首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Synthesis and properties of metallic glasses that contain aluminum   总被引:1,自引:0,他引:1  
He Y  Poon SJ  Shiflet GJ 《Science (New York, N.Y.)》1988,241(4873):1640-1642
The synthesis and properties of a class of metallic glasses containing up to 90 atomic percent aluminum are reported. The unusual formability of the glasses and their structural features are pointed out. Mechanical properties including tensile fracture strength and Young's modulus are reported along with crystallization temperatures. The unusually high strengths of the aluminum glasses can be of significant importance in obtaining high-strength low-density materials.  相似文献   

2.
Bulk icosahedral-quasicrystalline aluminum-palladium-rhenium alloys of high structural quality and thermal stability are found to exhibit low-temperature electrical resistivities that are four orders of magnitude larger than those found in disordered metals and metallic glasses. Experiments suggest that these quasiperiodic alloys, which have a semimetallic electron density, are insulators at low temperature. The findings are discussed in light of theories on electron localization and band-gap formation in ordered metallic systems.  相似文献   

3.
Metallic glasses     
Greer AL 《Science (New York, N.Y.)》1995,267(5206):1947-1953
Amorphous metallic alloys, relative newcomers to the world of glasses, have properties that are unusual for solid metals. The metallic glasses, which exist in a very wide variety of compositions, combine fundamental interest with practical applications. They also serve as precursors for exciting new nanocrystalline materials. Their magnetic (soft and hard) and mechanical properties are of particular interest.  相似文献   

4.
Recent experience has shown that certain metal alloys can be put into glass form by rapid melt-quenching or by various condensation processes. Models for the nature and structure of these glasses are surveyed and shown to be quite parallel to those already developed for the more common nonmetallic glasses. The rather unique magnetic, superconducting, and mechanical properties and the technical potential of metallic glasses are also discussed.  相似文献   

5.
When a sufficiently high electric current is passed through a liquid metal, the electromagnetic pressure pinches off the liquid metal and interrupts the flow of current. For the first time the pinch effect has been overcome by use of centrifugal acceleration. By rotation of a pipe of liquid metal, tin or bismuth or their alloys, at sufficiently high speed, it can be heated electrically without intermission of the electric current. One may now heat liquid metallic substances, by resistive (ohmic) heating, to 5000 degrees K and perhaps higher temperatures.  相似文献   

6.
Laboratory experiments document that liquid iron reacts chemically with silicates at high pressures (>/=2.4 x 10(10) Pascals) and temperatures. In particular, (Mg,Fe)SiO(3) perovskite, the most abundant mineral of Earth's lower mantle, is expected to react with liquid iron to produce metallic alloys (FeO and FeSi) and nonmetallic silicates (SiO(2) stishovite and MgSiO(3) perovskite) at the pressures of the core-mantle boundary, 14 x 10(10) Pascals. The experimental observations, in conjunction with seismological data, suggest that the lowermost 200 to 300 kilometers of Earth's mantle, the D" layer, may be an extremely heterogeneous region as a result of chemical reactions between the silicate mantle and the liquid iron alloy of Earth's core. The combined thermal-chemical-electrical boundary layer resulting from such reactions offers a plausible explanation for the complex behavior of seismic waves near the core-mantle boundary and could influence Earth's magnetic field observed at the surface.  相似文献   

7.
A glassy fulgurite, formed recently on a morainal ridge in southeastern Michigan, contains micrometer- to centimeter-sized metallic globules rich in native silicon, which unmixed from a silica-rich liquid. The unusual character of these globules and their potential for elucidating conditions of fulgurite formation prompted further study. Thermodynamic calculations indicate that temperatures in excess of 2000 K and reducing conditions approaching those of the SiO(2)-Si buffer were needed to form the coexisting metallic and silicate liquids. The phases produced are among the most highly reduced naturally occurring materials known. Some occurrences of other highly reduced minerals may also be due to lightning strike reduction. Extreme reduction and volatilization may also occur during high-temperature events such as lightning strikes in presolar nebulae and impacts of extraterrestrial bodies. As a result of scavenging of platinum-group elements by highly reduced metallic liquids, geochemical anomalies associated with the Cretaceous-Tertiary boundary may have a significant terrestrial component even if produced through bolide impact.  相似文献   

8.
Nanostructured metals are generally unstable; their grains grow rapidly even at low temperatures, rendering them difficult to process and often unsuitable for usage. Alloying has been found to improve stability, but only in a few empirically discovered systems. We have developed a theoretical framework with which stable nanostructured alloys can be designed. A nanostructure stability map based on a thermodynamic model is applied to design stable nanostructured tungsten alloys. We identify a candidate alloy, W-Ti, and demonstrate substantially enhanced stability for the high-temperature, long-duration conditions amenable to powder-route production of bulk nanostructured tungsten. This nanostructured alloy adopts a heterogeneous chemical distribution that is anticipated by the present theoretical framework but unexpected on the basis of conventional bulk thermodynamics.  相似文献   

9.
Super plastic bulk metallic glasses at room temperature   总被引:1,自引:0,他引:1  
In contrast to the poor plasticity that is usually observed in bulk metallic glasses, super plasticity is achieved at room temperature in ZrCuNiAl synthesized through the appropriate choice of its composition by controlling elastic moduli. Microstructures analysis indicates that the super plastic bulk metallic glasses are composed of hard regions surrounded by soft regions, which enable the glasses to undergo true strain of more than 160%. This finding is suggestive of a solution to the problem of brittleness in, and has implications for understanding the deformation mechanism of, metallic glasses.  相似文献   

10.
Uquid metal-liquid silicate partition coefficients for several elements at 100 kilobars and temperatures up to about 3000 kelvin in carbon capsules experimentally converge on unity with increasing temperature. The sense of change of the partition coefficients with temperature resembles the extrapolation of Murthy and may partially contribute to, but by no means provide a complete resolution of, the "excess" siderophile problem in the Earth's mantle. Sulfur and perhaps carbon successfully compete with oxygen for sites in the metallic liquid at these temperatures and pressures. This observation casts doubt upon the hypothesis that oxygen is the light element in the Earth's core.  相似文献   

11.
为提升棕榈油分提工艺,采用超声波对结晶罐中的油液进行辅助处理。以分提所得低度液油碘值为指标,研究超声时间、超声时油脂的结晶时间、超声频率、超声功率对分提工艺的影响,并在单因素实验的基础上,设计正交试验方案。结果表明超声波辅助分提工艺最佳设置条件为超声时间10 min、超声时结晶时间600 min、超声频率28 Khz和超声功率400W。同时对所得低度棕榈液油进行了品质测定,结果显示,超声处理并不会改变所得液油的品质。优化的超声工艺条件加快棕榈油冷却结晶的进程,缩短工艺时间,增加生产运行的稳定性和液油产率,具有良好的应用前景。  相似文献   

12.
In Ge and Si, and also in Ge-Si alloys (74), there is extensive evidence for the stable binding of electrons and holes into a cold plasma of constant density, which undergoes a phase separation. Liquid metallic drops 1 to 300 microm in size are formed, with lifetimes ranging from 0.1 to 600 microsec. For Ge a surprising amount is known: the phase diagram, the surface energy, the work function, the decay kinetics. Much less is known for Si. There is good agreement between theoretical and experimental values of the liquid density, the critical density, the critical temperature, and the binding energy. The stability of the liquid phase is strikingly dependent on band structure. The multivalley structure and mass anisotropy of Si, Ge, and Ge-Si, together with their indirect band gap, are no doubt responsible for the observed stability in these crystals. In the similar semiconductor gallium phosphide, drops have not yet been observed, most likely because the high impurity content traps the excitons. In gallium arsenide the existence of drops is controversial (75). Undoubtedly drops will be found to exist in other semiconductors, perhaps at even higher temperatures. This is an exciting field for the experimentalist; new phenomena are being rapidly discovered, usually before they are predicted. For the theorist, the electron-hole drop is of high intrinsic interest. It represents the first example of a quantum liquid of constant density in a periodic crystal lattice. A number of challenging experimental and theoretical problems remain.  相似文献   

13.
Ceria nanoparticles are one of the key abrasive materials for chemical-mechanical planarization of advanced integrated circuits. However, ceria nanoparticles synthesized by existing techniques are irregularly faceted, and they scratch the silicon wafers and increase defect concentrations. We developed an approach for large-scale synthesis of single-crystal ceria nanospheres that can reduce the polishing defects by 80% and increase the silica removal rate by 50%, facilitating precise and reliable mass-manufacturing of chips for nanoelectronics. We doped the ceria system with titanium, using flame temperatures that facilitate crystallization of the ceria yet retain the titania in a molten state. In conjunction with molecular dynamics simulation, we show that under these conditions, the inner ceria core evolves in a single-crystal spherical shape without faceting, because throughout the crystallization it is completely encapsulated by a molten 1- to 2-nanometer shell of titania that, in liquid state, minimizes the surface energy. The principle demonstrated here could be applied to other oxide systems.  相似文献   

14.
Numerous examples of metallic alloys have been discovered, the atomic structures of which display an icosahedral symmetry that is impossible for ordinary periodic crystals. Recent experimental results support the hypothesis that the alloys are examples of a new "quasicrystal" phase of solid matter. Observed deviations from an ideal quasicrystal structure can be explained as "phason strains," a special class of defects predicted to be the dominant type of imperfection formed during solidification.  相似文献   

15.
Heavy-electron metals exhibit highly correlated electronic behavior at liquid helium temperatures, with conduction-electron masses some hundred times the free-electron mass. Whether "normal," antiferromagnetic, or superconducting, their electronic behavior differs drastically from their ordinary metallic counterparts. The physical origin of the large mass and unusual superconducting and magnetic properties is the strong coupling between the conduction electrons and the local f-electron moment fluctuations characteristic of these materials.  相似文献   

16.
We combine small-angle x-ray scattering (SAXS) and wide-angle x-ray scattering (WAXS) with aerodynamic levitation techniques to study in situ phase transitions in the liquid state under contactless conditions. At very high temperatures, yttria-alumina melts show a first-order transition, previously inferred from phase separation in quenched glasses. We show how the transition coincides with a narrow and reversible maximum in SAXS indicative of liquid unmixing on the nanoscale, combined with an abrupt realignment in WAXS features related to reversible shifts in polyhedral packing on the atomic scale. We also observed a rotary action in the suspended supercooled drop driven by repetitive transitions (a polyamorphic rotor) from which the reversible changes in molar volume (1.2 +/- 0.2 cubic centimeters) and entropy (19 +/- 4 joules mole(-1) kelvin(-1)) can be estimated.  相似文献   

17.
X-ray measurements reveal a crystalline monolayer at the surface of the eutectic liquid Au82Si18, at temperatures above the alloy's melting point. Surface-induced atomic layering, the hallmark of liquid metals, is also found below the crystalline monolayer. The layering depth, however, is threefold greater than that of all liquid metals studied to date. The crystallinity of the surface monolayer is notable, considering that AuSi does not form stable bulk crystalline phases at any concentration and temperature and that no crystalline surface phase has been detected thus far in any pure liquid metal or nondilute alloy. These results are discussed in relation to recently suggested models of amorphous alloys.  相似文献   

18.
Creep-resistant, Al2O3-forming austenitic stainless steels   总被引:1,自引:0,他引:1  
A family of inexpensive, Al2O3-forming, high-creep strength austenitic stainless steels has been developed. The alloys are based on Fe-20Ni-14Cr-2.5Al weight percent, with strengthening achieved through nanodispersions of NbC. These alloys offer the potential to substantially increase the operating temperatures of structural components and can be used under the aggressive oxidizing conditions encountered in energy-conversion systems. Protective Al2O3 scale formation was achieved with smaller amounts of aluminum in austenitic alloys than previously used, provided that the titanium and vanadium alloying additions frequently used for strengthening were eliminated. The smaller amounts of aluminum permitted stabilization of the austenitic matrix structure and made it possible to obtain excellent creep resistance. Creep-rupture lifetime exceeding 2000 hours at 750 degrees C and 100 megapascals in air, and resistance to oxidation in air with 10% water vapor at 650 degrees and 800 degrees C, were demonstrated.  相似文献   

19.
The adult carabid beetle Pterostichus brevicornis tolerates freezing under natural conditions. Laboratory tests confirm that winter beetles tolerate temperatures below -35 degrees C, whereas summer beetles die if frozen at -6.6 degrees C. Winter beetles can be cooled to about -10 degrees C before freezing, and they thaw near -3.5 degrees C. Summer beetles thaw at -0.7 degrees C. To avoid freezing damage even in winter beetles, cooling rates must be near 20 degrees C per hour or less.  相似文献   

20.
The egg-type core microstructure where one alloy encases another has previously been obtained during experiments in space. Working with copper-iron base alloys prepared by conventional gas atomization, we were able to obtain this microstructure under gravity conditions. The minor liquid phase always formed the core of the egg, and it sometimes also formed a shell layer. The origin of the formation of this core microstructure can be explained by Marangoni motion on the basis of the temperature dependence of the interfacial energy, which shows that this type of powder can be formed even if the cooling rate is very high.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号