共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, the effects of growing maize plants on the microbial decomposition of easily degradable plant residues were
investigated in a 90-day pot experiment using a sandy arable soil. Four treatments were carried out: (1) untreated control,
(2) with freshly chopped alfalfa residues (Medicago sativa L.) incorporated into soil, (3) with growing maize plants (Zea mays L.), and (4) with growing maize plants and freshly chopped alfalfa residues incorporated into soil. The amount of alfalfa
residues was equivalent to 1.5 mg C g−1 soil and 120 μg N g−1 soil. At the end of the experiment, only the combination of growing maize plants and alfalfa residues significantly increased
the contents of microbial biomass C, microbial biomass N, and ergosterol in soil compared to the non-amended control. The
dry weight of the maize shoot material was more than doubled in the treatment with alfalfa residues than without. In treatment
(2), 6% of the alfalfa residues could be recovered as plant remains >2 mm. In treatment (4), this fraction contained 14.7%
alfalfa residues and 85.3% maize root remains, calculated on the basis of δ
13C values. This means that 60% more alfalfa-C was recovered than in treatment (2). The reasons for the retardation in the breakdown
of alfalfa residues might be water deficiency of soil microorganisms in the increased presence of maize roots. Assuming that
the addition of alfalfa residues did not affect the decomposition of native soil organic matter, only 23% of the alfalfa residues
were found as CO2 monitored with a portable gas analyzer with a dynamic chamber. The discrepancy is probably due to problems in measuring peak
concentrations of CO2 evolution in the two alfalfa treatments at the beginning of the experiment and in the two maize treatments at the end, especially
in treatment (4). 相似文献
2.
Summary The effects of trifluralin and 12 of its soil-formed metabolites on the decomposition of radio-labelled glucose, protein and cellulose were determined, using 14CO2 evolution from soil as a measure of decomposition. Trifluralin increased 14C-glucose mineralization rates, but these increases could be eliminated by adding N. Trifluralin had no inhibitory effect on the mineralization of protein or cellulose, but five of the metabolites inhibited glucose mineralization. None of the trifluralin metabolites affected protein mineralization. Seven trifluralin metabolites increased the rate of cellulose mineralization when applied at rates exceeding those that would be expected in soil. After considering the rate of metabolite application and the magnitude of the responses observed these compounds are expected to have no major effects on the microbial decomposition processes in soil. 相似文献
3.
Decomposition rates of the [2-14C]-glucose and [2-14C]-glycine in four different soils of the long-term field trial of Moscow were investigated in a 3-months laboratory experiment in which 14CO2 respiration was measured. A model with three decomposition components and two distribution parameters was developed and validated with the data of the experiment. The decay rate constants of free [2-14C]-glucose (4–32 day-1) were slower than those of [2-14C]-glycine (16–44 day-1). The calculated use efficiency for microbial biosynthesis of the second carbon atom was 47% for glucose and 31% for glycine. The potential half-life of labelled carbon in the microbial soil biomass ranged from 0.6 to 4.4 days, depending on the soil type and the initial amount of added substrate. The calculated total utilisation of carbon by the soil biomass from glycine was about 2–5 times lower than that of glucose.The modelled 14C incorporation into the microbial soil biomass reached its maximum on the first day of the incubation experiment and did not exceed 22% of the 14C input. Both of the investigated substances decomposed most rapidly in the soil samples from sites that have not being fertilised with organic or mineral fertilisers during an 81-years period. 相似文献
4.
Immobilization and mineralization of nitrogen in a saline and alkaline soil during microbial use of sugarcane filter cake amended with glucose 总被引:1,自引:0,他引:1
Ghulam Rasul Ahtsham A. Khan Khalid S. Khan Rainer Georg Joergensen 《Biology and Fertility of Soils》2009,45(3):289-296
A 42-day incubation was conducted to study the effect of glucose and ammonium addition adjusted to a C/N ratio of 12.5 on
sugarcane filter cake decomposition and on the release of inorganic N from microbial residues formed initially. The CO2 evolved increased in comparison with the non-amended control from 35% of the added C with pure +5 mg g−1 soil filter cake amendment to 41% with +5 mg g−1 soil filter cake +2.5 mg g−1 soil glucose amendment to 48% with 5 mg g−1 soil filter cake +5 mg g−1 soil glucose amendment. The different amendments increased microbial biomass C and microbial biomass N within 6 h and such
an increase persisted. The fungal cell-membrane component ergosterol initially showed a disproportionate increase in relation
to microbial biomass C, which completely disappeared by the end of the incubation. The cellulase activity showed a 5-fold
increase after filter cake addition, which was not further increased by the additional glucose amendment. The cellulase activity
showed an exponential decline to values around 4% of the initial value in all treatments. The amount of inorganic N immobilized
from day 0 to day 14 increased with increasing amount of C added, in contrast to the control treatment. After day 14, the
immobilized N was re-mineralized at rates between 1.3 and 1.5 μg N g−1 soil d−1 in the treatments being more than twice as high as in the control treatment. This means that the re-mineralization rate is
independent of the actual size of the microbial residues pool and also independent of the size of the soil microbial biomass. 相似文献
5.
A microcosm experiment was carried out for 56 days at 12 °C to evaluate the feeding effects of the endogeic geophagous earthworm species Aporrectodea caliginosa on the microbial use of 15N-labelled maize leaves (Zea mays) added as 5 mm particles equivalent to 1 mg C and 57 μg N g−1 soil. The dry weight of A. caliginosa biomass decreased in the no-maize treatment by 10% during the incubation and increased in the maize leaf treatments by 18%. Roughly 5% and 10% of the added maize leaf-C and leaf-N, respectively, were incorporated into the biomass of A. caliginosa. About 29% and 33% of the added maize leaf-C were mineralised to CO2 in the no-earthworm and earthworm treatments, respectively. The presence of A. caliginosa significantly increased soil-derived CO2 production by 90 μg g−1 soil in the no-maize and maize leaf treatments, but increased the maize-derived CO2 production only by 40 μg g−1 soil. About 10.5% of maize leaf-C and leaf-N was incorporated into the soil microbial biomass in the absence of earthworms, but only 6% of the maize leaf-C and 3% of the maize leaf-N in the presence of earthworms. A. caliginosa preferentially fed on N rich, maize leaf-colonizing microorganisms to meet its N demand. This led to a significantly increased C/N ratio of the unconsumed microbial biomass in soil. The ergosterol-to-microbial biomass C ratio was not significantly decreased by the presence of earthworms. A. caliginosa did not directly contribute to comminution of plant residues, as indicated by the absence of any effects on the contents of the different particulate organic matter fractions, but mainly to grazing of residue-colonizing microorganisms, increasing their turnover considerably. 相似文献
6.
A miniaturised method developed to measure the mineralisation of 13C-labelled organic compounds in small soil samples is presented. Soil samples (<0.5 g) were placed in wells of microtiter plates with CO2 traps (NaOH-soaked glass microfiber filters) and amended with 13C-labelled substrate. The microtiter plate was covered with a seal and placed in a microplate clamp system to ensure that each well was airtight. After incubation, the CO2 traps were transferred to tightly sealed glass phials under CO2-free atmosphere and the 13C-labelled CO2 was released by addition of H3PO4. The CO2 was measured by micro-GC and its isotopic signature was determined using a GC-IRMS. The qualitative and quantitative efficiency of the microplate system was demonstrated by comparison with direct measurement of CO2 in the headspace of phials in which similarly treated soil samples had been incubated. The two methods showed similar mineralisation rates for added 13C-substrates but the apparent mineralisation of soil organic matter was greater with the microtiter plate method. The microplate system presented here is suitable for studying the mineralisation of different kinds of 13C-labelled substrates in small soil samples and allows analysis of functional and molecular characteristics on the same micro-samples. 相似文献
7.
The relationships between soil microbial properties and fine root decomposition processes under elevated CO2 are poorly understood. To address this question, we determined soil microbial biomass carbon (SMB-C) and nitrogen (SMB-N), enzymes related to soil carbon (C) and nitrogen (N) cycling, the abundance of cultivable N-fixing bacteria and cellulolytic fungi, fine root organic matter, lignin and holocellulose decomposition, and N mineralization from 2006 to 2007 in a Mongolian oak (Quercus mongolica Fischer ex Ledebour) ecosystem in northeastern China. The experiment consisted of three treatments: elevated CO2 chambers, ambient CO2 chambers, and chamberless plots. Fine roots had significantly greater organic matter decomposition rates under elevated CO2. This corresponded with significantly greater SMB-C. Changes in the activities of protease and phenol oxidase under elevated CO2 could not explain the changes in fine root N release and lignin decomposition rates, respectively, while holocellulose decomposition rate had the same response to experimental treatments as did cellulase activity. Changes in cultivable N-fixing bacterial and cellulolytic fungal abundances in response to experimental treatments were identical to those of N mineralization and lignin decomposition rates, respectively, suggesting that the two indices were closely related to fine root N mineralization and lignin decomposition. Our results showed that the increased fine root organic matter, lignin and holocellulose decomposition, and N mineralization rates under elevated CO2 could be explained by shifts in SMB-C and the abundance of cellulolytic fungi and N-fixing bacteria. Enzyme activities are not reliable for the assessment of fine root decomposition and more attention should be given to the measurement of specific bacterial and fungal communities. 相似文献
8.
The effect of endogeic earthworms (Octolasion tyrtaeum) and the availability of clay (Montmorillonite) on the mobilization and stabilization of uniformly 14C-labelled catechol mixed into arable and forest soil was investigated in a short- and a long-term microcosm experiment. By using arable and forest soil the effect of earthworms and clay in soils differing in the saturation of the mineral matrix with organic matter was investigated. In the short-term experiment microcosms were destructively sampled when the soil had been transformed into casts. In the long-term experiment earthworm casts produced during 7 days and non-processed soil were incubated for three further months. Production of CO2 and 14CO2 were measured at regular intervals. Accumulation of 14C in humic fractions (DOM, fulvic acids, humic acids and humin) of the casts and the non-processed soil and incorporation of 14C into earthworm tissue were determined.Incorporation of 14C into earthworm tissue was low, with 0.1 and 0.44% recovered in the short- and long-term experiment, respectively, suggesting that endogeic earthworms preferentially assimilate non-phenolic soil carbon. Cumulative production of CO2-C was significantly increased in casts produced from the arable soil, but lower in casts produced from the forest soil; generally, the production of CO2-C was higher in forest than in arable soil. Both soils differed in the pattern of 14CO2-C production; initially it was higher in the forest soil than in the arable soil, whereas later the opposite was true. Octolasion tyrtaeum did not affect 14CO2-C production in the forest soil, but increased it in the arable soil early in the experiment; clay counteracted this effect. Clay and O. tyrtaeum did not affect integration of 14C into humic fractions of the forest soil. In contrast, in the arable soil O. tyrtaeum increased the amount of 14C in the labile fractions, whereas clay increased it in the humin fraction.The results indicate that endogeic earthworms increase microbial activity and thus mineralization of phenolic compounds, whereas clay decreases it presumably by binding phenolic compounds to clay particles when passing through the earthworm gut. Endogeic earthworms and clay are only of minor importance for the fate of catechol in soils with high organic matter, clay and microbial biomass concentrations, but in contrast affect the fate of phenolic compounds in low clay soils. 相似文献
9.
Yan Jian Mouliang Xiao Hongzhao Yuan Jiurong Wang 《Archives of Agronomy and Soil Science》2016,62(12):1678-1685
Similar to higher plants, microbial autotrophs possess photosynthetic systems that enable them to fix CO2. To measure the activity of microbial autotrophs in assimilating atmospheric CO2, five paddy soils were incubated with 14C-labeled CO2 for 45 days to determine the amount of 14C-labeled organic C being synthesized. The results showed that a significant amount of 14C-labeled CO2 incorporated into microbial biomass was soil specific, accounting for 0.37%–1.18% of soil organic carbon (14C-labeled organic C range: 81.6–156.9 mg C kg?1 of the soil after 45 days). Consequently, high amounts of C-labeled organic C were synthesized (the synthesis rates ranged from 86 to 166 mg C m?2 d?1). The amount of atmospheric 14CO2 incorporated into microbial biomass (14C-labeled microbial biomass) was significantly correlated with organic C components (14C-labeled organic C) in the soil (r = 0.80, p < 0.0001). Our results indicate that the microbial assimilation of atmospheric CO2 is an important process for the sequestration and cycling of terrestrial C. Our results showed that microbial assimilation of atmospheric CO2 has been underestimated by researchers globally, and that it should be accounted for in global terrestrial carbon cycle models. 相似文献
10.
David O. Carter 《Soil biology & biochemistry》2006,38(5):1139-1145
A laboratory experiment was conducted to determine the effect of temperature (2, 12, 22 °C) on the rate of aerobic decomposition of skeletal muscle tissue (Ovis aries) in a sandy loam soil incubated for a period of 42 days. Measurements of decomposition processes included skeletal muscle tissue mass loss, carbon dioxide (CO2) evolution, microbial biomass, soil pH, skeletal muscle tissue carbon (C) and nitrogen (N) content and the calculation of metabolic quotient (qCO2). Incubation temperature and skeletal muscle tissue quality had a significant effect on all of the measured process rates with 2 °C usually much lower than 12 and 22 °C. Cumulative CO2 evolution at 2, 12 and 22 °C equaled 252, 619 and 905 mg CO2, respectively. A significant correlation (P<0.001) was detected between cumulative CO2 evolution and tissue mass loss at all temperatures. Q10s for mass loss and CO2 evolution, which ranged from 1.19 to 3.95, were higher for the lower temperature range (Q10(2-12 °C)>Q10(12-22 °C)) in the Ovis samples and lower for the low temperature range (Q10(2-12 °C)<Q10(12-22 °C)) in the control samples. Metabolic quotient and the positive relationship between skeletal muscle tissue mass loss and cumulative CO2 evolution suggest that tissue decomposition was most efficient at 2 °C. These phenomena may be due to lower microbial catabolic requirements at lower temperature. 相似文献
11.
A laboratory incubation experiment was conducted to demonstrate that reduced availability of CO2 in soil may be an important factor limiting nitrification. Soil samples were incubated at 30±2 °C for 20 days using vessels with or without the arrangement for trapping CO2 in sodium hydroxide. This arrangement led to a decrease of ca. 96% in the CO2 concentration of the headspace, with a range of 95.7-97.5 at different sampling intervals. In the absence of trapping arrangement, CO2 concentration of the headspace varied from 580 to 859 ppm, i.e. 62-140% higher than that of the outside atmosphere (358 ppm). The nitrification process was significantly retarded under conditions of reduced CO2 concentration; reduction varied from 8 to 62% at different incubation intervals. The results of the study led to the inference that decreased availability of CO2 in closed vessels (with arrangement for trapping CO2) will have a significant bearing on the process of nitrification and hence on the overall dynamics of N transformations. 相似文献
12.
Summary Long-term experiments (ca. 2 years) were carried out in laboratory systems that simulated the complexity of a coniferous forest floor. The test materials were partially sterilized by freezing and thawing, and reinoculated with (1) microbes alone or (2) microbes with fauna. Removable microcosms containing birch litter, spruce litter, or humus were inserted into a humus substrate. Two experiments used organic matter only, and another included a layer of mineral soil below the humus. Both were incubated in climate chambers that simulated both summer and winter conditions. The evolution of CO2 was measured at regular intervals. In order to determine the C content of the leachates, the macrocosms and the microcosms were watered periodically.Soil fauna significantly increased respiration in the litter, but not in the microcosms containing humus. In the later phases of decomposition the presence of fauna had a negative effect. In the total systems the fauna consistently increased the respiration rate. The loss of mass was greater in the presence of fauna, especially during the middle phases (5–11 months), but it was higher in the controls later.Throughout the whole incubation period the decomposition rate was strongly influenced by the composition of the animal community. The interpretation of the results is affected by the fact that the controls, to which no fauna had been added, contained dense populations of microbial feeders (nematodes, rotifers, and protozoans). 相似文献
13.
Effects of manure quality and application forms on soil C and N turnover of a subtropical oasis soil under laboratory conditions 总被引:2,自引:0,他引:2
Our knowledge of the agricultural sustainability of the millennia-old mountain oases in northern Oman is restricted in particular with respect to C and N turnover. A laboratory study was conducted (1) to analyse the effects of rewetting and drying on soil microorganisms after adding different manures, (2) to investigate the effects of mulching or incorporating of these manures, and (3) to evaluate the relationships between C and N mineralisation rates and manure quality indices. During the first 9-day rewetting and drying cycle, i.e. the mulch period, the content of extractable organic C decreased by approximately 40% in all four treatments. During the second 9-day rewetting and drying cycle, i.e. the incorporation period, this fraction decreased insignificantly in almost all treatments. The control and mature manure treatments form the first pair with a low percentage of total organic C evolved as CO2 (0.3% in 18 days) and a considerable percentage of total N mineralised as NH4 and NO3 (1% in 18 days), the fresh and immature manure treatments form the second pair with a higher amount of total organic C evolved as CO2 (0.5% in 18 days) and no net N mineralisation. During the first 9-day rewetting and drying cycle, the contents of microbial biomass C and biomass N increased by approximately 150% in all four treatments. During the second 9-day rewetting and drying cycle, no further increase was observed in the control and immature manure treatments and a roughly 30% increase in the other two treatments. 相似文献
14.
The interactive effects of moisture and organic amendments (farmyard manure (FYM), crop residue (CR) and green manure (GM) (Sesbania aculeata) on gaseous carbon (C) emission, soil labile C fractions, enzymatic activities and microbial diversity in tropical, flooded rice soil were investigated. The amendments were applied on equal C basis in two moisture regimes, that is, aerobic and submergence conditions. The CO2 production was significantly higher by 22% in aerobic than in submergence condition; on the contrary, the CH4 production was 27% higher under submergence condition. The labile C fractions were significantly higher in GM by 26% under aerobic and 30% under submergence conditions, respectively, than control (without any kind of fertilizer or amendments). Eubacterial diversity identified by PCR-DGGE method (polymerase chain reaction coupled with denaturant gradient gel electrophoresis) was higher under GM followed by FYM, CR, and control and it is pronounced in submerged condition. GM favored the labile C accumulation and biological activities under both submergence and aerobic conditions, which makes it most active for soil–plant interactions compared to other organic amendments. Considering environmental sustainability, the use of GM is the better adoptable option, which could enhance labile C pools, microbial diversities in soil and keep soil biologically more active. 相似文献
15.
The decomposition of the litter layer and the humic mineral horizon from a beech forest site was studied at temperatures of 5, 12, and 22°C for both substrates and additionally at 32°C for beech litter. Weight losses, basal and substrate-induced CO2 production, and the extractable biomass C were monitored periodically during a 2-year incubation period. Weight losses and microbial activity were controlled by substrate quality and temperature. No significant differences were found between 5 and 12°C in decomposition, biomass C, and the metabolic quotient in the humic mineral horizon. The decay of beech litter and the humic mineral horizon was highest at 22°C but was faster in the litter material by a factor of 2.9 on average. In the glucose-amended samples, the relationship among the CO2-C fluxes was 1:1:2:3 at temperatures of 5, 12, 22, and 32°C in the litter layer, and 1: 2: 2.4 at 5, 12, and 22°C in the A horizon, respectively. The microbial activity in the humic mineral horizon was only 2–11% of that in the litter layer. The level of biomass C remained constant over 1 year and no significant differences were obtained from the 12 and 22°C treatments in the litter layer. 相似文献
16.
G. Bakonyi 《Biology and Fertility of Soils》1989,7(2):138-141
Summary The effects of the presence of Folsomia candida on substrate-induced respiration, CO2-C evolution, bacterial count and NH
4
+
-N were investigated in a grassland soil. Differences in these parameters, with the exception of NH
4
+
, were correlated with the age of the collembolan Folsomia candida. In the presence of juvenile animals total CO2-C evolution was enhanced, but substrate-induced respiration and the bacterial count were unchanged. In fumigated soil with imagos, substrate-induced respiration and the number of bacteria were increased, but total CO2-C evolution was unaltered. Different food selection strategies between adults and juvenile animals may explain the results. 相似文献
17.
Bioavailability and effects of heavy metals on soil microbial biomass survival during laboratory incubation 总被引:13,自引:0,他引:13
L. Leita M. De Nobili G. Muhlbachova C. Mondini L. Marchiol G. Zerbi 《Biology and Fertility of Soils》1995,19(2-3):103-108
In this work we studied the influence of Pb, Zn, and Tl on microbial biomass survival and activity during a laboratory incubation of soil. In comparison to uncontaminated soil, the microbial biomass C decreased sharply in soil contaminated with Zn and Tl, whereas the addition of Pb did not have any significant inhibitory effect on the level of microbial biomass C. Zn displayed the greatest biocidal effect, confirmed by the measurement of the death rate quotient (q D). The microbial activity, measured as CO2 evolution, increased significantly in contaminated soils, emphasizing the need of living organisms to expend more energy to survive. The greater demand for energy by microorganisms in order to cope with the toxicity of pollutants was also confirmed by measurement of the metabolic quotient (q CO2). In order to determine whether soil microorganisms affect the bioavailability of these metals through their mobilization and release, we studied the relationships between available Pb, Zn, and Tl, and microbial biomass C. The water-soluble fraction of Tl, available Tl, and Zn, and microbial biomass C were related significantly, but not Pb. 相似文献
18.
Martin Potthoff Jens Dyckmans Heiner Flessa Friedrich Beese 《Soil biology & biochemistry》2005,37(7):1259-1266
An incubation experiment was carried out with maize (Zea mays L.) leaf straw to analyze the effects of mixing the residues with soil and N amendment on the decomposition process. In order to distinguish between soil effects and nitrogen effects for both the phyllospheric microorganisms already present on the surface of maize straw and soil microorganisms the N amendment was applied in two different placements: directly to the straw or to the soil. The experiment was performed in dynamic, automated microcosms for 22 days at 15 °C with 7 treatments: (1) untreated soil, (2) non-amended maize leaf straw without soil, (3) N amended maize leaf straw without soil, (4) soil mixed with maize leaf straw, (5) N amended soil, (6) N amended soil mixed with maize leaf straw, and (7) soil mixed with N amended maize leaf straw. 15NH415NO3 (5 at%) was added. Gas emissions (CO2, 13CO2 and N2O) were continuously recorded throughout the experiment. Microbial biomass C, biomass N, ergosterol, δ13C of soil organic C and of microbial biomass C as well as 15N in soil total N, mineral N and microbial biomass N were determined in soil samples at the end of the incubation. The CO2 evolution rate showed a lag-phase of two days in the non-amended maize leaf straw treatment without soil, which was completely eliminated when mineral N was added. The addition of N generally increased the CO2 evolution rate during the initial stages of maize leaf straw decomposition, but not the cumulative CO2 production. The presence of soil caused roughly a 50% increase in cumulative CO2 production within 22 days in the maize straw treatments due to a slower decrease of CO2 evolution after the initial activity peak. Since there are no limitations of water or N, we suggest that soil provides a microbial community ensuring an effective succession of straw decomposing microorganisms. In the treatments where maize and soil was mixed, 75% of microbial biomass C was derived from maize. We concluded that this high contribution of maize using microbiota indicates a strong influence of organisms of phyllospheric origin to the microbial community in the soil after plant residues enter the soil. 相似文献
19.
Sergey Blagodatsky Evgenia Blagodatskaya Tatyana Yuyukina 《Soil biology & biochemistry》2010,42(8):1275-1283
The most frequently used models simulating soil organic matter (SOM) dynamics are based on first-order kinetics. These models fail to describe and predict such interactions as priming effects (PEs), which are short-term changes in SOM decomposition induced by easily available C or N sources. We hypothesized that if decomposition rate depends not only on size of the SOM pool, but also on microbial biomass and its activity, then PE can be simulated. A simple model that included these interactions and that consisted of three C pools - SOM, microbial biomass, and easily available C - was developed. The model was parameterized and evaluated using results of 12C-CO2 and 14C-CO2 efflux after adding 14C-labeled glucose to a loamy Haplic Luvisol. Experimentally measured PE, i.e., changes in SOM decomposition induced by glucose, was compared with simulated PE. The best agreement between measured and simulated CO2 efflux was achieved by considering both the total amount of microbial biomass and its activity. Because it separately described microbial turnover and SOM decomposition, the model successfully simulated apparent and real PE.The proposed PE model was compared with three alternative approaches with similar complexity but lacking interactions between the pools and neglecting the activity of microbial biomass. The comparison showed that proposed new model best described typical PE dynamics in which the first peak of apparent PE lasted for 1 day and the subsequent real PE gradually increased during 60 days. This sequential decomposition scheme of the new model, with immediate microbial consumption only of soluble substrate, was superior to the parallel decomposition scheme with simultaneous microbial consumption of two substrates with different decomposability. Incorporating microbial activity function in the model improved the fit of simulation results with experimental data, by providing the flexibility necessary to properly describe PE dynamics. We conclude that microbial biomass should be considered in models of C and N dynamics in soil not only as a pool but also as an active driver of C and N turnover. 相似文献
20.
Elizabeth A. S. Rattray Eric Paterson Kenneth Killham 《Biology and Fertility of Soils》1995,19(4):280-286
The dynamics of C partitioning with Lolium perenne and its associated rhizosphere was investigated in plant-soil microcosms using 14C pulse-chase labelling. The 14CO2 pulse was introduced into the shoot chamber and the plants allowed to assimilate the label for a fixed period. The microcosm design facilitated independent monitoring of shoot and root/soil respiration during the chase period. Partitioning between above- and below-ground pools was determined between 30 min and 168 h after the pulse, and the distribution was found to vary with the length of the chase period. Initially (30 min after the pulse), the 14C was predominantly (99%) in the shoot biomass and declined thereafter. The results indicate that translocation of recent photoassimilate is rapid, with 14C detected below ground within 30 min of pulse application. The translocation rate of 14C below ground was maximal (6.2% h-1) between 30 min and 3 h after the pulse, with greatest incorporation into the microbial biomass detected at 3 h. After 3 h, the microbial biomass 14C pool accounted for 74% of the total 14C rhizosphere pool. By 24 h, approximately 30% of 14C assimilate had been translocated below ground; thereafter 14C translocation was greatly reduced. Partitioning of recent assimilate changed with increasing CO2 concentration. The proportion of 14C translocated below ground almost doubled from 17.76% at the ambient atmospheric CO2 concentration (450 ppm) to 33.73% at 750 ppm CO2 concentration. More specifically, these changes occurred in the root biomass and the total rhizosphere pools, with two- and threefold 14C increases at an elevated CO2 concentration compared to ambient, respectively. The pulselabelling strategy developed in this study provided sufficient sensitivity to determine perturbations in C dynamics in L. perenne, in particular rhizosphere C pools, in response to an elevated atmospheric CO2 concentration. 相似文献