首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
 The impacts of crop rotations and N fertilization on different pools of arylsulfatase activity (total, intracellular, and extracellular) were studied in soils of two long-term field experiments in Iowa to assess the contibution of the microbial biomass to the activity of this enzyme. Surface-soil samples were taken in 1996 and 1997 in corn, soybeans, oats, or meadow (alfalfa) plots that received 0 or 180 kg N ha–1 before corn, and an annual application of 20 kg P ha–1 and 56 kg K ha–1. The arylsulfatase activity in the soils was assayed at optimal pH (acetate buffer, pH 5.8) before and after chloroform fumigation; microbial biomass C (Cmic) and N (Nmic) were determined by chloroform-fumigation methods. All pools of arylsulfatase activity in soils were significantly affected by crop rotation and plant cover at sampling time, but not by N fertilization. Generally, the highest total, intracellular, and extracellular arylsulfatase activities were obtained in soils under cereal-meadow rotations, taken under oats or meadow, and the lowest under continuous cropping systems.Total, intracellular, and extracellular arylsulfatase activities were significantly correlated with Cmic (r>0.41, P<0.01) and Nmic (r>0.38, P<0.01) in soils. The averages of specific activity values, i.e., of arylsulfatase activity of the microbial biomass, expressed per milligram Cmic, ranged from 315 to 407 μg p-nitrophenol h–1. The total arylsulfatase activity was significantly correlated with the intracellular activity, with r values >0.79 (P<0.001). In general, about 45% of the total arylsulfatase activity was extracellular, and 55% was associated with the microbial biomass in soils, indicating the importance of the microflora as an enzyme source in soils. Received: 23 April 1998  相似文献   

2.
Soil microbial biomass carbon and nitrogen as affected by cropping systems   总被引:12,自引:0,他引:12  
 The impacts of crop rotations and N fertilization on microbial biomass C (Cmic) and N (Nmic) were studied in soils of two long-term field experiments initiated in 1978 at the Northeast Research Center (NERC) and in 1954 at the Clarion-Webster Research Center (CWRC), both in Iowa. Surface soil samples were taken in 1996 and 1997 from plots of corn (Zea mays L.), soybeans (Glycine max (L.) Merr.), oats (Avena sativa L.), or meadow (alfalfa) (Medicago sativa L.) that had received 0 or 180 kg N ha–1 before corn and an annual application of 20 kg P and 56 kg K ha–1. The Cmic and Nmic values were determined by the chloroform-fumigation-extraction method and the chloroform-fumigation-incubation method, respectively. The Cmic and Nmic values were significantly affected (P<0.05) by crop rotation and plant cover at time of sampling, but not by N fertilization. In general, the highest Cmic and Nmic contents were found in the multicropping systems (4-year rotations) taken in oats or meadow plots, and the lowest values were found in continuous corn and soybean systems. On average, Cmic made up about 1.0% of the organic C (Corg), and Nmic contributed about 2.4% of the total N (Ntot) in soils at both sites and years of sampling. The Cmic values were significantly correlated with Corg contents (r≥0.41**), whereas the relationship between Cmic and Ntot was significant (r≤0.53***) only for the samples taken in 1996 at the NERC site. The Cmic : Nmic ratios were, on average, 4.3 and 6.4 in 1996, and 7.6 and 11.4 in 1997 at the NERC and CWRC sites, respectively. Crop rotation significantly (P<0.05) affected this ratio only at the NERC site, and N fertilization showed no effect at either site. In general, multicropping systems resulted in greater Cmic : Corg (1.1%) and Nmic : Ntot (2.6%) ratios than monocropping systems (0.8% and 2.1%, respectively). Received: 9 February 1999  相似文献   

3.
Glycosidases are a group of soil enzymes that play a major role in degradation of carbohydrates. This study was conducted to assess the impact of crop rotation and N fertilization on the activities of α‐ and β‐glucosidases and α‐ and β‐galactosidases in plots of two long‐term field experiments at the Clarion‐Webster Research Center (CWRC) and Northeast Research Center (NERC) in Iowa. Surface‐soil (0–15 cm) samples were taken in 1996 and 1997 in corn (Zea mays L.), soybean (Glycine max (L.) Merr.), oats (Avena sativa L.), or meadow (alfalfa) (Medicago sativa L.) plots that received 0 or 180 kg N ha–1, applied as urea before corn, and an annual application of 20 kg P ha–1 and 56 kg K ha–1. Activities of the four glycosidases were significantly affected by crop rotations in both years at the two sites but not by nitrogen application. In general, higher activities were observed in plots under meadow or oat and the lowest in continuous corn (CWRC) and soybean (NERC). Four‐year rotation showed the highest activity, followed by 2‐year rotation and monocropping systems. Linear‐regression analyses indicated that, in general, the activities of the glycosidases were significantly correlated with microbial‐biomass C (r > 0.302, p ≤ 0.05) and microbial‐biomass N (r > 0.321, p ≤ 0.05), organic‐C (r > 0.332, p ≤ 0.05) and organic‐N (r > 0.399, p ≤ 0.01) contents of the soils. Results of this work suggest that multicropping stimulated the activities of the glycosidases. The specific activities of the glycosidases in soils of the two sites studied, expressed as g p‐nitrophenol released per kg of organic C, differed among the four enzymes. The lowest values were obtained for β‐galactosidase and α‐glucosidase, followed by α‐galactosidase and β‐glucosidase.  相似文献   

4.
One way of investigating the function of soil is via the pool of low molecular weight organic compounds in the soil microbial biomass. This is because low molecular weight organic compounds have key roles in metabolism of soil microbes, can function in osmotic adjustment and other stress responses, and are intermediates in the breakdown of polymers to inorganic nutrients. Methods for measuring low molecular weight microbial metabolites in soil rely upon extracting total metabolites and then subtracting the contribution from metabolites in the soil extracellular matrix (i.e. microbial = total − extracellular). Recent studies have tested methods for extracting organic N monomers from the extracellular matrix of soil, but there has not been similar testing of methods for extracting total organic N monomers. The aims of this study were to examine methods for extracting total organic N monomers by a) contrasting chloroform gas fumigation with chloroform direct extraction, and b) examining whether it is possible to extract soil with two methods that combine quenching of metabolic activity with extraction, namely cold methanol/chloroform/water and hot aqueous ethanol. To evaluate methods, organic N compounds were extracted from soil and then capillary electrophoresis–mass spectrometry identified and quantified 42 organic N monomers including amino acids, quaternary ammonium compounds, nucleobases and nucleosides, amines and polyamines. Absolute concentrations of 32 out of the 42 quantified organic N monomers were significantly different between soil extracted by chloroform gas fumigation and chloroform direct extraction. These differences were probably a function of gains and losses of compounds due to oxidation, hydrolysis and deamidation during the two-day chloroform gas fumigation. Cold methanol/chloroform/water yielded large amounts of the extremely labile compound ergothioneine, probably because the extraction method rapidly quenched metabolic activity. The primary limitation of extraction with methanol/chloroform/water is that it was ineffective at extracting strongly cationic compounds (e.g. polyamines). Extraction with hot aqueous ethanol was unsuccessful with soil presumably because soil microbes are difficult to lyse. It is recommended that future studies examining organic N monomers in soil microbial biomass use chloroform direct extraction or cold methanol/chloroform/water rather than chloroform gas fumigation.  相似文献   

5.
 We studied the relationship between urease activity (UA) and soil organic matter (SOM), microbial biomass N (Nbiom) content, and urea-N fertilizer assimilation by maize in a Dark Red Latosol (Typic Haplustox) cultivated for 9 years under no-tillage (NT), tillage with a disc plough (DP), and tillage with a moldboard plough (MP). Two soil depths were sampled (0–7.5 cm and 7.5–15 cm) at 4 different times during the crop cycle. Urea was applied at four different rates, ranging from 0 to 240 kg N ha–1. The levels of fertilizer N did not affect the UA, SOM content, and Nbiom content. No significant difference between the treatments (NT, DP, and MP) was observed for SOM during the experiment, probably because the major part of the SOM was in recalcitrant pools, since the area was previously cultivated (conventional tillage) for 20 years. The Nbiom content explained 97% and 69% of the variation in UA in the upper and deeper soil layer, respectively. UA and biomass N were significantly higher in the NT system compared to the DP and MP systems. The highest maize productivity and urea-N recovery was also observed for the NT system. We observed that the increase in urea-N losses under NT, possibly as a consequence of a higher UA, was compensated for by the increase in N immobilized in the biomass. Received: 2 July 1999  相似文献   

6.
 Processes that govern the soil nitrogen (N) supply in irrigated lowland rice systems are poorly understood. The objectives of this paper were to investigate the effects of crop rotation and management on soil N dynamics, microbial biomass C (CBIO) and microbial biomass N (NBIO) in relation to rice N uptake and yield. A maize-rice (M-R) rotation was compared with a rice-rice (R-R) double-cropping system over a 2-year period with four cropping seasons. In the M-R system, maize (Zea mays L.) was grown in aerated soil during the dry season (DS) followed by rice (Oryza sativa L.) grown in flooded soil during the wet season (WS). In the R-R system, rice was grown in flooded soil in both the DS and WS. Three fertilizer N rates (0, 50 or 100 kg urea-N ha–1 in WS) were assigned to subplots within the cropping system main plots. Early versus late crop residue incorporation following DS maize or rice were established as additional treatments in sub-subplots in the second year. In the R-R system, the time of residue incorporation had a large effect on NO3 -N accumulation during the fallow period and also on extractable NH4 +-N, rice N uptake and yield in the subsequent cropping period. In contrast, time of residue incorporation had little influence on extractable N in both the fallow and rice-cropping periods of the M-R system, and no detectable effects on rice N uptake or yield. In both cropping systems, CBIO and NBIO were not sensitive to residue incorporation despite differences of 2- to 3-fold increase in the amount of incorporated residue C and N, and were relatively insensitive to N fertilizer application. Extractable organic N was consistently greater after mid-tillering in M-R compared to the R-R system across N rate and residue incorporation treatments, and much of this organic N was α-amino N. We conclude that N mineralization-immobilization dynamics in lowland rice systems are sensitive to soil aeration as influenced by residue management in the fallow period and crop rotation, and that these factors have agronomically significant effects on rice N uptake and yield. Microbial biomass measurements, however, were a poor indicator of these dynamics. Received: 31 October 1997  相似文献   

7.
The content levels and activities of the microbiota were estimated in topsoils and in one soil profile at agricultural and forest sites of the Bornhöved Lake district in northern Germany. Discrepancies between data achieved by fumigation-extraction (FE) and substrate-induced respiration (SIR), both used for the quantification of microbial biomass, were attributed to the composition of the microbial populations in the soils. In the topsoils, the active, glucose-responsive (SIR) versus the total, chloroform-sensitive microbial (FE) biomass decreased in the order; field maize monoculture (field-MM)>field crop rotation (field-CR) and dry grassland>beech forest. This ratio decreased within the soil profile of the beech forest from the litter horizon down to the topsoil. Differences between microbial biomass and activities suggested varying biomass-specific transformation intensities in the soils. The metabolic quotient (qCO2), defined as the respiration rate per unit of biomass, indicates the efficiency in acquiring organic C and the intensity of C mineralization, while biomass-specific arginine-ammonification (arginine-ammonification rate related to microbial biomass content) seems to be dependent on N availability. The qCO2, calculated on the basis of the total microbial biomass, decreased for the topsoils in the same order as did the ratio between the active, glucose-responsive microbial biomass to the total, chloroform-sensitive microbial biomass, in contrast to qCO2 values based on the glucose-responsive microbial biomass, which did not. There was no difference between the levels of biomass-specific arginine-ammonification in topsoils of the fertilized field-CR, fertilized field-MM, fertilized dry grassland and eutric alder forest, but levels were lower in the beech forest, dystric alder forest, and unfertilized wet grassland topsoils. Ratios between values of different microbiological features are suggested to be more useful than microbiological features related to soil weight when evaluating microbial populations and microbially mediated processes in soils.  相似文献   

8.
Summary Microbial biomass, activities of dehydrogenase, phosphatase, and urease, and numbers of ammonium oxidizers were determined at monthly intervals on soil samples obtained from an on-going tillage residue-management study during the summers of 1985 and 1986. The site was cleared of black spruce (Picea mariana, Mill.) in 1979 and has been planted to spring barley (Hordeum vulgare) since 1982. Tillage treatments were no-tillage or disked twice, and residuemanagement treatments were removal of stubble and loose straw or leaving all straw on the plots. Microbial biomass and enzyme activities were moderate to high in the Ap horizon but very low in the B horizon. There was no difference in any parameter measured due to tillage or residue management. In 1986, comparisons were made between the Ap horizon and the agricultural soil and the A horizon of the soil beneath an adjacent black-spruce forest. Total microbial biomass and enzyme activities were generally greater in the forest soil than in the agricultural soil. However, specific activity of the biomass was generally greater in the agricultural soil. Soil microbial biomass and urease activities of both agricultural and forest soils were similar to those reported for warmer climates, but dehydrogenase activity was higher and phosphatase was lower.  相似文献   

9.
10.
 Microbial populations, biomass, soil respiration and enzyme activities were determined in slightly acid organic soils of major mountainous humid subtropical terrestrial ecosystems, along a soil fertility gradient, in order to evaluate the influence of soil properties on microbial populations, activity and biomass and to understand the dynamics of the microbial biomass in degraded ecosystems and mature forest. Although the population of fungi was highest in the undisturbed forest (Sacred Grove), soil respiration was lowest in the 7-year-old regrowth and in natural grassland (approximately 373 μg g–1 h–1). Dehydrogenase and urease activities were high in "jhum" fallow, and among the forest stands they were highest in the 7-year-old regrowth. Microbial biomass C (MBC) depended mainly on the organic C status of the soil. The MBC values were generally higher in mature forest than in natural grassland, 1-year-old jhum fallow and the 4-year-old alder plantation. The MBC values obtained by the chloroform-fumigation-incubation technique (330–1656 μg g–1) did not vary significantly from those obtained by the chloroform-fumigation-extraction technique (408–1684 μg g–1), however, the values correlated positively (P<0.001). The enzyme activities, soil respiration, bacterial and fungal populations and microbial biomass was greatly influenced by several soil properties, particularly the levels of nutrients. The soil nutrient status, microbial populations, soil respiration and dehydrogenase activity were greater in Sacred Grove, while urease activity was greater in grassland. Received: 14 October 1998  相似文献   

11.
 Using soils from field plots in four different arable crop experiments that have received combinations of manure, lime and inorganic N, P and K for up to 20 years, the effects of these fertilizers on soil chemical properties and estimates of soil microbial community size and activity were studied. The soil pH was increased or unaffected by the addition of organic manure plus inorganic fertilizers applied in conjunction with lime, but decreased in the absence of liming. The soil C and N contents were greater for all fertilized treatments compared to the control, yet in all cases the soil samples from fertilized plots had smaller C:N ratios than soil from the unfertilized plots. The soil concentrations of all the other inorganic nutrients measured were greater following fertilizer applications compared with the unfertilized plots, and this effect was most marked for P and K in soils from plots that had received the largest amounts of these nutrients as fertilizers. Both biomass C determined by chloroform fumigation and glucose-induced respiration tended to increase as a result of manure and inorganic fertilizer applications, although soils which received the largest additions of inorganic fertilizers in the absence of lime contained less biomass C than those to which lime had been added. Dehydrogenase activity was lower in soils that had received the largest amounts of fertilizers, and was further decreased in the absence of lime. This suggests that dehydrogenase activity was highly sensitive to the inhibitory effects associated with large fertilizer additions. Potential denitrification and anaerobic respiration determined in one soil were increased by fertilizer application but, as with both the microbial biomass and dehydrogenase activity, there were significant reductions in both N2O and CO2 production in soils which received the largest additions of inorganic fertilizers in the absence of lime. In contrast, the size of the denitrifying component of the soil microbial community, as indicated by denitrifying enzyme activity, was unaffected by the absence of lime at the largest rate of inorganic fertilizer applications. The results indicated differences in the composition or function of microbial communities in the soils in response to long-term organic and inorganic fertilization, especially when the soils were not limited. Received: 10 March 1998  相似文献   

12.
Summary Microbial biomass C and N respond rapidly to changes in tillage and soil management. The ratio of biomass C to total organic C and the ratio of mineral N flush to total N were determined in the surface layer (0–5 cm) of low-clay (8–10%), fine sandy loam, Podzolic soils subjected to a range of reduced tillage (direct drilling, chisel ploughing, shallow tillage) experiments of 3–5 years' duration. Organic matter dynamics in the tillage experiments were compared to long-term conditions in several grassland sites established on the same soil type for 10–40 years. Microbial biomass C levels in the grassland soils, reduced tillage, and mouldboard ploughing treatments were 561, 250, and 155 g g-1 soil, respectively. In all the systems, microbial biomass C was related to organic C (r=0.86), while the mineral N flush was related to total N (r=0.84). The average proportion of organic C in the biomass of the reduced tillage soils (1.2) was higher than in the ploughed soils (0.8) but similar to that in the grassland soils (1.3). Reduced tillage increased the average ratio of mineral N flush to total soil N to 1.9, compared to 1.3 in the ploughed soils. The same ratio was 1.8 in the grassland soils. Regression analysis of microbial biomass C and percent organic C in the microbial biomass showed a steeper slope for the tillage soils than the grassland sites, indicating that reduced tillage increased the microbial biomass level per unit soil organic C. The proportion of organic matter in the microbial biomass suggests a shift in organic matter equilibrium in the reduced tillage soils towards a rapid, tillage-induced, accumulation of organic matter in the surface layer.  相似文献   

13.
 Flushes of C and N from fumigation-extraction (FE-C and FE-N, respectively), substrate-induced respiration (SIR), denitrification enzyme activity (DEA) and numbers of NH4 + and NO2 oxidizers were studied in the rhizospheres of Scots pine (Pinus sylvestris L.), Norway spruce [(Picea abies (L.) Karsten] and silver birch (Betula pendula Roth) seedlings growing in soil from a field afforestation site. The rhizosphere was defined as the soil adhering to the roots when they were carefully separated from the rest of the soil in the pots, termed as "planted bulk soil". Soil in unplanted pots was used as control soil. All seedlings had been grown from seed and had been infected by the natural mycorrhizas of soil. Overall, roots of all tree species tended to increase FE-C, FE-N, SIR and DEA compared to the unplanted soil, and the increase was higher in the rhizosphere than in the planted bulk soil. In the rhizospheres tree species did not differ in their effect on FE-C, FE-N and DEA, but SIR was lowest under spruce. In the planted bulk soils FE-C and SIR were lowest under spruce. The planted bulk soils differed probably because the roots of spruce did not extend as far in the pot as those of pine and birch. The numbers of both NH4 + and NO2 oxidizers, determined by the most probable number method, were either unaffected or decreased by roots, with the exception of the spruce rhizosphere, where numbers of both were increased. Received: 26 August 1998  相似文献   

14.
Effect of cropping systems on nitrogen mineralization in soils   总被引:3,自引:0,他引:3  
 Understanding the effect of cropping systems on N mineralization in soils is crucial for a better assessment of N fertilizer requirements of crops in order to minimize nitrate contamination of surface and groundwater resources. The effects of crop rotations and N fertilization on N mineralization were studied in soils from two long-term field experiments at the Northeast Research Center and the Clarion-Webster Research Center in Iowa that were initiated in 1979 and 1954, respectively. Surface soil samples were taken in 1996 from plots of corn (Zea mays L.), soybean (Glycine max (L.) Merr.), oats (Avena sativa L.), or meadow (alfalfa) (Medicago sativa L.) that had received 0 or 180 kg N ha–1 before corn and an annual application of 20 kg P and 56 kg K ha–1. N mineralization was studied in leaching columns under aerobic conditions at 30  °C for 24 weeks. The results showed that N mineralization was affected by cover crop at the time of sampling. Continuous soybean decreased, whereas inclusion of meadow increased, the amount of cumulative N mineralized. The mineralizable N pool (N o) varied considerably among the soil samples studied, ranging from 137 mg N kg–1 soil under continuous soybean to >500 mg N kg–1 soil under meadow-based rotations, sampled in meadow. The results suggest that the N o and/or organic N in soils under meadow-based cropping systems contained a higher proportion of active N fractions. Received: 10 February 1999  相似文献   

15.
 In a cropping systems experiment in southeastern Norway, ecological (ECO), integrated (INT) and conventional (CON) forage (FORAGE) and arable (ARABLE) model farms were compared. After 5 experimental years, topsoil was sampled in spring from spring grain plots and incubated for 449 days at controlled temperature (15  °C) and moisture content (50% water-holding capacity). There were no detectable differences between model farms in terms of total soil C or N. For INT and CON, however, values of microbial biomass C and N, microbial quotient (Cmic/Corg), and C and N mineralization were, or tended to be, higher for FORAGE than for ARABLE. For the ECO treatment, values were similar for FORAGE and ARABLE and did not differ significantly from that of CON-FORAGE. For INT and CON, the metabolic quotient (qCO2) was lower for FORAGE than for ARABLE. Again, for the ECO treatment, values were similar for FORAGE and ARABLE and did not differ significantly from that of CON-FORAGE. We estimated the sizes of conceptual soil organic matter pools by fitting a decomposition model to biomass and mineralization data. This resulted in a 48% larger estimate for CON-FORAGE than for CON-ARABLE of physically protected biomass C. For physically protected organic C the difference was 42%. Moreover, the stability of soil aggregates against artificial rainfall was substantially greater for CON-FORAGE than for CON-ARABLE. On this basis, we hypothesized that the lower qCO2 values in the FORAGE soils were mainly caused by a smaller proportion of active biomass due to enclosure of microorganisms within aggregates. Altogether, our results indicated a poorer inherent soil fertility in ARABLE than in FORAGE rotations, but the difference was small or absent in the ECO system, probably owing to the use of animal and green manures and reduced tillage intensity in the ECO-ARABLE rotation. Received: 28 October 1998  相似文献   

16.
 Studies were conducted to evaluate the relationships among different active N pools of organic matter in soils at two long-term cropping systems in Iowa. Results indicated that multi-cropping systems, particularly meadow-based systems, enhanced bioactivities of soils. Mono-cropping systems, particularly soybean, reduced soil microbial biomass and enzyme activities. The mineralizable N pool (potential N mineralization;N o) was more sensitive to changes in the size of the microbial biomass N (Nmic) than to changes in organic N. One unit change in organic N did not lead to substantial changes in N o, but 1 unit change in Nmic resulted in three or more units change in N o. The active N pools and turnover rate were more sensitive to changes in organic C than to changes in microbial biomass C (Cmic). A unit change in organic C resulted in 10.6 units change in N o, but a unit change in Cmic resulted in only 0.8 unit change in N o. Cmic or Nmic are better indexes than organic C or N for the estimation of N o or N availability, because biomass values are more highly correlated with cumulative N mineralized during 24 weeks of incubation, with r values ranging from 0.57 (P<0.001) to 0.88 (P<0.001). Received: 18 October 1999  相似文献   

17.
Understanding the influence of long-term crop management practices on the soil microbial community is critical for linking soil microbial flora with ecosystem processes such as those involved in soil carbon cycling. In this study, pyrosequencing and a functional gene array (GeoChip 4.0) were used to investigate the shifts in microbial composition and functional gene structure in a medium clay soil subjected to various cropping regimes. Pyrosequencing analysis showed that the community structure (β-diversity) for bacteria and fungi was significantly impacted among different cropping treatments. Functional gene array-based analysis revealed that crop rotation practices changed the structure and abundance of genes involved in C degradation. Significant correlations were observed between the activities of four enzymes involved in soil C degradation and the abundance of genes responsible for the production of respective enzymes, suggesting that a shift in the microbial community may influence soil C dynamics. We further integrated physical, chemical, and molecular techniques (qPCR) to assess relationships between soil C, microbial derived enzymes and soil bacterial community structure at the soil micro-environmental scale (e.g. within different aggregate-size fractions). We observed a dominance of different bacterial phyla within soil microenvironments which was correlated with the amount of C in the soil aggregates suggesting that each aggregate represents a different ecological niche for microbial colonization. Significant effects of aggregate size were found for the activity of enzymes involved in C degradation suggesting that aggregate size distribution influenced C availability. The influence of cropping regimes on microbial and soil C responses declined with decreasing size of soil aggregates and especially with silt and clay micro-aggregates. Our results suggest that long term crop management practices influence the structural and functional potential of soil microbial communities and the impact of crop rotations on soil C turnover varies between different sized soil aggregates. These findings provide a strong framework to determine the impact of management practices on soil C and soil health.  相似文献   

18.
 A chloroform-fumigation extraction method with fumigation at atmospheric pressure (CFAP, without vacuum) was developed for measuring microbial biomass C (CBIO) and N (NBIO) in water-saturated rice soils. The method was tested in a series of laboratory experiments and compared with the standard chloroform-fumigation extraction (CFE, with vacuum). For both methods, there was little interference from living rice roots or changing soil water content (0.44–0.55 kg kg–1 wet soil). A comparison of the two techniques showed a highly significant correlation for both CBIO and NBIO (P<0.001) suggesting that the simple and rapid CFAP is a reliable alternative to the CFE. It appeared, however, that a small and relatively constant fraction of well-protected microbial biomass may only be lysed during fumigation under vacuum. Determinations of microbial C and N were highly reproducible for both methods, but neither fumigation technique generated NBIO values which were positively correlated with CBIO. The range of observed microbial C:N ratios of 4–15 was unexpectedly wide for anaerobic soil conditions. Evidence that this was related to inconsistencies in the release, degradation, and extractability of NBIO rather than CBIO came from the observation that increasing the fumigation time from 4 h to 48 h significantly increased NBIO but not CBIO. The release pattern of CBIO indicated that the standard fumigation time of 24 h is applicable to water-saturated rice soils. To correct for the incomplete recovery of CBIO, we suggest applying the k C factor of 2.64, commonly used for aerobic soils (Vance et al. 1987), but caution is required when correcting NBIO data. Until differences in fumigation efficiencies among CFE and CFAP are confirmed for a wider range of rice soils, we suggest applying the same correction factor for both methods. Received: 1 June 1999  相似文献   

19.
 The effects of 5 years of continuous grass/clover (Cont grass/clover) or grass (Cont grass) pasture or 5 years of annual grass under conventional (Ann grass CT) or zero tillage (Ann grass ZT) were compared with that of 5 years of continuous barley (LT arable) on a site which had previously been under arable crops for 11 years. For added comparison, a long-term grass/clover pasture site (LT past) nearby was also sampled. Soil organic C (Corg) content followed the order LT arable=Ann grass CT<Ann grass ZT<Cont grass=Cont grass/clover<LTpast. Trends with treatment for microbial biomass C (Cmic), basal respiration, flourescein diacetate (FDA) hydrolytic activity, arginine ammonification rate and the activities of dehydrogenase, protease, histidase, acid phosphatase and arylsulphatase enzymes were broadly similar to those for Corg. For Cmic, FDA hydrolysis, arginine ammonification and the activities of histidase, acid phosphatase and arylsulphatase, the percentage increase caused by 5 years of continuous pasture (in comparison with LT arable) was 100–180%, which was considerably greater than that for organic C (i.e. 60%). The microbial metabolic quotient (qCO2) was higher for the two treatments which were mouldboard ploughed annually (LT arable and Ann grass CT) than for the undisturbed sites. At the undisturbed sites, Corg declined markedly with depth (0–15 cm) and there was a similar stratification in the size and activity of Cmic and enzyme activity. The microbial quotient (Cmic/Corg) declined with depth whilst qCO2 tended to increase, reflecting a decrease in the proportion of readily available substrate with depth. Received: 7 July 1998  相似文献   

20.
Short-term effects of tillage systems on active soil microbial biomass   总被引:5,自引:0,他引:5  
 Conservation tillage, and especially no-tillage, induce changes in the distribution of organic pools in the soil profile. In long-term field experiments, marked stratification of the total soil microbial biomass and its activity have been observed as consequence of the application of no-tillage to previously tilled soils. Our objective was to study the evolution of the total and active soil microbial biomass and mineralized C in vitro during the first crop after the introduction of no-tillage to an agricultural soil. The experiment was performed on a Typic Hapludoll from the Argentinean Pampa. Remaining plant residues, total and active microbial biomass and mineralized C were determined at 0–5 cm and 5–15 cm depths, at three sampling times: wheat tilling, silking and maturity. The introduction of no-tillage produced an accumulation of plant residues in the soil surface layer (0–5 cm), showing stratification with depth at all sampling dates. Active microbial biomass and C mineralization were higher under no-tillage than under conventional tillage in the top 5 cm of the profile. The total soil microbial biomass did not differ between treatments. The active soil biomass was highly and positive correlated with plant residues (r 2=0.617;P<0.01) and with mineralized C (r 2=0.732;P<0.01). Consequently, the active microbial biomass and mineralized C reflected immediately the changes in residue management, whereas the total microbial biomass seemed not to be an early indicator of the introduction of a new form of soil management in our experiment. Received: 23 February 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号