首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
ABSTRACT Three isolates of the bipartite begomovirus Pepper golden mosaic virus (PepGMV) were characterized for genomic and biological properties. The complete nucleotide sequences of the DNA-A and DNA-B components were determined from infectious clones of PepGMV-Serrano (PepGMV-Ser), PepGMV-Mosaic (PepGMV-Mo), and PepGMV-Distortion (PepGMV-D). Nucleotide sequence identity among PepGMV components ranged from 91 to 96% for DNA-A and from 84 to 99% for DNA-B, with each PepGMV component most closely related to the corresponding component of Cabbage leaf curl virus (CaLCV). However, phylogenetic relationships among begomovirus components were incongruent because DNA-A of PepGMV and CaLCV share an inferred evolutionary history distinct from that of DNA-B. The cloned components of PepGMV-Ser, -Mo, and -D were infectious by biolistic inoculation to pepper but differed in symptom expression: PepGMV-Ser exhibited a bright golden mosaic, PepGMV-Mo produced a yellow-green mosaic, and PepGMV-D caused only a mild mosaic and foliar distortion followed by a "recovery" phenotype in which leaves developing after initial symptom expression appeared normal. Differences in symptoms also were observed on tomato, tobacco, and Datura stramonium. Progeny virus derived from clones of PepGMV-Ser and -Mo were transmitted from pepper to pepper by the B biotype of Bemisia tabaci; progeny virus derived from PepGMV-D clones was not transmissible by the B biotype. Reassortant genomes derived from heterologous DNA components of the three isolates were infectious in all possible pairwise combinations, with symptom phenotype in pepper determined by the DNA-B component. Collectively, these results indicate that the three virus isolates examined may be considered distinct strains of PepGMV that have the capacity to exchange genetic material.  相似文献   

2.
Xiong Q  Fan S  Wu J  Zhou X 《Phytopathology》2007,97(4):405-411
ABSTRACT Ageratum conyzoides plants exhibiting yellow vein symptoms, collected near Haikou, Hainan Province, China, contained begomoviral DNA-A-like molecules. The complete sequences of the molecules from two samples, Hn2 and Hn2-19, were shown to consist of 2,768 and 2,748 nucelotides (nt), respectively. These sequences have more than 97% nucleotide sequence identity, but less than 86% identity with other reported begomovirus sequences. In line with the taxonomic convention for begomoviruses, Hn2 and Hn2-19 are therefore considered to represent isolates of a distinct begomovirus species, for which the name Ageratum yellow vein China virus (AYVCNV) is proposed. Sequence alignment shows AYVCNV has arisen by recombination among viruses related to Ageratum yellow vein virus, Papaya leaf curl China virus, and an unidentified begomovirus. Southern blot analyses revealed that all plants sampled contained molecules resembling DNAbeta. DNAbeta molecules from three samples were 1,323 or 1,324 nt long and had >98% sequence identity but <81% identity with previously reported DNAbeta sequences. Infectious clones of Hn2 and its associated DNAbeta were constructed and agroinoculated to plants. Hn2 alone caused sporadic asymptomatic systemic infection of Nicotiana benthamiana, N. glutinosa, Lycopersicon esculentum, Petunia hybrida, and A. conyzoides but its accumulation was much enhanced in plants co-inoculated with DNAbeta. The co-inoculated N. benthamiana, N. glutinosa, P. hybrida, and L. esculentum plants developed leaf curling or leaf crinkling symptom; those in A. conyzoides were typical of ageratum yellow vein disease. When the DNAbeta molecules associated with four other Chinese begomoviruses were coinoculated with Hn2 to N. benthamiana and N. glutinosa, the DNAbeta molecules were replicated, and the plants developed systemic symptoms of types that were specific for each DNAbeta. This illustrates that there is less specific interaction between monopartite begomovirus and DNAbeta than between the DNA-A and DNA-B of begomoviruses with bipartite genomes.  相似文献   

3.
ABSTRACT Tomato chlorotic mottle virus (ToCMoV) is an emerging begomovirus species widely distributed throughout tomato-growing regions of Brazil. ToCMoV appears to have expanded its geographic range recently, invading tomato-growing areas that were free of begomovirus infection before 2004. We have determined the first complete genome sequence of an infectious ToCMoV genome (isolate BA-Se1), which is the first begomovirus species isolated in the northeast of Brazil. When introduced by particle bombardment into tomato, the cloned ToCMoV-[BA-Se1] DNA-A and DNA-B components caused typical chlorotic mottle symptoms. The cloned virus was whitefly-transmissible and, although it was infectious in hosts such as Nicotiana benthamiana, pepper, tobacco, and Nicandra physaloides, it was unable to infect Arabidopsis thaliana, bean, N. glutinosa, and Datura metel. Sequence and biological analyses indicate that ToCMoV-[BA-Se1] is a typical New World begomovirus sp. requiring both DNA-A and DNA-B components to establish systemic infections. Although evidence of multiple recombination events was detected within the ToCMoV-[BA-Se1] DNA-A, they apparently occurred relatively long ago, implying that recombination probably has not contributed to the recent emergence of this species.  相似文献   

4.
During the spring of 2001, approximately 10 000 yellow passion flower plants, from two orchards in the county of Livramento de Nossa Senhora, Bahia State, Brazil, exhibited intense yellow mosaic symptoms and drastic reduction of the leaf lamina and plant development. A large population of whiteflies ( Bemisia tabaci ) was also found colonizing the plants. All field samples collected tested positive for Passion fruit woodiness virus in DAS-ELISA. Five out of 20 passion flower plants inoculated with adult whiteflies collected from diseased plants in the field developed symptoms 20–30 days after inoculation. Two of these plants gave a positive reaction in TAS-ELISA using antiserum against a begomovirus. Degenerated PCR primers amplified viral DNA fragments from the DNA-A and DNA-B components of a begomovirus infecting these plants. The fragment corresponding to the core region of the coat protein (DNA-A) was cloned and sequenced. A phylogenetic analysis placed this begomovirus isolated from passion flower in the same clade of the New World begomoviruses as several other species from Brazil. Based on the symptoms induced by this virus alone, the disease was tentatively named passion flower little leaf mosaic.  相似文献   

5.
Begomovirus infection was suspected in tomato plants exhibiting symptoms of curling and deformation of leaves observed in a survey conducted in northern and central Peru. Rolling circle amplification and restriction fragment length polymorphism analyses suggested that a begomovirus was present in symptomatic plants. The full-length sequence of a begomovirus DNA component was determined, comprising 2591 nucleotides. Based on its genome organization, we suggest it corresponds to the DNA-A of a New World begomovirus. Less than 89% nucleotide sequence identity to known begomoviruses was found, indicating that it corresponds to an isolate of a distinct begomovirus species for which the name tomato leaf deformation virus (ToLDeV) is proposed. Different stretches of the genomic component have the highest sequence identity with different viruses compatible with a recombinant origin. Sequence segments shared common ancestors with isolates of either soybean blistering mosaic virus, tomato yellow spot virus, or tomato chino La Paz virus. Partial sequence analysis of begomovirus isolates present in symptomatic tomato samples collected in northern and central Peru suggested widespread occurrence of this new begomovirus. This is the first confirmation of a begomovirus infection in tomatoes in Peru.  相似文献   

6.
The molecular and biological characterization of a begomovirus infecting the common weed Macroptilium lathyroides from Jamaica are reported. The virus showed 92% sequence identity to an isolate of Macroptilium yellow mosaic virus (MaYMV) from Cuba, but was distinct from the two other begomoviruses isolated from M. lathyroides , namely Macroptilium yellow mosaic Florida virus (80% identity) and Macroptilium mosaic Puerto Rico virus (68% identity). Hence, the Jamaican begomovirus was considered an isolate of MaYMV and called Macroptilium yellow mosaic virus -[Jamaica] (MaYMV-[JM]). In infectivity studies using cloned DNA-A and DNA-B genomic components, MaYMV-[JM] infected red kidney bean ( Phaseolus vulgaris ) and produced mild symptoms in Scotch Bonnet pepper ( Capsicum chinense ), but did not infect cabbage ( Brassica oleracea ). This information has implications for the development of strategies to control begomovirus diseases in Jamaica and elsewhere.  相似文献   

7.
Tomato plants showing symptoms of yellow mottle and leaf distortion, first observed in eastern Cuba in 2007, have been shown to be associated with the presence of a novel bipartite begomovirus (genus Begomovirus, family Geminiviridae) species, Tomato yellow leaf distortion virus (ToYLDV), for which the DNA-A has already been sequenced. Here, we present the completion of ToYLDV genome characterization by cloning and sequencing the DNA-B component. In addition, we constructed infectious clones that were used to inoculate tomato, soybean, Nicotiana tabacum and N. benthamiana plants by a biolistic procedure. Cloned ToYLDV reproduced the symptoms observed in tomato in the field, thus confirming that this begomovirus is the causal agent of the disease present in Cuba.  相似文献   

8.
Euphorbia mosaic virus (EuMV), a tentative species within the genus Begomovirus, was isolated from Euphorbia heterophylla plants growing in the Yucatan Peninsula, Mexico. The complete bipartite genome was cloned from total DNA extracts and the nucleotide (nt) sequence was determined. The DNA-A sequence of the EuMV-Yucatan Peninsula (EuMV-YP) isolate shared 95% nt identity with the partially characterized type EuMV isolate from Puerto Rico. The EuMV-YP genome organization was like that of other New World, bipartite begomoviruses. The DNA-A component was 2613 nt in size, while the DNA-B component was 2602 nt long. The 165-nt common region (CR) sequence for the DNA-A and DNA-B components shared a lower than expected nt identity of 86%. The organization and iterons of the putative AC1 binding site of EuMV-YP were similar to those of begomoviruses in the Squash leaf curl virus (SLCV) clade. Characteristic disease symptoms were reproduced in E. heterophylla plants inoculated at the seedling stage using the cloned viral DNA-A and DNA-B components, confirming disease aetiology. Results of an experimental host-range study for EuMV-YP indicated that it infected at least five species in three plant families, including the Euphorbiaceae ( E. heterophylla ), Solanaceae ( Datura stramonium , pepper, tomato) and Fabaceae (bean). Phylogenetic analysis of the DNA-A and DNA-B components indicated that EuMV-YP is a New World begomovirus and that it is a new member of the SLCV clade.  相似文献   

9.
ABSTRACT Bean calico mosaic virus (BCMoV), a whitefly-transmitted geminivirus from Sonora, Mexico, was purified, and the genome components were cloned and sequenced. Purified viral fractions and cloned genome components were infectious by biolistic inoculation to bean, completing Koch's postulates for both. The B biotype of the whitefly Bemisia tabaci efficiently transmitted both native virus and progeny virus derived from cloned DNA inoculum. Host ranges of native virus and of progeny virus derived from cloned DNA were identical based upon whitefly and biolistic mediated transmission, respectively. BCMoV has a relatively wide experimental host range among begomoviruses known to infect bean, encompassing genera and species within the Fabaceae, Malvaceae, and Solanaceae. BCMoV has a bipartite genome, as do other New World begomoviruses. BCMoV DNA-A shared highest nucleotide sequence identities with squash leaf curl virus-E strain (SLCV-E) and cabbage leaf curl virus (CaLCV) at 80.1 and 80.7%, respectively. BCMoV DNA-B shared highest nucleotide sequence identity with SLCV-E at 70.7%. The common region (CR) sequences of BCMoV and SLCV-E are 73 to 76% identical; however, modular cis-acting elements within the CR involved in replication origin function and recognition are 100% conserved. Phy-logenetic analysis indicated that BCMoV DNA-A shares a most recent common ancestor with the DNA-A of two viruses that also occur in the Sonoran Desert, SLCV-E and Texas pepper virus (TPV-TAM), and CaLCV from Florida. In contrast, a phylogenetic analysis indicated that BCMoV DNA-B shares a most recent common ancestor with SLCV-E; whereas DNA-B of CaLCV clustered in a separate clade with pepper hausteco virus. Collectively, biological and molecular characteristics indicate that BCMoV is a distinct begomovirus species with the northernmost distribution of any begomovirus isolated from bean in the Americas. Furthermore, the phylogenetic relationships of begomovirus cognate components are not necessarily identical, suggesting that DNA-A and DNA-B of some begomoviruses may have different evolutionary histories.  相似文献   

10.
Two newly emerged begomoviruses were isolated from naturally infected tomato (Solanum lycopersicum) plants grown in greenhouses at Jeju Island and Dangjin in Korea and their genomes were characterized. These viruses-infected plants had very small leaves that curled upward, yellow margins and a leathery appearance, and a bushy and stunted appearance with short internodes. Nucleotide (nt) sequence analysis of their genomes showed that they have a DNA-A component of a monopartite begomovirus. Their genomes comprised 2763 and 2764 nucleotides with six open reading frames. The results of nt sequence similarity analysis of DNA-A genome between the two Korean isolates and isolates of Tobacco leaf curl Japan virus (TbLCJV), Honeysuckle yellow vein virus (HYVV), Honeysuckle yellow vein mosaic virus (HYVMV), and Eupatorium yellow vein virus in Japan (EpYVV) showed that they are likely similar to HYVV-[Masuda] (89.4–92.8% nt identity). Consequently, we tentatively propose the two isolates’ names as HYVV-Jeju and -DJ according to the ICTV geminivirus rules. Phylogenetic relationship analysis of 33 DNA-A genome sequences using PAUP* 4.0b10 and MrBayes revealed that HYVV-Jeju and -DJ belong to the Far East Asian begomovirus species complex. Within the Far East Asian begomovirus species complex, HYVV-Jeju and -DJ are distantly related to EpYVV, HYVMV, and TbLCJV groups. Based on the presence of a recombination fragment spanning the C3 ORF, a recombinant origin was suggested for both HYVV-Jeju and –DJ, with parents close to Japanese isolates HYVMV-[SP1:00] and Eupatorium yellow vein virus (EpYVV)-[Suya]. In addition, the presence of a further recombination fragment spanning the IR suggested the parents of HYVV-DJ were close to HYVV-Jeju and EpYVV-[Suya].  相似文献   

11.
为明确假酸浆Nicandra physalodes叶片黄化、皱缩症状是否由菜豆金色花叶病毒属病毒侵染引起,本研究利用分子检测方法和生物信息学技术鉴定了假酸浆样品中的病毒种类。从采集的病样中克隆并获得了2条菜豆金色花叶病毒属病毒DNA-A全序列和1条beta卫星全序列,经全序列分析发现,该双生病毒的两条DNA-A全序列与泰国番茄黄化曲叶病毒(tomato yellow leaf curl Thailand virus, TYLCTHV)云南分离物TYLCTHV-YN1732一致性最高,达99.3%,亲缘关系较近;beta卫星的全序列与云南番茄曲叶beta卫星(tomato leaf curl Yunnan betasatellite, TLCYnB)的分离物YN5230一致性最高,达99.3%,亲缘关系较近。重组分析显示,假酸浆上分离的TYLCTHV-YN5735-12是一个重组病毒,有两个重组事件,一个主要发生在AV1的编码区,由中国番茄黄化曲叶病毒(tomato yellow leaf curl China virus, TYLCCNV)和广西大戟曲叶病毒(euphorbia lea...  相似文献   

12.
Tomato leaf curl disease (ToLCD) affected 25% of the tomato crop in Chitrakoot, India and symptomatic leaves were collected for molecular assay. The complete sequences of bipartite begomovirus DNA-A and a betasatellite DNA were amplified. In a sequence analysis, begomovirus DNA-A and betasatellite shared highest sequence identity (91–99%) with Tomato leaf curl New Delhi virus (ToLCNDV) DNA-A and chili leaf curl betasatellite (ChLCB), respectively. The virus was transmitted by whitefly to tomato plants and caused ToLCD symptoms with 70% transmission rate. To our knowledge, this is the first report of the natural occurrence of ToLCNDV and ChLCB in India.  相似文献   

13.
Genomic characterization using nonradioactive probes, polymerase chain reaction with degenerate primers for whitefly transmitted geminiviruses and nucleotide sequencing were used to describe a new bipartite geminivirus, associated with dwarfing and leaf curling of tomatoes and peppers in Jamaica. Partial DNA-A and DNA-B clones were obtained. DNA sequence analysis showed that tomato and pepper samples have a similar geminivirus associated with them. Nucleotide sequence identity > 92% between the common regions of DNA-A and DNA-B confirmed the bipartite nature of the Jamaican geminivirus isolates. Nucleotide sequence comparisons of DNA-A and DNA-B with those of geminiviruses representing the major phylogenetic groups of Western Hemisphere geminiviruses showed the greatest similarity to potato yellow mosaic virus and members of the Abutilon mosaic virus cluster of geminiviruses. This new virus is given the name tomato dwarf leaf curl virus (TDLCV) because of the dwarfing and leaf curling symptoms associated with infected tomato plants. Polymerase chain reaction and Southern hybridization showed mixed infections of TDLCV with tomato yellow leaf curl virus from Israel in 16% of the field samples of tomatoes and peppers.  相似文献   

14.
Geminivirus defective interfering DNAs arise spontaneously in mechanically inoculated test plants, and have previously been found with DNA-B of the bipartite cassava mosaic geminiviruses, but not DNA-A. Reported here for the first time is the cloning and characterization of a naturally occurring truncated form of cassava mosaic geminivirus DNA-A, which at 1525 nt is around half the expected full size. Sequence analysis has shown it to be a defective (df) form of East African cassava mosaic virus (EACMV) DNA-A that has retained its cis elements essential for replication by the helper virus, and it has been termed df DNA-A 15. Phylogenetic comparisons placed the df DNA-A 15 molecule close to mild and severe isolates of EACMV-UG2. Biolistic inoculation of Nicotiana benthamiana with infectious df DNA-A 15 clone and East African cassava mosaic Cameroon virus (EACMCV) resulted in symptom amelioration as compared with EACMCV singly inoculated plants, and there was an accumulation of df DNA-A 15 in systemically infected leaves. In addition, the level of EACMV DNA-B accumulation was reduced in the coinoculated plants compared with those inoculated with EACMCV alone. PCR and sequence analysis confirmed the helper virus as EACMV.  相似文献   

15.
In 2005, severe leaf curling and yellowing were observed on tomato plants on Ishigaki Island. Because the symptoms were consistent with infection by a begomovirus, we used a polymerase chain reaction (PCR) with specific primers for begomovirus DNA-A and DNA satellite component (DNA-β) and detected products of the expected sizes from symptomatic tomato plant samples. DNA sequence analyses of the PCR products revealed that the symptomatic tomato plants were associated with Ageratum yellow vein virus (AYVV) infection. We confirmed AYVV transmission from the naturally infected weed host, Ageratum conyzoides, to healthy tomato plants by the insect vector Bemisia tabaci B biotype. This report is the first of AYVV occurrence in Japan.  相似文献   

16.
Begomoviruses were detected in Nicaraguan fields of tomato ( Lycopersicon esculentum ) and adjacently growing plants of pepper ( Capsicum annuum ), chilli pepper ( C . baccatum ), cushaw ( Cucurbita argyrosperma ) and Mexican fireplant ( Euphorbia heterophylla ) using polymerase chain reaction (PCR) and universal begomovirus primers. All tomato and Mexican fireplant plants showing symptoms were infected with begomoviruses, while only 30–46% of the pepper, chilli pepper and cushaw plants showing symptoms tested virus-positive. No begomoviruses were found in potato. The virus species were provisionally identified by sequencing 533 bp of the viral coat protein gene ( AV1 ). Tomato severe leaf curl virus (ToSLCV), Tomato leaf curl Sinaloa virus (ToLCSinV) and Pepper golden mosaic virus (PepGMV) were found to infect both tomato and pepper. A new provisional species designated Tomato leaf curl Las Playitas virus (ToLCLPV) was detected in a tomato plant. Squash yellow mottle virus (SYMoV) and PepGMV were found in cucurbits, the latter for the first time in this host. Euphorbia mosaic virus (EuMV) was detected in Mexican fireplant. Sequencing of a larger number of PCR-amplified clones from selected plants revealed intraspecific viral sequence variability, and also multiple begomovirus infections which could represent up to three species in a single tomato or cushaw plant. Phylogenetic grouping of virus sequences did not correlate with the host of origin.  相似文献   

17.
Three begomovirus isolates were obtained from tomato plants showing leaf curl symptoms in Guangxi province of China. Typical begomovirus DNA components representing the three isolates (GX-1, GX-2 and GX-3) were cloned and their full-length sequences were determined to be 2752 nucleotides. Nucleotide identities among the three viral sequences were 98.9–99.7%, but all shared <86.7% nucleotide sequence identity with other reported begomoviruses. The sequence data indicated that GX-1, GX-2 and GX-3 are isolates of a distinct begomovirus species for which the name Tomato leaf curl Guangxi virus (ToLCGXV) is proposed. Further analysis indicated that ToLCGXV probably originated through recombination among viruses related to Ageratum yellow vein virus, Tomato leaf curl China virus and Euphorbia leaf curl virus. PCR and Southern blot analyses demonstrated that isolates GX-1 and GX-2 were associated with DNAβ components, but not isolate GX-3. Sequence comparisons revealed that GX-1 and GX-2 DNAβ components shared the highest sequence identity (86.2%) with that of Tomato yellow leaf curl China virus (TYLCCNV). An infectious construct of ToLCGXV isolate GX-1 (ToLCGXV-GX) was produced and determined to be highly infectious in Nicotiana benthamiana, N. glutinosa, tobacco cvs. Samsun and Xanthi, tomato and Petunia hybrida plants inducing leaf curl and stunting symptoms. Co-inoculation of tomato plants with ToLCGXV-GX and TYLCCNV DNAβ resulted in disease symptoms similar to that caused by ToLCGXV-GX alone or that observed in infected field tomato plants.  相似文献   

18.
The virus causing horsegram (Macrotyloma uniflorum) yellow mosaic disease has been shown to be a typical Old World bipartite begomovirus. The viral origin of the disease has been established through agroinoculation of horsegram using partial tandem repeat clones of both DNA-A and DNA-B. The DNA-A genome shows less than 89% identity with the corresponding sequences of all the begomoviruses in the databases earlier to this sequence submission (AJ627904). Therefore Horsegram yellow mosaic virus (HgYMV-[IN:Coi]) can be considered to be a new species of the genus Begomovirus (family Geminiviridae). Phylogenetic analysis shows that this virus is part of the cluster of mungbean yellow mosaic viruses of legumes from South and South East Asia.  相似文献   

19.
Leaf samples of Cucurbita pepo with yellow mosaic disease symptoms were collected in 2012. Rolling circle amplification and PCR amplification with begomovirus-specific primers confirmed the presence of an Old World bipartite begomovirus, an alphasatellite and a betasatellite. Molecular analysis of full-length sequences showed that Tomato leaf curl New Delhi virus (DNA-A) is associated with its cognate DNA-B, Papaya leaf curl betasatellite and a novel alphasatellite. To the best of our knowledge, this is the first report of an alphasatellite and a betasatellite associated with a bipartite begomovirus.  相似文献   

20.
A severe mosaic disease of pointed gourd (Trichosanthes dioica Roxb.) was observed with significant disease incidence in Gopalganj, India, during 2008. Begomovirus was detected from symptomatic leaf samples by polymerase chain reaction (PCR) using coat protein gene-specific primers of a well characterized begomovirus which revealed positive amplification of expected size ~800 bp DNA band. To confirm begomovirus association, the complete DNA-A was amplified using three sets of begomovirus DNA-A primers. The amplicons were cloned, sequenced, and sequence of the complete DNA-A (2757 nt) was determined by combining the sequence data of all amplicons (Accession no. GQ268327). The sequence data showed 99–93% sequence identities and close phylogenetic relationships with isolates of Ageratum enation virus (AgEV). The begomovirus associated with mosaic disease of T. dioica was identified as an isolate of Ageratum enation virus, which is a new record from India.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号