首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Infectious bovine keratoconjunctivitis (IBK) is an acute disease caused by Moraxella bovis (Mb). Several factors may predispose animals to an IBK outbreak; one commonly observed is infection with bovine herpes virus type 1 (BHV-1). The aim of this study was to investigate the dynamics of BHV-1 virus infection and its relation with clinical cases of IBK in weaned calves from a beef herd with a high prevalence of lesions caused by Mb. Sampling was carried out in six stages and included conjunctival swabs for isolating Mb as well as blood samples for identifying antibodies specific for BHV-1. A score for IBK lesions after observing each eye was determined. The findings of this study showed a high prevalence of BHV-1 virus infection (100% of animals were infected at the end of the trial); 67% of animals were culture-positive for Mb, but low rates of clinical IBK (19% of calves affected) were detected at the end of the trial. These results suggest that infection with BHV-1 did not predispose these animals to IBK, and that Mb infection produced clinical and subclinical disease in the absence of BHV-1 co-infection.  相似文献   

2.
Following primary infection of the eye, oral cavity, and/or nasal cavity, bovine herpesvirus 1 (BHV-1) establishes latency in trigeminal ganglionic (TG) neurons. Virus reactivation and spread to other susceptible animals occur after natural or corticosteroid-induced stress. Infection of calves with BHV-1 leads to infiltration of lymphocytes in TG and expression of IFN-gamma (interferon-gamma), even in latently infected calves. During latency, virus antigen and nucleic acid positive non-neural cells were occasionally detected in TG suggesting there is a low level of spontaneous reactivation. Since we could not detect virus in ocular or nasal swabs, these rare cells do not support high levels of productive infection and virus release or they do not support virus production at all. Dexamethasone (DEX) was used to initiate reactivation in latently infected calves. Foci of mononuclear or satellite cells undergoing apoptosis were detected 6h after DEX treatment, as judged by the appearance of TUNEL+ cells (terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling). BHV-1 antigen expression was initially detected in lymphocytes and other non-neural cells in latently infected calves following DEX treatment. At 24h after DEX treatment, viral antigen expression and nucleic acid were readily detected in neurons. Our data suggest that persistent lymphocyte infiltration and cytokine expression occur during latency because a low number of cells in TG express BHV-1 proteins. Induction of apoptosis and changes in cytokine expression following DEX treatment correlates with reactivation from latency. We hypothesize that inflammatory infiltration of lymphoid cells in TG plays a role in regulating latency.  相似文献   

3.
Recrudescence of bovine herpesvirus-5 in experimentally infected calves   总被引:2,自引:0,他引:2  
A latent infection of bovine herpesvirus-5 (BHV-5) was established in 4 calves. These calves, plus 2 controls, were given dexamethasone (DM) to reactivate the latent virus. The 4 principal calves developed antibodies to BHV-5 by postinoculation day (PID) 21. Antibody titers increased until PID 42 before decreasing to low levels of PID 75. After the first DM treatment (started on PID 76), an anamnestic antibody response was demonstrated in the 4 principal calves. Calves, 2, 3, and 4 were euthanatized and necropsied at PID 121, and their antibody titers were again decreasing. The virus BHV-5 was not isolated from the tissues by conventional techniques of viral isolation but was isolated from the trigeminal ganglion and spinal cord of calf 3 by explantation techniques. The BHV-5 was isolated, using conventional viral isolation techniques, from a nasal swab sample of calf 1 on PID 91 (15 days after the first DM treatment) and from the thoracic lymph node 6 days after the start of a 2nd DM treatment. Seemingly, BHV-5 may be latently harbored in the nerve tissues or calves and this virus may be reactivated from the upper respiratory tract following subsequent DM treatment.  相似文献   

4.
The aim of this work was to investigate the susceptibility of calves infected with bovine viral diarrhea virus (BVDV) against secondary infections. For this purpose, the profile of cytokines implicated in the immune response of calves experimentally infected with a non-cytopathic strain of BVDV type-1 and challenged with bovine herpesvirus 1.1 (BHV-1.1) was evaluated in comparison with healthy animals challenged only with BHV-1.1. The immune response was measured by serum concentrations of cytokines (IL-1β, TNFα, IFNγ, IL-12, IL-4 and IL-10), acute phase proteins (haptoglobin, serum amyloid A and fibrinogen) and BVDV and BHV-1.1 specific antibodies. BVDV-infected calves displayed a great secretion of TNFα and reduced production of IL-10 following BHV-1 infection, leading to an exacerbation of the inflammatory response and to the development of more intense clinical symptoms and lesions than those observed in healthy animals BHV-1-inoculated. A Th1 immune response, based on IFNγ production and on the absence of significant changes in IL-4 production, was observed in both groups of BHV-1-infected calves. However, whereas the animals inoculated only with BHV-1 presented an IFNγ response from the start of the study and high expression of IL-12, the BVDV-infected calves showed a delay in the IFNγ production and low levels of IL-12. This alteration in the kinetic and magnitude of these cytokines, involved in cytotoxic mechanisms responsible for limiting the spread of secondary pathogens, facilitated the dissemination of BHV-1.1 in BVDV-infected calves.  相似文献   

5.
Calves infected with bovine herpesvirus-1 (BHV-1) or both BHV-1 and parainfluenza-3 virus (PIV-3) developed clinical signs including fever, cough, and nasal and ocular discharges. Animals infected with both viruses appeared more depressed and showed higher rectal temperature, while calves inoculated with PIV-3 alone had a very mild clinical disease. Both BHV-1 and PIV-3 were recovered from nasal secretions up to six to eight days postinoculation. However, the virus titers were lower in calves with mixed infection. An increase in serum antibodies to both BHV-1 and PIV-3 was detected by serum neutralization and enzyme-linked immunosorbent assay. Antibody responses were delayed and significantly lower in calves given mixed infection than in calves infected with a single virus. Interleukin-2 activity in cultures of lymphocytes from BHV-1 and BHV-1 plus PIV-3 infected calves was higher compared to control calves.  相似文献   

6.
Influence of isoprinosine on bovine herpesvirus type-1 infection in cattle   总被引:1,自引:0,他引:1  
A study was conducted to determine the in vivo efficacy of isoprinosine (ISO) in calves infected with bovine herpesvirus type-1 (BHV-1). Calves were infected with BHV-1 on day 0 and received ISO daily for 14 days. Clinical signs of disease, shedding of BHV-1, lymphocyte proliferative responses to mitogens, interleukin-2 production, and alveolar macrophage bactericidal activity were monitored during the study. Rectal temperatures were increased (P less than 0.05) in BHV-1 and ISO-BHV-1 calves at days 3 to 7 postinfection (PI). Isoprinosine did not influence BHV-1 shedding in calves. Lymphocyte proliferative responses to phytohemagglutinin (PHA) were lower (P less than 0.01) in BHV-1 calves when compared to control or ISO calves at day 4 PI, but ISO did not ameliorate this effect. Interleukin-2 activity was greater (P less than 0.05) in ISO-BHV-1 calves on days 4 and 8 PI in PHA-stimulated lymphocytes and on day 8 PI in concanavalin A-stimulated lymphocytes when compared to control, ISO or BHV-1 calves. Isoprinosine treatment of BHV-1-infected calves tended to decrease alveolar macrophage bactericidal activity. These data suggest that ISO does not reverse BHV-1 suppression of lymphocyte proliferation, but may enhance IL-2 production in BHV-1 infected calves.  相似文献   

7.
This study was conducted to determine whether young calves with maternal antibodies against bovine herpesvirus type 1 (BHV-1) but without antibodies against glycoprotein E (gE) can produce an active antibody response to gE after a BHV-1 infection. Five calves received at birth colostrum from gE-seronegative cows which had been vaccinated two or three times with an inactivated BHV-1, gE-deleted marker vaccine. After inoculation with a wild-type virulent strain of BHV-1, all the passively immunised gE-negative calves shed virus in large amounts in their nasal secretions. All the calves seroconverted to gE within two to four weeks after inoculation and then had high levels of gE antibodies for at least four months. The development of an active cell-mediated immune response was also detected by in vitro BHV-1-specific interferon-gamma assays. All the calves were latently infected, because one of them re-excreted the virus spontaneously and the other four did so after being treated with dexamethasone. The results showed that under the conditions of this work the gE-negative marker could also distinguish between passively immunised and latently infected calves.  相似文献   

8.
OBJECTIVE: To determine whether a combination viral vaccine containing modified-live bovine herpesvirus-1 (BHV-1) would protect calves from infection with a recent field isolate of BHV-1. DESIGN: Randomized controlled trial. ANIMALS: Sixty 4- to 6-month-old beef calves. PROCEDURE: Calves were inoculated with a placebo 42 and 20 days prior to challenge (group 1; n = 10) or with the combination vaccine 42 and 20 days prior to challenge (group 2; 10), 146 and 126 days prior to challenge (group 3; 10), 117 and 96 days prior to challenge (group 4; 10), 86 and 65 days prior to challenge (group 5; 10), or 126 days prior to challenge (group 6; 10). All calves were challenged with BHV-1 via aerosol. Clinical signs, immune responses, and nasal shedding of virus were monitored for 14 days after challenge. RESULTS: Vaccination elicited increases in BHV-1-specific IgG antibody titers. Challenge with BHV-1 resulted in mild respiratory tract disease in all groups, but vaccinated calves had less severe signs of clinical disease. Extent and duration of nasal BHV-1 shedding following challenge was significantly lower in vaccinated calves than in control calves. In calves that received 2 doses of the vaccine, the degree of protection varied with the interval between the last vaccination and challenge, as evidenced by increases in risk of clinical signs and extent and duration of viral shedding. CONCLUSIONS AND CLINICAL RELEVANCE: Results suggest that this combination vaccine provided protection from infection with virulent BHV-1 and significantly reduced nasal shedding of the virus for at least 126 days after vaccination.  相似文献   

9.
A BHV-4 specific nested PCR was used for the detection of viral DNA in serum samples of rabbits and calves. All animals were followed up for 62 days, blood samples were taken for PCR studies every second day. Maternal infection of calves resulted in the repeated regular reappearance (10-14 days) of the virus (DNA) in serum samples. When PCR positive five-day-old calves were infected with tissue culture adapted virus, the reappearance of the DNA in the serum was shown to be irregular, nevertheless, DNA peaks reappeared during the whole observation period. A PCR negative calf infected at the age of 60 days was found to possess viraemia until p.i.d. 32. In rabbits treated intravenously with BHV-4 the inoculum or a primary viraemia was detected at p.i.d. 2-3 and p.i.d. 14-16. Published data on human herpesviruses suggest, that the target cells might be a pluripotent stem cell population of the bone marrow and differentiated virus-infected cells destroyed by the immune system might be the source of viral DNA detected in the serum. Frequency of DNA reappearance was depended on the age of the infected animals but not on the inoculated amount of BHV-4. The described phenomenon might be part of BHV-4 infection of very young animals.  相似文献   

10.
Twelve calves infected with bovine herpesvirus type 1 (BHV-1) were killed when in a latent state of infection. Latency was verified 30 days after virus inoculation of the calves by seroconversion, absence of virus shedding, and in 2 calves, by recrudescence of the infection after they were treated with dexamethasone. By in situ hybridization techniques and autoradiography, DNA of BHV-1 was detected in 13 of 23 trigeminal ganglia of latently infected calves. Viral DNA was restricted to the nucleus of nerve cells. Single neurons harboring BHV-1 DNA were observed in 4.9% of the sections (n = 325) of the trigeminal ganglia. The results obtained correspond to those known from herpes simplex virus infections in mice. The implications for the virus-host relationship are discussed.  相似文献   

11.
The prevalence of bovine viral diarrhea virus (BVDV) infections was determined in a group of stocker calves suffering from acute respiratory disease. The calves were assembled after purchase from Tennessee auctions and transported to western Texas. Of the 120 calves, 105 (87.5%) were treated for respiratory disease. Sixteen calves died during the study (13.3%). The calves received a modified live virus BHV-1 vaccine on day 0 of the study. During the study, approximately 5 wk in duration, sera from the cattle, collected at weekly intervals, were tested for BVDV by cell culture. Sera were also tested for neutralizing antibodies to BVDV types 1 and 2, bovine herpesvirus-1 (BHV-1), parainfluenza-3 virus (PI-3V), and bovine respiratory syncytial virus (BRSV). The lungs from the 16 calves that died during the study were collected and examined by histopathology, and lung homogenates were inoculated onto cell cultures for virus isolation. There were no calves persistently infected with BVDV detected in the study, as no animals were viremic on day 0, nor were any animals viremic at the 2 subsequent serum collections. There were, however, 4 animals with BVDV type 1 noncytopathic (NCP) strains in the sera from subsequent collections. Viruses were isolated from 9 lungs: 7 with PI-3V, 1 with NCP BVDV type 1, and 1 with both BVHV-1 and BVDV. The predominant bacterial species isolated from these lungs was Pasteurella haemolytica serotype 1. There was serologic evidence of infection with BVDV types 1 and 2, PI-3V, and BRSV, as noted by seroconversion (> or = 4-fold rise in antibody titer) in day 0 to day 34 samples collected from the 104 survivors: 40/104 (38.5%) to BVDV type 1; 29/104 (27.9%) to BVDV type 2; 71/104 (68.3%) to PI-3V; and 81/104 (77.9%) to BRSV. In several cases, the BVDV type 2 antibody titers may have been due to crossreacting BVDV type 1 antibodies; however, in 7 calves the BVDV type 2 antibodies were higher, indicating BVDV type 2 infection. At the outset of the study, the 120 calves were at risk (susceptible to viral infections) on day 0 because they were seronegative to the viruses: 98/120 (81.7%), < 1:4 to BVDV type 1; 104/120 (86.7%) < 1:4 to BVDV type 2; 86/120 (71.7%) < 1:4 to PI-3V; 87/120 (72.5%) < 1:4 to BRSV; and 111/120 (92.5%) < 1:10 to BHV-1. The results of this study indicate that BVDV types 1 and 2 are involved in acute respiratory disease of calves with pneumonic pasteurellosis. The BVDV may be detected by virus isolation from sera and/or lung tissues and by serology. The BVDV infections occurred in conjunction with infections by other viruses associated with respiratory disease, namely, PI-3V and BRSV. These other viruses may occur singly or in combination with each other. Also, the study indicates that purchased calves may be highly susceptible, after weaning, to infections by BHV-1, BVDV types 1 and 2, PI-3V, and BRSV early in the marketing channel.  相似文献   

12.
This study was conducted to investigate the glycoprotein E (gE) antibody response raised after inoculation with a low infectious dose of bovine herpesvirus 1 (BHV-1) in six calves possessing high levels of passive immunity from cows repeatedly vaccinated with gE deleted marker vaccine. Four out of the six calves developed gE antibodies 3-5 weeks after infection, whereas the two other ones remained seronegative to gE. After 5 months of infection, the six calves were treated with dexamethasone. Virus was only re-excreted by the four calves which previously seroconverted against gE. The two other calves became seronegative against BHV-1, 30-32 weeks after infection. A second dexamethasone treatment performed 11 months after infection failed to demonstrate a latent infection in these two calves. Moreover, the lack of identification of a cell-mediated immune response, after the two dexamethasone treatments, and the failure to detect BHV-1 DNA sequences in trigeminal ganglia strongly suggest that these two calves were not latently infected. In conclusion, the presence of high levels of maternal immunity lacking gE antibodies does not prevent latency after infection with a low titre of BHV-1. Moreover, latency is associated with a serological response to gE. These results confirm that the gE deletion is a good marker to identify young calves latently infected with a field virus.  相似文献   

13.
Previous reports on the spread of bovine virus diarrhoea virus (BVDV) from animals primarily infected with the agent are contradictory. In this study, the possibility of transmission of BVDV from calves simultaneously subjected to acute BVDV and bovine coronavirus (BCV) infection was investigated. Ten calves were inoculated intranasally with BVDV Type 1. Each of the 10 calves was then randomly allocated to one of two groups. In each group there were four additional calves, resulting in five infected and four susceptible calves per group. Virulent BCV was actively introduced in one of the groups by means of a transmitter calf. Two calves, susceptible to both BVDV and BCV, were kept in a separate group, as controls. All ten calves actively inoculated with BVDV became infected as shown by seroconversions, and six of them also shed the virus in nasal secretions. However, none of the other eight calves in the two groups (four in each) seroconverted to this agent. In contrast, it proved impossible to prevent the spread of BCV infection between the experimental groups and consequently all 20 study calves became infected with the virus. Following infection, BCV was detected in nasal secretions and in faeces of the calves and, after three weeks in the study, all had seroconverted to this virus. All calves, including the controls, showed at least one of the following clinical signs during days 3-15 after the trial started: fever (> or =40 degrees C), depressed general condition, diarrhoea, and cough. The study showed that BVDV primarily infected cattle, even when co-infected with an enteric and respiratory pathogen, are inefficient transmitters of BVDV. This finding supports the principle of the Scandinavian BVDV control programmes that elimination of BVDV infection from cattle populations can be achieved by identifying and removing persistently infected (PI) animals, i.e. that long-term circulation of the virus without the presence of PI animals is highly unlikely.  相似文献   

14.
Latent bovine herpesvirus-1 (BHV-1) infection was established in 6 calves and was demonstrated by reinduction of virus shedding after administration of corticosteroids. Latently infected calves failed to transmit BHV-1 during 4 weeks' contact with sentinel calves. Infected calves were killed and necropsied during latency or induced recrudescence. The BHV-1 DNA was demonstrated intranuclearly in trigeminal ganglion neurons by in situ hybridization. The BHV-1 antigen was demonstrated by immunofluorescence in trigeminal ganglion neurons during recrudescence. By electron microscopy, changes in the appearance of the Nissl bodies and a high frequency of nuclear bodies were observed in trigeminal ganglion neurons.  相似文献   

15.
Effect of levamisole on induced bovine viral diarrhea   总被引:1,自引:0,他引:1  
The effect of levamisole in calves experimentally infected with bovine viral diarrhea virus was evaluated in a double-blind study. The infection was mild and there was no difference in severity of infection or speed of recovery between levamisole-treated and 0.9% NaCl solution-treated (control) calves. Also, the serum antibody titers and viral recovery data of these calves were comparable. The white blood cell counts were consistently higher in the treated group than in the control group, with the difference peaking on postinoculation day 15. The detection of marked lymphopenia in control calves but not in levamisole-treated calves indicated a potential use of levamisole in bovine viral diarrhea.  相似文献   

16.
Three experiments have been carried out to verify the effectiveness of an immunomodulator, Baypamun (Bayer AG) in limiting the spread of Bovine herpesvirus-1 (BHV-1), the causal agent of infectious bovine rhinotracheitis (IBR). In the first experiment, four calves infected with BHV-1 developed severe disease whereas four calves given Baypamun simultaneously with the virus had less severe disease. Four other calves in contact with the infected calves became severely ill but another four given Baypamun were only mildly affected. In the second experiment three calves infected with BHV-1, which reacted with typical disease, were allowed to remain in contact with six calves. All six calves were given Baypamun at various times following the exposure to BHV-1 infection and all showed a much reduced reaction with two treated for 4 days developing no clinical disease. Finally, in the third experiment one calf vaccinated one month before the start of the experiment did not develop any signs of disease when housed together with a calf experimentally infected with BHV-1. Of four other calves, vaccinated when the infected calf showed the first signs of disease, only the two given Baypamun in addition to the vaccine, were protected from clinical disease whereas the two given vaccine only developed classical signs of IBR. In the three experiments the virus shedding by the Baypamun-treated calves resulted to be significantly reduced.  相似文献   

17.
Interferon, fluorescent antibody, and neutralizing antibody responses were studied in sera of 9 calves inoculated with bovine respiratory syncytial virus, in relation to viral shedding and clinical signs of disease. The calves (5.5 to 6.5 weeks of age) were assigned to 3 groups. Group I was inoculated once with the virus, and groups II and III were challenge exposed at postinoculation day (PID) 15 or 37. Serum-neutralizing and indirect fluorescent antibody techniques were used to measure antibody responses. The plaque-inhibition technique, using vesicular stomatitis virus, was applied to measure serum interferon titers. The virus was recovered by inoculation of nasal secretions onto cell cultures. Fluorescent antibody was detected in all calves on PID 3, with maximum titers appearing approximately on PID 10. Low neutralizing antibody was detected in most animals on PID 3, and titers peaked approximately 4.5 weeks after inoculation and then decreased. Interferon titers were high in all calves during the early stage of infection, dropped to undetectable amounts by PID 6, and reappeared in low amounts at least 1 week later. All infected calves manifested clinical signs of disease by PID 4 to 9. Clinical signs of disease were not observed after challenge exposure at PID 15 or 37, and anamnestic responses were not detected. Virus was recovered after challenge exposure at PID 15, but not at PID 37.  相似文献   

18.
Viral distribution and lesions were compared between calves born with persistent infection (PI) and calves acutely infected with the same bovine viral diarrhea virus (BVDV) isolate. Two PI calves from 1 dairy herd were necropsied. The PI viruses from these calves were isolated, characterized by sequencing, and found to be identical. This virus strain, designated BVDV2-RS886, was characterized as a noncytopathic (ncp) type 2 BVDV. To establish acute infections, BVDV2-RS886 was used to inoculate clinically healthy, seronegative calves which were 3 weeks to 3 months old. Nine calves received 10(6)-10(7) tissue culture infective dose of BVDV2-RS886 intranasally. Four additional age-matched animals served as noninfected controls. Infected calves were necropsied at 3, 6, 9, or 13 days postinoculation (dpi). Viral antigen was detected by immunohistochemistry in frozen sections, and lesions were evaluated in hematoxylin eosin-stained paraplast sections. In the PI calves, a wide distribution of viral antigen was found in all tissues and was not associated with lesions. In the acutely infected calves, viral antigen was widespread in lymphoid tissues at 6 dpi but had been mostly eliminated at 9 and 13 dpi. Depletion of lymphoid tissues was seen at 6, 9, and 13 dpi and repopulation at 9 and 13 dpi. In 1 of the calves at 13 dpi, severe arteritis was present in lymph nodes and myocardium. This comparison shows that an ncp BVDV strain that causes no lesions in PI animals is able to induce marked depletion of lymphoid tissues in calves with acute infection. Therefore, the failure to eliminate PI cattle from a herd causes problems not only in pregnant cattle but may also affect other age groups.  相似文献   

19.
The onset of protection offered by intranasal vaccination with attenuated bovine herpesvirus-1 (BHV-1) was studied in 18 calves given a virulent BHV-1 aerosol challenge inoculum and an aerosol challenge exposure to Pasteurella haemolytica. Calves challenge exposed with virus 3, 7, 11, 15, or 19 days after vaccination and challenge exposed 4 days later with Pasteurella haemolytica did not develop viral-bacterial pneumonia, whereas 2 of 3 control calves died of fibrinous bronchopneumonia 40 and 60 hours after the bacterial aerosol and the 3rd control calf had similar lesions. All vaccinated and control calves had detectable amounts of interferon at the time of viral challenge exposure. Protection was observed before detection of neutralizing antibodies to BHV-1 in nasal secretions or in serum. Protection was therefore present from day 3 through day 19 after vaccination, but the mechanism could not be explained completely by neutralizing antibody or interferon.  相似文献   

20.
Colostrum-replacement products are an alternative to provide passive immunity to neonatal calves; however, their ability to provide adequate levels of antibodies recognizing respiratory viruses has not been described. The objective of this study was to compare the serum levels of IgG at 2 d of age and the duration of detection of antibodies to bovine viral diarrhea virus 1 (BVDV-1), bovine viral diarrhea virus 2 (BVDV-2), bovine respiratory syncytial virus (BRSV), bovine herpesvirus 1 (BHV-1), and bovine parainfluenza virus 3 (BPIV-3) in calves fed maternal colostrum (MC) or a colostrum replacement (CR) at birth. Forty newborn male Holstein calves were assigned to the CR or the MC group. Group CR (n = 20) received 2 packets of colostrum replacement (100 g of IgG per 470-g packet), while group MC (n = 20) received 3.8 L of maternal colostrum. Blood samples for detection of IgG and virus antibodies were collected from each calf at birth, at 2 and 7 d, and monthly until the calves became seronegative. Calves in the MC group had greater IgG concentrations at 2 d of age. The apparent efficiency of absorption of IgG was greater in the MC group than in the CR group, although the difference was not significant. Calves in the CR group had greater concentrations of BVDV neutralizing antibodies during the first 4 mo of life. The levels of antibodies to BRSV, BHV-1, and BPIV-3 were similar in the 2 groups. The mean time to seronegativity was similar for each virus in the 2 groups; however, greater variation was observed in the antibody levels and in the duration of detection of immunity in the MC group than in the CR group. Thus, the CR product provided calves with more uniform levels and duration of antibodies to common bovine respiratory viruses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号