically exchangeable. Fixation increased with time and was, averaged over all the soils, 43% (Cu), 41% (Zn), 41% (Ni) and 28% (Cd) after 850 days. Metal fixation within samples from each toposequence was generally positively related to total Fe oxide concentration (Fed) for Zn, Ni and Cd. However, the fixation of Cd, Zn and Ni was mainly explained by pH and not by Fed when considering all soils. Fixation of Zn and Cd in soils with pH >7.0 increased with increasing concentrations of carbonates at initial ageing times. Fixed fractions of Zn, Ni and Cd were significantly released when experimentally removing 50% of carbonates by acidification. Fixation of Cu was most poorly related to soil properties. Our data suggest that fixation of Cd, Zn and Ni is related to a pH‐dependent diffusion into oxides and that of Cd and Zn also to diffusion and/or coprecipitation in carbonates. Fixation of Ni at neutral pH may also be related to stabilization of precipitates that form readily in soil.  相似文献   

7.
Metals in water have been monitored for up to 18 years in acidified regions of Sweden. The concentrations of metals (Al, Cd, Cu, Fe, Mn, Mo, Pb, Zn) were determined by AAS and ICP-MS, the dissolved fractions after separation by in-situ dialysis. Elements showing negative pH-correlation were primarily Al, Zn, Cd, Mn, and Pb, while Mo was positively correlated to pH, indicating a predominance of negatively charged ionic forms. Zn, Cd, and Mn occurred primarily in the dissolved fractions, especially at the lower pH levels. Fe, Al, Pb and Mn were further enriched in humic waters. During the study period, some of the sites were subject to lime treatment, which had a marked influence on most elements, causing the mean levels and the seasonal fluctuations to decrease. Treatment on the lake surface was less effective than wetland liming to reduce seasonal fluctuations, especially for metals mainly originating from the catchments, as Fe and Al.  相似文献   

8.
The aquatic system of Hochiminh City comprises two main rivers: the Sai Gon and Nha Be rivers. Five canals discharge into these two rivers: NhieuLoc-ThiNghe, TauHu-BenNghe, TanHoa-LoGom, ThamLuong-BenCat and Doi-Te. The rivers and these canals collect effluent water from domestic and industrial sources. Most of these flows are not treated or at most are only primarily treated. A total of 33 sediment cores were taken from these rivers and canals. Chemical composition of these aquatic sediments has very high concentrations of several “urban” metals such as Cd, Cr, Cu and Zn. Most of the samples have exceeded the US EPA’s toxicity reference values for Cu, Zn and Cr (82, 82 and 70%, respectively). The highest concentrations of these metals appear to be associated with the uncontrolled and untreated industrial runoff to the discharge canals. These concentrations in fluvial sediment are relatively low, which indicates the dilution process of the contaminants. This finding indicates that the anthropogenic inputs play an important role in the elevation of heavy metals in the aquatic system and organic matter seems to exert a strong geochemical control on the amount of heavy metals. The Pearson correlation coefficients calculated for Cd, Cr, Cu and Zn, are 0.89; 0.72; 0.93 and 0.87, respectively.  相似文献   

9.
The concentrations of Pb, Cu, Zn, Cd, and Fe were measured in sediment from 54 soft water lakes in the inland part of central and northern Sweden in order to study the regional impact of metals to lakes. An evident regional distribution due to environmental pollution was found concerning Pb, Cd, Zn, and Cu. In the southern part of the studied region, the enrichment factors in the top sediment layers were about 50, 7, 4, and 2, respectively. Further to the north, the contamination of the top sediments gradually decreased. In a large part of the northern region, the sediment analyses showed no general vertical gradients of Zn and Cu, indicating non-polluted conditions. Lead was the most widespread and pronounced pollutant with marked enhancements in most parts of the region. In the northernmost areas, the top sediment showed increased concentrations of Pb and Cd of about a factor of 2, suggesting that strictly non-polluted conditions concerning these two metals can not be found anywhere in the studied region. The regional distribution of Fe differed from the other metals and gave no evidence of a large-scale anthropogenic contribution. The natural enrichment of Pb, Cu, Zn, and Cd in the surface sediment is probably of minor importance in these kinds of lakes. The regional distribution of metals in sediments indicate that there is a large scale impact of Ph, Cd, Zn, and Cu on Swedish forest lakes, caused by anthropogenic factors.  相似文献   

10.
The chemical effects of road-deicing salt on soil and water were studied in five small, forested catchments in southeast Sweden. The use of deicing salt on roads applied during the winter season 1998/99 had a profound effect on the soil and stream water chemistry in the studied catchments. The salt applications caused increased salinity in direct proportion to the accumulated amounts. The added salt also induced ion exchange in the soils between Na and primarily Ca and Mg. In some of the catchments, ion exchange increased the mobility of H+ ions and trace metals such as Zn and Cd, reducing alkalinity and increasing the Zn and Cd concentrations in the streams.  相似文献   

11.
Abstract

Fifty soil samples (0–20 cm) with corresponding numbers of grain, potatoes, cabbage, and cauliflower crops were collected from soils developed on alum shale materials in Southeastern Norway to investigate the availability of [cadmium (Cd), copper (Cu), zinc (Zn), lead (Pb), nickel (Ni), and manganese (Mn)] in the soil and the uptake of the metals by these crops. Both total (aqua regia soluble) and extractable [ammonium nitrate (NH4NO3) and DTPA] concentrations of metals in the soils were studied. The total concentration of all the heavy metals in the soils were higher compared to other soils found in this region. Forty‐four percent of the soil samples had higher Cd concentration than the limit for application of sewage sludge, whereas the corresponding values for Ni, Cu, and Zn were 60%, 38%, and 16%, respectively. About 70% the soil samples had a too high concentration of one or more of the heavy metals in relation to the limit for application of sewage sludge. Cadmium was the most soluble of the heavy metals, implying that it is more bioavailable than the other non‐essential metals, Pb and Ni. The total (aqua regia soluble) concentrations of Cd, Cu, Zn, and Ni and the concentrations of DTPA‐extractable Cd and Ni were significantly higher in the loam soils than in the sandy loam soils. The amount of NH4NCyextractable metals did not differ between the texture classes. The concentrations of DTPA‐extractable metals were positively and significantly correlated with the total concentrations of the same metals. Ammonium nitrate‐extractable metals, on the other hand, were not related to their total concentrations, but they were negatively and significantly correlated to soil pH. The average concentration of Cd (0.1 mg kg‐1 d.w.) in the plants was relatively high compared to the concentration previously found in plants grown on the other soils. The concentrations of the other heavy metals Cu, Zn, Mn, Ni, and Pb in the plants were considered to be within the normal range, except for some samples with relatively high concentrations of Ni and Mn (0–11.1 and 3.5 to 167 mg kg‘1 d.w., respectively). The concentrations of Cd, Cu, Zn, Ni, and Mn in grain were positively correlated to the concentrations of these respective metals in the soil extracted by NH4NO3. The plant concentrations were negatively correlated to pH. The DTPA‐extractable levels were not correlated with plant concentration and hence DTPA would not be a good extractant for determining plant availability in these soils.  相似文献   

12.
Zabowski  D.  Henry  C. L.  Zheng  Z.  Zhang  X. 《Water, air, and soil pollution》2001,131(1-4):261-273
The impacts of mining to watersheds are highly variabledepending on the type of mining, processing of ores, andenvironmental factors. This study examined the Hei River incentral China, for impacts of gold and iron mining onconcentrations of metals in river water, river sediments andstream-channel soils. No production processing of ores occurson-site at either mine. Total metal content and extractablemetals using DTPA were determined. Total concentrations of Cd,Cu, Pb and Zn were high in some stream sediments and soils nearthe mine sites; metal concentrations ranged from 4–24, 11–100,11–380, and 33–1600 μg g-1 for Cd, Cu, Pb, and Zn,respectively, in soil. Total cadmium was high in all soilsand sediments. Extractable metals were low, with the exceptionof Pb and Cu. At the gold mine, extractable Pb ranged from 8 to33%; extractable Cu ranged from 3 to 21% of total metalconcentration. Chromium and Ni were not above typicalconcentrations in either soils or river sediments. An abundance of carbonates, high river water pH, and high water flow rates all appear to contribute to limiting quantities of metals in the river water. If mining activities are not changed, impacts of mining on downstream metal concentrations in river water should be nominal.  相似文献   

13.
The research evaluated the comparative effect of two media of soil acidification on lead (Pb), cadmium (Cd), and zinc (Zn) extractive ability of Tithonia diversifolia in alkaline soil. Application of both amendments increased the solubility of the metals. Sulfur (S) addition was more effective at reducing the soil pH compared with the addition of urea. Lead and cadmium uptake by the plant was significantly higher in the urea treatments compared with sulfur treated soils. Generally, the addition of urea resulted in a higher amount of lead and cadmium in the plant parts. The acidification effect due to S addition was too high for the plant to perform optimally. The addition of S increased the uptake of Zn by the plant compared with the effect of adding urea. The complimentary effect of N addition with the soil acidification enhanced metal uptake. Tithonia diversifolia was classified as a hyper accumulator of metals.  相似文献   

14.
Historic and current agricultural and industrial activities have resulted in accumulation of Cd, Cu, Pb and Zn in soil. To estimate potential risks for ecosystems, agriculture and water quality, an integrated risk assessment was performed for The Netherlands. Risks of metal contamination were assessed on a national scale by comparing present soil concentrations of Cd, Pb, Cu and Zn with critical concentrations of those metals in view of agricultural impacts, ecological impacts and impacts on the quality of groundwater and surface waters. Results show that present soil metal concentrations cause few risks for agriculture or ecosystems; for less than 2% of the surface area present metal levels exceed critical limits. Critical limits for groundwater are only significantly exceeded for Pb (17% of the area), but critical limits for surface water are exceeded throughout the country for Cu and Zn. Taking critical limits used in The Netherlands, the area where exceedances take place is nearly negligible for Cd and low for Pb (less than 3%), but much larger (between 40% and 50%) for both Cu and Zn. Results from this study suggest that accumulation of heavy metals in Dutch soils at present primarily affects the quality of surface waters. This stresses the need for harmonization of soil and water policy. Measures to reduce the load in surface waters to meet target levels, under conditions like those prevailing in The Netherlands, are bound to have an impact on land management.  相似文献   

15.
The study quantifies the amount of metals (Na, K, Mg, Ca, Al, Fe, Mn, Ni, Cr, V, Cu, Zn, Cd, Pb) leached from the A-horizon of a podzolic spruce forest soil in southern Sweden during 2.5 yr, and offers statistical evidence of environmental conditions of importance to metal release. Considerable losses of Pb, Cr, Ni and V may occur from the A-horizon of forest soils under conditions favoring leaching of organic matter, Fe, and Al, i.e. during periods of comparably high soil temperature and moisture. Metals with a larger fraction present in exchangeable form (Na, Mg, Ca, Zn, Cd) are more susceptible to minor pH changes. An accelerated deposition or internal production of acidic matter therefore will reduce the retention times of these elements particularly.  相似文献   

16.
Fifteen Finnish Lapland lakes have been investigated to study pollution levels and possible acidification effects on nickel (Ni), copper (Cu), cobalt (Co), zinc (Zn), cadmium (Cd), lead (Pb), manganese (Mn), iron (Fe), potassium (K), sodium (Na), calcium (Ca), magnesium (Mg) and aluminium (Al) concentrations in sediments. Four lakes have average water pH lower than 6.0 and alkalinity lower than 0.050 meq/1. Contamination factor (Cf, ratio of metal concentrations in the uppermost to the deepest layers for a given lake sediment core) of Pb is high, particularly for acidic and acidifying lakes (Cf=5.2–10.4). Ni, Cu, Co, Zn and Cd concentrations increase insignificantly towards sediment surface of some lakes (with a neutral pH) with the rare exception. The influence of passible lake acidification consists of decreasing Cu, Cd, Al, Zn concentrations and organic material contents (loss on ignition) towards the sediment surface. The buffer capacity index (BCI), determined as the ratio of the sum of alkaline and alkaline-earth metals (K, Na, Ca, Mg) to Al, is lower for acidic lakes (from 0.12 to 0.36), whereas for the other lakes the BCI values are higher (from 0.42 to 1.34). Thus, BCI-values, decreased contents of Al, Cd, Zn and Cu, as well as organic matter contents (OMC in the upper lake sediment suggest acidification of freshwater environments.  相似文献   

17.
北京城乡交错带土壤重金属的空间变异特征   总被引:22,自引:0,他引:22  
  相似文献   

18.
针对南方稻田土壤酸化严重,导致养分流失有毒重金属活化,严重影响稻米质量安全的重大现实问题。以水稻秸秆和谷壳等农业废弃物为原料制备生物炭(分别记为RSC和RHC),研究不同原料生物炭对酸化土壤改良及其对重金属有效性的影响。设置3个生物炭用量(0,20,50 g/kg,分别记为CK、C1、C2),4种土壤酸化水平(pH 4.01,4.25,4.33,4.58,分别记为L1、L2、L3、L4),生物炭与重金属污染土壤共同培养60天后测定土壤pH、全氮、有机质、有效磷、速效钾和有效态Cu、Cd含量。结果表明:RSC对酸化土壤pH的改良效果明显优于RHC,且施炭量越高提高幅度越大,RSC的C2处理使4种酸度水平的土壤pH分别提高了0.68,0.97,1.29,1.71个单位。2种生物炭均能提高土壤的全氮、有效磷、速效钾和有机质含量,其中各施炭处理有机质显著提高,尤以速效钾的增幅最为显著,RSC对4种养分的提高均优于RHC。RHC对土壤有效态Cu含量无显著影响;RSC的C2较C1处理更能降低土壤中有效态Cu含量,使4种酸度水平的土壤分别降低了13.62%,6.57%,4.36%,7.88%。RHC处理的L3、L4土壤中有效态Cd含量显著降低,最大分别降低了13.79%,19.23%。RSC使4种酸度土壤有效态Cd含量最大分别降低了20.00%,25.81%,20.69%,19.23%。相关分析表明,土壤pH与有效态重金属含量呈显著负相关关系。水稻秸秆炭用于改良酸化土壤、降低重金属Cu和Cd有效性的效果更佳,且降低污染土壤中Cd的有效性较Cu好;生物炭对酸化程度越低的土壤pH和有效磷含量的提高以及有效态Cd含量的降低效果较好,而有效态Cu含量的降低效果则在酸化程度越高的土壤中表现更佳;土壤pH是生物炭调控重金属Cu、Cd有效性的主要影响因素。  相似文献   

19.
Trace metals (Cd, Cu, Fe, Mn, Pb, and Zn) concentrations in atmospheric precipitation have been routinely monitored in Sweden since the autumn of 1983. Concentrations are highest in southern Sweden and decrease northward. It is postulated that the long range transport of anthropogenic pollutants from the rest of Europe is the major source of Cd, Pb, and Zn in precipitation. Evidence for this hypothesis is that enrichment factors indicate anthropogenic origin, and Swedish atmospheric emissions of Zn and Cd are 2 to 3 times smaller than deposition fluxes. Also, Cd, Pb, and Zn concentrations are correlated in both space and time and are also well correlated with exSO4 +, a substance known to be of anthropogenic origin transported long distances.  相似文献   

20.
The mobility of Pb, Zn, Cd and Cu was examined at two adjacent experimental plots at åmli, southern Norway, B-1 and B-2. Both experiments were established on the same glacifluvial deposits, with forest consisting of uniform stands of Pinus sylvestris L. The forest in B-1 was planted between 1968 and 1970, while B-2 consisted of naturally regenerated trees. The experiments included plots supplied with artificial rain of varying acidity over a period of seven and eight years for B-1 and B-2, respectively, in addition to control plots. In experiment B-1, experimental acidification was carried out both in unlimed plots and in plots applied with three different levels of lime. The two experiments showed distinct differences with respect to effects of the acidification on mobilization of heavy metals from the O horizon. In experiment B-1, the amount of Zn and Cd decreased with decreasing pH in artificial rain, while Pb and Cu were not appreciably affected. The reduction in Zn and Cd concentrations ceased after termination of the acidification experiment. Liming reduced the leachability of Zn, but still appreciable amounts of Zn were obviously leached from the O horizon during the experiment. In experiment B-2 a high retention even of Zn and Cd was observed in the O horizon, probably due to microbial uptake and accumulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号