首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The biological and molecular characterization of a virus recognized as a distinct begomovirus species, Tomato curly stunt virus (ToCSV), first observed in South Africa in 1997, is reported here. Whitefly‐transmission and host‐range studies were carried out using a Bemisia tabaci colony identified as the B‐biotype. The experimental host range of ToCSV spanned primarily species in the Solanaceae and Fabaceae. The complete ToCSV genome (2·766 kb) was amplified by PCR, cloned, and the DNA sequence determined. Phylogenetic analysis revealed that ToCSV was most closely related to Tobacco leaf curl Zimbabwe virus (TbLCZV), at 84% nucleotide identity, indicating that ToCSV is a new species in the genus Begomovirus that is probably endemic to southern Africa. The ToCSV genome sequence contained all of the hallmark coding and non‐coding features characteristic of other previously recognized monopartite begomoviruses. ToCSV is only the second begomovirus described from southern Africa that infects solanaceous species. Neither a begomoviral DNA‐B component nor a satellite‐like DNA molecule was detected by PCR in extracts of ToCSV‐infected plants.  相似文献   

2.
Efficient management of whitefly-borne diseases remains a challenge due to the lack of a comprehensive understanding of their epidemiology, particularly of the diseases tomato golden mosaic and tomato yellowing. Here, by monitoring 16 plots in four commercial fields, the temporal and spatial distribution of these two diseases were studied in tomato fields in Brazil. In the experimental plots these diseases were caused by tomato severe rugose virus (ToSRV) and tomato chlorosis virus (ToCV), respectively. The incidence of each virus was similar in the plots within a field but varied greatly among fields. Plants with symptoms for both diseases were randomly distributed in three of four spatial analyses. The curves representing the progress of both diseases were similar and contained small fluctuations, indicating that the spread of both viruses was similar under field conditions. In transmission experiments of ToSRV and ToCV by Bemisia tabaci MEAM1 (former biotype B), these viruses had a similar transmission rate in single or mixed infections. It was then shown that primary and secondary spread of ToCV were not efficiently controlled by insecticide applications. Finally, in a typical monomolecular model of disease progress, simulation of the primary dissemination of ToSRV and ToCV showed that infected plants were predominantly randomly distributed. It is concluded that, although the manner of vector transmission differs between ToSRV (persistent) and ToCV (semipersistent), the main dispersal mechanisms are most probably similar for these two diseases: primary spread is the predominant mechanism, and epidemics of these diseases have been caused by several influxes of viruliferous whiteflies.  相似文献   

3.
Geminivirus defective interfering DNAs arise spontaneously in mechanically inoculated test plants, and have previously been found with DNA-B of the bipartite cassava mosaic geminiviruses, but not DNA-A. Reported here for the first time is the cloning and characterization of a naturally occurring truncated form of cassava mosaic geminivirus DNA-A, which at 1525 nt is around half the expected full size. Sequence analysis has shown it to be a defective (df) form of East African cassava mosaic virus (EACMV) DNA-A that has retained its cis elements essential for replication by the helper virus, and it has been termed df DNA-A 15. Phylogenetic comparisons placed the df DNA-A 15 molecule close to mild and severe isolates of EACMV-UG2. Biolistic inoculation of Nicotiana benthamiana with infectious df DNA-A 15 clone and East African cassava mosaic Cameroon virus (EACMCV) resulted in symptom amelioration as compared with EACMCV singly inoculated plants, and there was an accumulation of df DNA-A 15 in systemically infected leaves. In addition, the level of EACMV DNA-B accumulation was reduced in the coinoculated plants compared with those inoculated with EACMCV alone. PCR and sequence analysis confirmed the helper virus as EACMV.  相似文献   

4.
DNA of tomato yellow leaf curl virus (TYLCV), a geminivirus transmitted by the whitefly Bemisia tabaci, was amplified from squashes of infected tomato plants and of viruliferous vectors using the polymerase chain reaction (PCR). Samples of infected tissues as small as 1 mm2 were squashed onto a nylon membrane. A 1 × 2 mm strip containing the squash was introduced into a 25 µl PCR reaction mix. The reaction products were subjected to gel electrophoresis, blotted and hybridized with a radiolabeled virus-specific DNA probe. TYLCV DNA was amplified from squashes of leaves, roots, and stem of infected tomato and from individual viruliferous whiteflies. The same squash could be used several times to amplify different virus DNA fragments with various sets of primers. Thus plant and insect squashes can be used as templates for the amplification of geminiviral DNA with no need to prepare tissue extracts or purify nucleic acids. The squash-PCR procedure was applied to study whitefly transmission of TYLCV. Tomato plants were inoculated by placing a single viruliferous insect in the center of a young leaflet. In some plants TYLCV DNA was detected at the site of inoculation as early as 5 min after the beginning of the access feeding and in all plants after 30 min. The squash-PCR procedure also was applied to the study of TYLCV acquisition by the insect vector. TYLCV DNA was detected in the head of whiteflies as early as 5 min after the beginning of the access feeding on infected tomato plants. Viral DNA was detected in the thorax after 10 min and in the abdomen after 25 min.  相似文献   

5.
6.
A previously undescribed virus disease of tomato, other crops and weed hosts was found in California. Affected tomato plants exhibited interveinal yellowing, necrosis and severe yield losses. Leaf dips and purified preparations contained closterovirus-like long flexuous, filamentous particles approximately 12×850–900 nm. The virus, designated as tomato infectious chlorosis virus (TICV), is transmitted in a semipersistent manner by the greenhouse whitefly,Trialeurodes vaporariorum. The host range of the virus is moderate (26 species in 8 plant families) but includes some important crops and ornamental species including tomato, (Lycopersicon esculentum), tomatillo (Physalis ixocarpa), potato (Solanum tuberosum), artichoke (Cynara scolymus), lettuce (Lactuca sativa) and petunia (Petunia hybrida). The virus has been found in a number of different locations in California and has a number of potential vehicles of movement including greenhouse grown ornamentals, tomato transplants, artichoke cuttings and potato seed. The virus has the potential to spread to other growing regions with resident populations of the greenhouse whitefly. The host range, particle size, insect transmission, and serology clearly distinguish TICV from previously described viruses.  相似文献   

7.
The molecular and biological characterization of a begomovirus infecting the common weed Macroptilium lathyroides from Jamaica are reported. The virus showed 92% sequence identity to an isolate of Macroptilium yellow mosaic virus (MaYMV) from Cuba, but was distinct from the two other begomoviruses isolated from M. lathyroides , namely Macroptilium yellow mosaic Florida virus (80% identity) and Macroptilium mosaic Puerto Rico virus (68% identity). Hence, the Jamaican begomovirus was considered an isolate of MaYMV and called Macroptilium yellow mosaic virus -[Jamaica] (MaYMV-[JM]). In infectivity studies using cloned DNA-A and DNA-B genomic components, MaYMV-[JM] infected red kidney bean ( Phaseolus vulgaris ) and produced mild symptoms in Scotch Bonnet pepper ( Capsicum chinense ), but did not infect cabbage ( Brassica oleracea ). This information has implications for the development of strategies to control begomovirus diseases in Jamaica and elsewhere.  相似文献   

8.
Tomato leaf curl New Delhi virus (ToLCNDV; family Geminiviridae, genus Begomovirus) is an emerging virus in horticulture crops in Asia, and has recently been introduced in Spain, Tunisia and Italy. No betasatellite DNA was detected in infected tomato and zucchini squash samples from Spain, and agroinoculated viral DNA‐A and DNA‐B were sufficient to reproduce symptoms in plants of both crop species. Infected tomato and zucchini squash plants also served as inoculum sources for efficient transmission either mechanically or using Bemisia tabaci whiteflies. Cucumber, melon, watermelon, zucchini squash, tomato, eggplant and pepper, but not common bean, were readily infected using viruliferous whiteflies and expressed symptoms 8–15 days post‐inoculation. New full‐length sequences from zucchini squash and tomato indicated a high genetic homogeneity (>99% sequence identity) in the ToLCNDV populations in Spain, pointing to a single recent introduction event.  相似文献   

9.
番茄褪绿病毒Tomato chlorosis virus(ToCV)是严重危害世界经济作物的一种病毒,寄主范围广泛。田间调查发现黄瓜Cucumis sativus表现出叶片黄化、脉间褪绿的疑似番茄褪绿病毒感病症状,同时叶片背面聚集了大量烟粉虱。采用RT-PCR方法对样品叶片和烟粉虱进行检测,ToCV感染率为65%,且发病叶片上烟粉虱携带ToCV。为进一步确定黄瓜是否为番茄褪绿病毒的新寄主,室内利用农杆菌侵染性克隆接种健康黄瓜,结果显示:接种30 d的黄瓜新生叶片出现褪绿症状。采用ToCV HSP70基因的引物对田间黄瓜叶片、烟粉虱和室内黄瓜新生叶片进行RT-PCR,扩增出约450 bp的条带,在NCBI上BLAST显示与KC887999.1的同源性最高,为99%。这些数据表明黄瓜是番茄褪绿病毒的寄主。这是ToCV感染黄瓜的首次报道。  相似文献   

10.
A survey of begomoviruses infecting leguminous weeds (family Fabaceae) was carried out in four states of northeastern Brazil. A total of 26 full‐length begomovirus components (19 DNA‐A and seven DNA‐B, with three pairs of cognate A and B components) were amplified using rolling‐circle amplification, then cloned and sequenced. Sequence analysis indicated the presence of six species, four of them novel. In phylogenetic analysis five of the viruses clustered with other Brazilian begomoviruses, but one of them (Euphorbia yellow mosaic virus, EuYMV) clustered with viruses from other countries in Central and South America. Evidence of recombination was found among isolates of Macroptilium yellow spot virus (MaYSV). The MaYSV population had a high degree of genetic variability. Macroptilium lathyroides was revealed as a common host for several of these viruses, and could act as a mixing vessel from which recombinant viruses could emerge. The results indicate that leguminous weeds are reservoirs of several begomoviruses in Brazil, and could play a significant role in begomovirus epidemics, both as inoculum sources and as sources of emerging novel viruses.  相似文献   

11.
Tomato chlorosis virus (ToCV), a member of the genus Crinivirus (family Closteroviridae), has been present in Spain since at least 1997, causing annual epidemics of yellowing in protected tomato crops. In 1999, sweet pepper plants exhibiting stunting and symptoms of interveinal yellowing and mild upward curling in the leaves, were found to be infected with ToCV in a greenhouse heavily infested with the whitefly Bemisia tabaci in the province of Almería, southeastern Spain. This study investigated the prevalence of ToCV in tomato and pepper crops in the major growing areas of southeastern Spain (Murcia, Almería and Málaga provinces) over a 3‐year period. In addition, an experimental system was developed for ToCV inoculation using B. tabaci as a vector, which allowed analysis of susceptibility of different pepper cultivars to the virus. The disease syndrome and yield losses induced by ToCV in pepper were also studied under experimental conditions, confirming severe yield reduction in infected plants.  相似文献   

12.
13.
A. virus causing mosaic and leaf deformation of Physalis minima has been identified as an isolate of cucumber mosaic virus (CMV) on the basis of its transmission by aphids in a non-persistent manner, polyhedral particles of 29 nm diameter, molecular weight of coat protein subunits us 24-5 kDa. serological relationship with a CMV isolate and a tripartite single-stranded RNA genome with a subgenomic RNA4- Furthermore. cDNA representing coat protein gene was synthesized and cloned. Complete nucleotide sequences (890 nt) were obtained which showed a coat protein gene open reading frame of 657 residues. THE nucleotide sequences provided the 218 amino ACID sequences of the coat protein. Nucleotide as well as amino acid sequences revealed more than 90% identity with the CMV subgroup I strains.  相似文献   

14.
The complete nucleotide sequence of an infectious, insect-transmissible clone of a beet curly top virus isolate originating from Iran (BCTV-I) has been determined. The nucleotide sequence of BCTV-I shows high levels of similarity to the sequences of BCTV strains isolated from North America, and is nearly identical to the CFH strain of BCTV. The symptoms produced by BCTV-I in Nicotiana benthamiana and Beta vulgaris most closely resemble those of the CFH strain and are distinct from the other isolates. The significance of these findings with respect to the possible geographic origins and evolution of BCTV are discussed.  相似文献   

15.
A cassava mosaic disease (CMD) pandemic currently affects much of East and Central Africa. To understand the factors driving the pandemic's continued spread, complementary data sets were collected from cassava plots, planted with healthy cuttings, at eight sites along a north–south transect in southern Uganda, through the pandemic's leading edge. Data were collected on virus incidence, symptom severity, populations of the whitefly vector, Bemisia tabaci , their infectivity and ability to transmit different viruses. In 1996, 6 months after planting, CMD incidences were highest at sites 1 and 2, then decreased progressively until site 6, and remained low at sites 7 and 8. The largest B. tabaci populations also occurred at northernmost sites, 1–3. In 1997, CMD incidence increased significantly at sites 5–8 and this was associated with significant increases in the B. tabaci populations. The pandemic's spread was also associated with significant increases in the percentage of dual infections of East African cassava mosaic virus -Uganda and African cassava mosaic virus , which caused the severest symptoms and the greatest reduction in leaf area. Whitefly adults collected from within the pandemic area were infective, whereas those collected ahead of the pandemic were not. The transmission rate of African cassava mosaic virus from plants with dual infections was significantly less than that of East African cassava mosaic virus -Uganda, which may explain the latter's predominance within the pandemic. These results show that the arrival of East African cassava mosaic virus -Uganda into areas affected previously only by African cassava mosaic virus , has resulted in novel virus/vector/host–plant interactions that drive the pandemic's continued spread.  相似文献   

16.
17.
Zucchini yellow mosaic virus (ZYMV) is the most prevalent virus in cucurbits in Syria. Two Syrian ZYMV isolates, SYZY-1 and SYZY-3, collected from a courgette field in 2006 were characterized using molecular and biological means for the first time. These isolates showed biological diversity with regard to their pathogenicity and symptoms. SYZY-1 was more aggressive in cucurbits, but could not induce any infection in Fabaceae. On the contrary, SYZY-3 could not infect cucumber and melon plants, induced milder symptoms in courgette and watermelon but induced local and occasional systemic infection in Fabaceae tested. Nonetheless, according to their molecular characteristics, SYZY-1 and SYZY-3 were closely related. The SYZY-1 CP nucleotide and amino acid sequences had similarity of 99.5% and 100% with those of SYZY-3, respectively. The high similarity of the CP nucleotide sequences of SYZY-1 and SYZY-3 with that of a ZYMV isolate from Germany suggests a common origin. Adaptation to different hosts might have caused the variable biological properties of these Syrian ZYMV isolates.  相似文献   

18.
Tomato severe rugose virus (ToSRV) is the most important begomovirus transmitted and spread by the whitefly Bemisia tabaci in tomato crops in Brazil. Cultural practices are being adopted, along with insecticides, for controlling this virus. However, little is known about the importance of weeds in the pathosystem, which can contribute to the failure of these practices. This work aimed to evaluate the role of Datura stramonium and Nicandra physaloides as alternative hosts of ToSRV and verify the viral influence on the biological performance of Bemisia tabaci Middle East-Asia Minor 1 (MEAM1) and Mediterranean (MED) cryptic species. N. physaloides was a better alternative host for ToSRV when combined with MEAM1 whiteflies, while D. stramonium was mostly a good host for whitefly reproduction. Viral infection improved MEAM1 performance on both host plants but affected MED performance negatively. These data suggest that both weeds can be of some importance for the pathosystem, and their control should be included in management programmes.  相似文献   

19.
Turnip mosaic virus (TuMV) causes crop losses worldwide. Eight Australian TuMV isolates originally obtained from five different species in two plant families were inoculated to 14 plant species belonging to four families to compare their host reactions. They differed considerably in virulence in Brassicaceae crop species and virus indicator hosts belonging to three other families. The isolates infected most Brassica species inoculated, but not Raphanus sativus, usually causing systemic mosaic symptoms, so they resembled TuMV biological host type [B]. Whole genome sequences of seven of the Australian isolates were obtained and had lengths of 9834 nucleotides (nt). When they were compared with 37 non‐recombinant TuMV genomes from other continents and another whole genome from Australia, six of them formed an Australian group within the overall world‐B phylogenetic grouping, while the remaining new genome sequence and the additional whole genome from Australia were part of the basal‐B grouping. When the seven new Australian genomes and the additional whole genome from Australia were subjected to recombination analysis, six different recombination events were found. Six genomes contained one or two recombination events each, but one was non‐recombinant. The non‐recombinant isolate was in the Australian grouping within the overall world‐B group while the remaining recombinant isolates were in the basal‐B and world‐B phylogenetic groups.  相似文献   

20.
Tomato chlorosis virus (ToCV) and Tomato infectious chlorosis virus (TICV) are two criniviruses that are emerging worldwide, and induce similar yellowing diseases in tomato crops. While TICV is transmitted only by Trialeurodes vaporariorum , ToCV is transmitted by three whitefly species in two genera Trialeurodes vaporariorum , T. abutilonea and Bemisia tabaci . The efficiency of transmission by T. vaporariorum from plants infected by one virus or by both was compared, and the probability of virus transmission by a single whitefly was derived from group testing experiments. The estimated transmission probabilities ranged from 0·01 to 0·13, and were not significantly different between ToCV and TICV, or between single and mixed infections. Experiments using B. tabaci as a vector and source plants infected by TICV and ToCV did not reveal any functional trans-complementation for transmission of TICV by ToCV, suggesting that if this phenomenon occurs in nature, it is at a very low frequency. Possible reasons why TICV did not establish in southern France while ToCV is now endemic are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号